Rational Design Strategies for Covalent Organic Frameworks Toward Efficient Electrocatalytic Hydrogen Peroxide Production
Abstract
:1. Introduction
2. Fundamental Principles and Evaluation of Electrocatalytic H2O2 Production
3. Structural Basis and Design Principles of COFs for Electrocatalytic H2O2 Production
3.1. Fundamental Features of COFs
3.2. Design Principles of COFs for Electrocatalytic H2O2 Production
3.2.1. Dimensional Modulation
3.2.2. Linkage Engineering
3.2.3. Heteroatom Doping
3.2.4. Post-Synthetic Modification
4. Typical COF Electrocatalytic Systems and Practical Cases
4.1. Metal-Free COF Catalysts
4.2. Metal-Based COF Catalysts
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sato, K.; Aoki, M.; Noyori, R. A “Green” Route to Adipic Acid: Direct Oxidation of Cyclohexenes with 30 Percent Hydrogen Peroxide. Science 1998, 281, 1646–1647. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.K.; Solsona, B.; Ntainjua, E.; Carley, A.F.; Herzing, A.A.; Kiely, C.J.; Hutchings, G.J. Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science 2009, 323, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhang, Y.; Li, B.; Jiang, J.; Liu, Q. Advances in Constructing Efficient Photocatalytic Systems for Hydrogen Peroxide Production: Insights from Synchrotron Radiation Research. Artif. Photosynth. 2025. [Google Scholar] [CrossRef]
- Khan, S.; Qaiser, M.A.; Qureshi, W.A.; Haider, S.N.-Z.; Yu, X.; Wang, W.; Liu, Q. Photocatalytic Hydrogen Peroxide Production: Advances, Mechanistic Insights, and Emerging Challenges. J. Environ. Chem. Eng. 2024, 12, 114143. [Google Scholar] [CrossRef]
- Ou, Y.; Zhang, Y.; Luo, W.; Wu, Y.; Wang, Y. Rational Design of Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production. Macromol. Rapid Commun. 2025, 46, e2401149. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhang, D.; Zhao, Z.; Xia, Z. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. Adv. Mater. 2018, 30, 1703646. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, W.; Gu, Z. Covalent Organic Frameworks for Electrocatalysis: Design, Applications, and Perspectives. ChemPlusChem 2024, 89, e202400069. [Google Scholar] [CrossRef]
- Wang, D.-G.; Qiu, T.; Guo, W.; Liang, Z.; Tabassum, H.; Xia, D.; Zou, R. Covalent Organic Framework-Based Materials for Energy Applications. Energy Environ. Sci. 2020, 14, 688–728. [Google Scholar] [CrossRef]
- Yusran, Y.; Fang, Q.; Valtchev, V. Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2020, 32, 2002038. [Google Scholar] [CrossRef]
- Cao, H.; Chen, G.; Yan, Y.; Wang, D. Advances in Two-Electron Water Oxidation Reaction for Hydrogen Peroxide Production: Catalyst Design and Interface Engineering. ChemSusChem 2025, 18, e202401100. [Google Scholar] [CrossRef]
- Han, G.; Lee, S.; Hwang, S.; Lee, K. Advanced Development Strategy of Nano Catalyst and DFT Calculations for Direct Synthesis of Hydrogen Peroxide. Adv. Energy Mater. 2021, 11, 2003121. [Google Scholar] [CrossRef]
- Samanta, C. Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen: An Overview of Recent Developments in the Process. Appl. Catal. A Gen. 2008, 350, 133–149. [Google Scholar] [CrossRef]
- Yuan, K.; Li, H.; Gu, X.; Zheng, Y.; Wu, X.; Zhao, Y.; Zhou, J.; Cui, S. Electrocatalysts for the Formation of Hydrogen Peroxide by Oxygen Reduction Reaction. ChemSusChem 2025, 18, e202401952. [Google Scholar] [CrossRef]
- Haider, Z.; Cho, H.; Moon, G.; Kim, H. Minireview: Selective Production of Hydrogen Peroxide as a Clean Oxidant over Structurally Tailored Carbon Nitride Photocatalysts. Catal. Today 2019, 335, 55–64. [Google Scholar] [CrossRef]
- Dhanda, N.; Panday, Y.K.; Kumar, S. Recent Advances in the Electrochemical Production of Hydrogen Peroxide. Electrochimica Acta 2024, 481, 143872. [Google Scholar] [CrossRef]
- Martínez-Fernández, M.; Martínez-Periñán, E.; Ruigómez, A.d.l.P.; Cabrera-Trujillo, J.J.; Navarro, J.A.R.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Ramos, M.; Vismara, R.; Zamora, F.; et al. Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction. Angew. Chem. Int. Ed. 2023, 62, e202313940. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Shen, J.; Feng, L.; Yao, Y.; Peng, Q. Rational Design Two- or Four-Electron Reaction Pathway Covalent Organic Frameworks for Efficient and Selective Electrocatalytic Hydrogen Peroxide Production. Angew. Chem. Int. Ed. 2025, 64, e202424720. [Google Scholar] [CrossRef] [PubMed]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 2019, 120, 8814–8933. [Google Scholar] [CrossRef]
- Qiao, R.; Wang, J.; Hu, H.; Lu, S. Covalent Organic Frameworks Based Electrocatalysts for Two-Electron Oxygen Reduction Reaction: Design Principles, Recent Advances, and Perspective. Molecules 2024, 29, 2563. [Google Scholar] [CrossRef]
- He, T.; Zhao, Y. Covalent Organic Frameworks for Efficient Hydrogen Peroxide Production. EnergyChem 2024, 6, 100121. [Google Scholar] [CrossRef]
- Yang, G.; Xu, Q.; Zeng, G. Developments of Photo-/Electro-catalysis Based on Covalent Organic Frameworks: A Review. Electron. 2024, 2, e39. [Google Scholar] [CrossRef]
- Guo, C.; Liu, T.; Wang, Z.; Wang, Y.; Steven, M.; Luo, Y.; Luo, X.; Wang, Y. Regulating the Spin-State of Cobalt in Three-Dimensional Covalent Organic Frameworks for High-Performance Sodium-Iodine Rechargeable Batteries. Angew. Chem. Int. Ed. 2025, 64, e202415759. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, T.; Lu, X.-M.; Sun, W.; Wu, Y.; Zhang, Y.; Yang, C.; Wang, Y. A Multicomponent Donor–π–Acceptor Covalent Organic Framework as a Nanoporous Cation-Selective Separator for Durable Aqueous Zinc Ion Batteries. J. Mater. Chem. A 2025, 13, 5839–5850. [Google Scholar] [CrossRef]
- Geng, Q.; Wang, H.; Wang, J.; Hong, J.; Sun, W.; Wu, Y.; Wang, Y. Boosting the Capacity of Aqueous Li-Ion Capacitors via Pinpoint Surgery in Nanocoral-Like Covalent Organic Frameworks. Small Methods 2022, 6, 2200314. [Google Scholar] [CrossRef]
- Geng, Q.; Xu, Z.; Wang, J.; Song, C.; Wu, Y.; Wang, Y. Tailoring Covalent Triazine Frameworks Anode for Superior Lithium-Ion Storage via Thioether Engineering. Chem. Eng. J. 2023, 469, 143941. [Google Scholar] [CrossRef]
- Zheng, S.; Bi, S.; Fu, Y.; Wu, Y.; Liu, M.; Xu, Q.; Zeng, G. 3D Crown Ether Covalent Organic Framework as Interphase Layer toward High-Performance Lithium Metal Batteries. Adv. Mater. 2024, 36, e2313076. [Google Scholar] [CrossRef]
- Sun, L.; Li, Z.; Zhai, L.; Moon, H.; Song, C.; Oh, K.-S.; Kong, X.; Han, D.; Zhu, Z.; Wu, Y.; et al. Electrostatic Polarity-Regulated, Vinylene-Linked Cationic Covalent Organic Frameworks as an Ionic Sieve Membrane for Long-Cyclable Lithium-Sulfur Batteries. Energy Storage Mater. 2024, 66, 103222. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Dai, S.; Zhao, C.; Ma, C.; Wei, L.; Zhu, M.; Chong, S.Y.; Yang, H.; Liu, L.; et al. Reconstructed Covalent Organic Frameworks. Nature 2022, 604, 72–79. [Google Scholar] [CrossRef]
- Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M.V.; Heine, T.; Banerjee, R. Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. J. Am. Chem. Soc. 2012, 134, 19524–19527. [Google Scholar] [CrossRef]
- Chandra, S.; Kandambeth, S.; Biswal, B.P.; Lukose, B.; Kunjir, S.M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically Stable Multilayered Covalent Organic Nanosheets from Covalent Organic Frameworks via Mechanical Delamination. J. Am. Chem. Soc. 2013, 135, 17853–17861. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, L.; Zhao, Z.; Xia, Z. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production. Adv. Mater. 2017, 29, 1606635. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Pan, T.; Zhang, G.; Pang, H. Covalent Organic Framework Nanomaterials: Syntheses, Architectures, and Applications. Adv. Colloid Interface Sci. 2025, 339, 103427. [Google Scholar] [CrossRef]
- Tan, K.T.; Ghosh, S.; Wang, Z.; Wen, F.; Rodríguez-San-Miguel, D.; Feng, J.; Huang, N.; Wang, W.; Zamora, F.; Feng, X.; et al. Covalent Organic Frameworks. Nat. Rev. Methods Prim. 2023, 3, 1. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, G.; Chen, L. 2D Conjugated Covalent Organic Frameworks: Defined Synthesis and Tailor-Made Functions. Acc. Chem. Res. 2022, 55, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Pachfule, P.; Thomas, A. Covalent Organic Frameworks (COFs) for Electrochemical Applications. Chem. Soc. Rev. 2021, 50, 6871–6913. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Xia, C.; Li, F.; Zhang, J.; Guo, W.; Xia, B.Y. Rational Design of Oxygen Species Adsorption on Nonnoble Metal Catalysts for Two-Electron Oxygen Reduction. Adv. Energy Mater. 2024, 14, 2303233. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Pei, Z.; Wu, K.-H.; Tan, C.; Wang, H.; Wei, L.; Mahmood, A.; Yan, C.; Dong, J.; et al. Recent Progress of Carbon-Supported Single-Atom Catalysts for Energy Conversion and Storage. Matter 2020, 3, 1442–1476. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Huang, Y.-X.; Jin, R.-C.; Huang, B.-C. Single Atom Catalysts for Use in the Selective Production of Hydrogen Peroxide via Two-Electron Oxygen Reduction Reaction: Mechanism, Activity, and Structure Optimization. Appl. Catal. B Environ. 2023, 337, 122987. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, X.; Chen, X. Probing High Catalytic Activity and Selectivity of Enzyme-Mimicking Single-Atom Catalysts Formed by Pyrrole-Type M-N4 Sites Embedded into g-C3N4 for Oxygen Reduction Reaction. J. Environ. Chem. Eng. 2023, 11, 110382. [Google Scholar] [CrossRef]
- Dan, M.; Zhong, R.; Hu, S.; Wu, H.; Zhou, Y.; Liu, Z.-Q. Strategies and Challenges on Selective Electrochemical Hydrogen Peroxide Production: Catalyst and Reaction Medium Design. Chem. Catal. 2022, 2, 1919–1960. [Google Scholar] [CrossRef]
- Li, S.; Ma, J.; Xu, F.; Wei, L.; He, D. Fundamental Principles and Environmental Applications of Electrochemical Hydrogen Peroxide Production: A Review. Chem. Eng. J. 2023, 452, 139371. [Google Scholar] [CrossRef]
- Deshpande, S.; Kitchin, J.R.; Viswanathan, V. Quantifying Uncertainty in Activity Volcano Relationships for Oxygen Reduction Reaction. ACS Catal. 2016, 6, 5251–5259. [Google Scholar] [CrossRef]
- Sun, K.; Lu, R.; Liu, Y.; Webb, J.; Hanif, M.; Zhao, Y.; Wang, Z.; Waterhouse, G.I.N. Balancing Activity and Selectivity in Two-Electron Oxygen Reduction through First Coordination Shell Engineering in Cobalt Single Atom Catalysts. Angew. Chem. Int. Ed. 2025, 64, e202416070. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Luo, T.; Wang, J.; Xiang, J.; Li, X.; Ma, C.; Kao, C.; Chan, T.; Liu, Y.; Liu, M. Tuning Proton Affinity on Co−N−C Atomic Interface to Disentangle Activity-Selectivity Trade-off in Acidic Oxygen Reduction to H2O2. Angew. Chem. Int. Ed. 2025, 64, e202418713. [Google Scholar] [CrossRef]
- Mei, X.; Zhao, X.; Xie, H.; Gavrilov, N.; Geng, Q.; Li, Q.; Zhuo, H.; Cao, Y.; Li, Y.; Dong, F. Charge Transfer Modulation in G-C3N4/CeO2 Composites: Electrocatalytic Oxygen Reduction for H2O2 Production. Inorg. Chem. 2025, 64, 3017–3027. [Google Scholar] [CrossRef]
- Deng, D.; Wang, Y.; Jiang, J.; Bai, Y.; Chen, Y.; Zheng, H.; Ou, H.; Lei, Y. Indium Oxide with Oxygen Vacancies Boosts O2 Adsorption and Activation for Electrocatalytic H2O2 Production. Chem. Commun. 2024, 60, 9364–9367. [Google Scholar] [CrossRef] [PubMed]
- Passard, G.; Ullman, A.M.; Brodsky, C.N.; Nocera, D.G. Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential. J. Am. Chem. Soc. 2016, 138, 2925–2928. [Google Scholar] [CrossRef] [PubMed]
- Paulus, U.A.; Schmidt, T.J.; Gasteiger, H.A.; Behm, R.J. Oxygen Reduction on a High-Surface Area Pt/Vulcan Carbon Catalyst: A Thin-Film Rotating Ring-Disk Electrode Study. J. Electroanal. Chem. 2001, 495, 134–145. [Google Scholar] [CrossRef]
- Cui, X.; Lei, S.; Wang, A.C.; Gao, L.; Zhang, Q.; Yang, Y.; Lin, Z. Emerging Covalent Organic Frameworks Tailored Materials for Electrocatalysis. Nano Energy 2020, 70, 104525. [Google Scholar] [CrossRef]
- Martínez-Fernández, M.; Segura, J.L. Exploring Advanced Oxygen Reduction Reaction Electrocatalysts: The Potential of Metal-Free and Non-Pyrolyzed Covalent Organic Frameworks. ChemSusChem 2024, 17, e202400558. [Google Scholar] [CrossRef]
- Divya, D.; Mishra, H.; Jangir, R. Covalent Organic Frameworks and Their Composites as Enhanced Energy Storage Materials. Chem. Commun. 2025, 61, 2403–2423. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Shi, M.; Xu, Y.; Yu, E.; Zhang, Y.; Li, J.; Liu, F.; Yao, B.; Yu, J.; Wu, J. Covalent Organic Framework: A Rising Star in Antibacterial Agents. Adv. Funct. Mater. 2025, 35, 2411237. [Google Scholar] [CrossRef]
- Shahid, M.; ur Rehman, A.; Najam, T.; Majeed, H.; Shalash, M.; El-Bahy, S.M.; Javed, M.S.; Shah, S.S.A.; Nazir, M.A. Covalent Organic Frameworks: Synthesis and Applications for Photocatalysis. ChemPhotoChem 2024, 8, e202400131. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Y.-J.; Ma, S.-H.; Yang, C.; Wang, Z.-P.; Ding, S.-Y.; Li, Y.; Wang, W. Fused-Ring-Linked Covalent Organic Frameworks. J. Am. Chem. Soc. 2022, 144, 6594–6603. [Google Scholar] [CrossRef]
- Tang, J.; Su, C.; Shao, Z. Covalent Organic Framework (COF)-Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods 2021, 5, e2100945. [Google Scholar] [CrossRef]
- Tao, S.; Jiang, D. Covalent Organic Frameworks for Energy Conversions: Current Status, Challenges, and Perspectives. CCS Chem. 2021, 3, 2003–2024. [Google Scholar] [CrossRef]
- Feng, X.; Ding, X.; Jiang, D. Covalent Organic Frameworks. Chem. Soc. Rev. 2012, 41, 6010. [Google Scholar] [CrossRef]
- Cooper, A.I. Covalent Organic Frameworks. CrystEngComm 2013, 15, 1483. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Wang, W. Covalent Organic Frameworks (COFs): From Design to Applications. Chem. Soc. Rev. 2013, 42, 548–568. [Google Scholar] [CrossRef]
- Segura, J.L.; Mancheño, M.J.; Zamora, F. Covalent Organic Frameworks Based on Schiff-Base Chemistry: Synthesis, Properties and Potential Applications. Chem. Soc. Rev. 2016, 45, 5635–5671. [Google Scholar] [CrossRef]
- Huang, S.; Lu, S.; Hu, Y.; Cao, Y.; Li, Y.; Duan, F.; Zhu, H.; Jin, Y.; Du, M.; Zhang, W. Covalent Organic Frameworks with Molecular Electronic Modulation as Metal-Free Electrocatalysts for Efficient Hydrogen Peroxide Production. Small Struct. 2023, 4, 2200387. [Google Scholar] [CrossRef]
- Lu, H.; Yang, C.; Chen, J.; Li, J.; Jin, H.; Wang, J.; Wang, S. Tailoring Hierarchically Porous Nitrogen-, Sulfur-Codoped Carbon for High-Performance Supercapacitors and Oxygen Reduction. Small 2020, 16, 1906584. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lian, Y.; Yang, C.; Xiong, L.; Qi, P.; Mu, Q.; Zhao, X.; Guo, J.; Deng, Z.; Peng, Y. A Hierarchical Nickel–Carbon Structure Templated by Metal–Organic Frameworks for Efficient Overall Water Splitting. Energy Environ. Sci. 2018, 11, 2363–2371. [Google Scholar] [CrossRef]
- Zhao, R.; Xia, W.; Lin, C.; Sun, J.; Mahmood, A.; Wang, Q.; Qiu, B.; Tabassum, H.; Zou, R. A Pore-Expansion Strategy to Synthesize Hierarchically Porous Carbon Derived from Metal-Organic Framework for Enhanced Oxygen Reduction. Carbon 2017, 114, 284–290. [Google Scholar] [CrossRef]
- Jiang, D. Covalent Organic Frameworks: An Amazing Chemistry Platform for Designing Polymers. Chem 2020, 6, 2461–2483. [Google Scholar] [CrossRef]
- Huang, N.; Wang, P.; Jiang, D. Covalent Organic Frameworks: A Materials Platform for Structural and Functional Designs. Nat. Rev. Mater. 2016, 1, 6010. [Google Scholar] [CrossRef]
- Rejali, N.A.; Dinari, M.; Wang, Y. Post-Synthetic Modifications of Covalent Organic Frameworks (COFs) for Diverse Applications. Chem. Commun. 2023, 59, 11631–11647. [Google Scholar] [CrossRef]
- Wang, J.; Sun, H.; Huang, S.; Duan, F.; Gu, H.; Du, M.; Lu, S. Construction of One-Dimensional Covalent–Organic Framework Coordinated with Main Group Metals for Selective Electrochemical Synthesis of H2O2. ACS Appl. Mater. Interfaces 2024, 16, 56459–56468. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, Y.; Han, W.; Feng, J.; Zhang, J.; Pang, H.; Zhang, J.; Gu, Z. Three-Dimensional Covalent Organic Frameworks Based on Linear and Trigonal Linkers for High-Performance H2O2 Photosynthesis. Angew. Chem. Int. Ed. 2024, 64, e202412890. [Google Scholar] [CrossRef]
- An, S.; Li, X.; Shang, S.; Xu, T.; Yang, S.; Cui, C.; Peng, C.; Liu, H.; Xu, Q.; Jiang, Z.; et al. One-Dimensional Covalent Organic Frameworks for the 2e− Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2023, 62, e202218742. [Google Scholar] [CrossRef]
- Li, H.; Ding, J.; Guan, X.; Chen, F.; Li, C.; Zhu, L.; Xue, M.; Yuan, D.; Valtchev, V.; Yan, Y.; et al. Three-Dimensional Large-Pore Covalent Organic Framework with Stp Topology. J. Am. Chem. Soc. 2020, 142, 13334–13338. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, L.; Chen, H.; Xing, Y.; Wang, Z.; Zhang, C.; Long, X. Topology Control of Covalent Organic Frameworks with Interlaced Unsaturated 2D and Saturated 3D Units for Boosting Electrocatalytic Hydrogen Peroxide Production. Angew. Chem. Int. Ed. 2024, 63, e202410719. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, B.; Wu, D.; Xu, Y.; Hu, H.; Duan, F.; Zhu, H.; Du, M.; Lu, S. Linkage Engineering in Covalent Organic Frameworks as Metal-Free Oxygen Reduction Electrocatalysts for Hydrogen Peroxide Production. Appl. Catal. B Environ. 2024, 340, 123216. [Google Scholar] [CrossRef]
- Qian, C.; Zhou, W.; Qiao, J.; Wang, D.; Li, X.; Teo, W.L.; Shi, X.; Wu, H.; Di, J.; Wang, H.; et al. Linkage Engineering by Harnessing Supramolecular Interactions to Fabricate 2D Hydrazone-Linked Covalent Organic Framework Platforms toward Advanced Catalysis. J. Am. Chem. Soc. 2020, 142, 18138–18149. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, M.; Zhang, F.; Zeng, B.; Li, X.; Guo, Z.; Lang, X. Linkage Microenvironment Modulation in Triazine-Based Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Peroxide Production. Small 2025, 21, e2411625. [Google Scholar] [CrossRef] [PubMed]
- Stegbauer, L.; Schwinghammer, K.; Lotsch, B.V. A Hydrazone-Based Covalent Organic Framework for Photocatalytic Hydrogen Production. Chem. Sci. 2014, 5, 2789–2793. [Google Scholar] [CrossRef]
- Liu, W.; Su, Q.; Ju, P.; Guo, B.; Zhou, H.; Li, G.; Wu, Q. A Hydrazone-Based Covalent Organic Framework as an Efficient and Reusable Photocatalyst for the Cross-Dehydrogenative Coupling Reaction of N-Aryltetrahydroisoquinolines. ChemSusChem 2017, 10, 664–669. [Google Scholar] [CrossRef]
- Yang, Z.; Zuo, L.; Luo, B.; Yang, C.; Wang, S.; Chew, L.; Zhu, J.; Zhang, X. Designing Heterocyclic Covalent Organic Frameworks with Tunable Electronic Structures for Efficient Electrosynthesis of Hydrogen Peroxide. Small 2024, 20, e2403859. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, J.; Liang, Y.; Yu, X.; Zhao, Y.; Li, Y.; Wang, W.; Sui, Z.; Tian, X.; Chen, Q. Tetrazole-Functionalized Benzoquinoline-Linked Covalent Organic Frameworks with Efficient Performance for Electrocatalytic H 2 O 2 Production and Li–S Batteries. Mater. Chem. Front. 2023, 7, 1650–1658. [Google Scholar] [CrossRef]
- Nagai, A.; Guo, Z.; Feng, X.; Jin, S.; Chen, X.; Ding, X.; Jiang, D. Pore Surface Engineering in Covalent Organic Frameworks. Nat. Commun. 2011, 2, 536. [Google Scholar] [CrossRef]
- Lu, Q.; Ma, Y.; Li, H.; Guan, X.; Yusran, Y.; Xue, M.; Fang, Q.; Yan, Y.; Qiu, S.; Valtchev, V. Postsynthetic Functionalization of Three-Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angew. Chem. 2018, 57, 6042–6048. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.S.; Stassin, T.; Naudin, G.; Wuttke, S.; Ameloot, R.; Vos, D.D.; Medina, D.D.; Bein, T. Sequential Pore Wall Modification in a Covalent Organic Framework for Application in Lactic Acid Adsorption. Chem. Mater. 2016, 28, 626–631. [Google Scholar] [CrossRef]
- Sun, Q.; Aguila, B.; Earl, L.D.; Abney, C.W.; Wojtas, L.; Thallapally, P.K.; Ma, S. Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration. Adv. Mater. 2018, 30, e1705479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-P.; Sun, Y.; Cheng, G.; Wang, Z.; Ma, H.; Ding, S.-Y.; Tan, B.; Bu, J.; Zhang, C. Highly Dispersed Gold Nanoparticles Anchoring on Post-Modified Covalent Organic Framework for Catalytic Application. Chem. Eng. J. 2020, 391, 123471. [Google Scholar] [CrossRef]
- Rager, S.; Dogru, M.; Werner, V.; Gavryushin, A.; Götz, M.; Engelke, H.; Medina, D.D.; Knochel, P.; Bein, T. Pore Wall Fluorescence Labeling of Covalent Organic Frameworks. CrystEngComm 2017, 19, 4886–4891. [Google Scholar] [CrossRef]
- Aiyappa, H.B.; Thote, J.; Shinde, D.B.; Banerjee, R.; Kurungot, S. Cobalt-Modified Covalent Organic Framework as a Robust Water Oxidation Electrocatalyst. Chem. Mater. 2016, 28, 4375–4379. [Google Scholar] [CrossRef]
- Lu, S.; Hu, Y.; Wan, S.; McCaffrey, R.; Jin, Y.; Gu, H.; Zhang, W. Synthesis of Ultrafine and Highly Dispersed Metal Nanoparticles Confined in a Thioether-Containing Covalent Organic Framework and Their Catalytic Applications. J. Am. Chem. Soc. 2017, 139, 17082–17088. [Google Scholar] [CrossRef] [PubMed]
- Waller, P.J.; Lyle, S.J.; Popp, T.M.O.; Diercks, C.S.; Reimer, J.A.; Yaghi, O.M. Chemical Conversion of Linkages in Covalent Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 15519–15522. [Google Scholar] [CrossRef]
- Segura, J.L.; Royuela, S.; Ramos, M.M. Post-Synthetic Modification of Covalent Organic Frameworks. Chem. Soc. Rev. 2019, 48, 3903–3945. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, L.; Luo, J.; Zhao, Y.; Yu, X.; Li, Y.; Wang, W.; Sui, Z.; Tian, X.; Chen, Q. Metalation of Functionalized Benzoquinoline-Linked COFs for Electrocatalytic Oxygen Reduction and Lithium-Sulfur Batteries. J. Colloid Interface Sci. 2023, 650, 1466–1475. [Google Scholar] [CrossRef]
- Jiménez-Duro, M.; Martínez-Periñán, E.; Martínez-Fernández, M.; Martínez, J.I.; Lorenzo, E.; Segura, J.L. Robust Amide-Linked Fluorinated Covalent Organic Framework for Long-Term Oxygen Reduction Reaction Electrocatalysis. Small 2024, 20, e2402082. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Huang, D.; Peng, J.; Li, N.; Liu, Z.; Shen, Y.; Zhao, X.; Gu, Y.; Xiang, Y. Charge Redistribution in Covalent Organic Frameworks via Linkage Conversion Enables Enhanced Selective Reduction of Oxygen to H2O2. J. Mater. Chem. A 2023, 11, 18945–18952. [Google Scholar] [CrossRef]
- Li, X.; Fu, Y.; An, Q.; Yang, S.; Yang, X.; Xu, Q.; Zeng, G.; Jiang, Z. Micro-Modulation of Linkers of Covalent Organic Frameworks as Catalysts for 2e− Oxygen Reduction Reaction. Appl. Catal. B Environ. 2024, 344, 123611. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Z.; Zhou, H.; Yu, M.; Liao, L.; Wang, Y.; Wan, S.; Lu, H.; Xing, W.; Valtchev, V.; et al. Structural Modulation of Covalent Organic Frameworks for Efficient Hydrogen Peroxide Electrocatalysis. Angew. Chem. Int. Ed. 2024, 63, e202410417. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, Z.; Zhang, R.; Wang, Z.; Wang, H.; Zhao, J.; Cao, D.; Wang, S. Multicomponent Synthesis of Imidazole-Linked Fully Conjugated 3D Covalent Organic Framework for Efficient Electrochemical Hydrogen Peroxide Production. Angew. Chem. Int. Ed. 2023, 62, e202314539. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, B.; Sun, H.; Hu, H.; Wang, J.; Duan, F.; Zhu, H.; Du, M.; Lu, S. Constructing Single Atom Sites on Bipyridine Covalent Organic Frameworks for Selective Electrochemical Production of H2O2. Chem. Commun. 2023, 59, 10424–10427. [Google Scholar] [CrossRef]
- Liu, M.; Yang, S.; Liu, S.; Miao, Q.; Yang, X.; Li, X.; Xu, Q.; Zeng, G. Construction of Atomic Metal-N2 Sites by Interlayers of Covalent Organic Frameworks for Electrochemical H2O2 Synthesis. Small 2022, 18, e2204757. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Liu, F.; Chen, J.; Yu, Z.; Yuan, Z.; Wang, C.; Zheng, H.; Henkelman, G.; Wei, L.; et al. Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. J. Am. Chem. Soc. 2020, 142, 21861–21871. [Google Scholar] [CrossRef]
- Yang, S.; Lu, L.; Li, J.; Cheng, Q.; Mei, B.; Li, X.; Mao, J.; Qiao, P.; Sun, F.; Ma, J.; et al. Boosting Hydrogen Peroxide Production via Establishment and Reconstruction of Single-metal Sites in Covalent Organic Frameworks. SusMat 2023, 3, 379–389. [Google Scholar] [CrossRef]
- Zhi, Q.; Jiang, R.; Yang, X.; Jin, Y.; Qi, D.; Wang, K.; Liu, Y.; Jiang, J. Dithiine-Linked Metalphthalocyanine Framework with Undulated Layers for Highly Efficient and Stable H2O2 Electroproduction. Nat. Commun. 2024, 15, 678. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Q.; Yang, S.; Jiang, Z.; Yu, C.; Zeng, G. Precise Design of Covalent Organic Frameworks for Electrocatalytic Hydrogen Peroxide Production. Chem. Asian J. 2021, 16, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.-Z.; Liu, P.; Cheng, Q.-Q.; Hu, W.-J.; Liu, Y.A.; Li, J.-S.; Jiang, B.; Jia, X.-S.; Yang, H.; Wen, K. Highly Effective Electrosynthesis of Hydrogen Peroxide from Oxygen on a Redox-Active Cationic Covalent Triazine Network. Chem. Commun. 2018, 54, 4433–4436. [Google Scholar] [CrossRef] [PubMed]
Electrocatalyst | Type | Electrolyte | n | H2O2 Selectivity (%) | FE (%) | E0/V (vs. RHE) | E1/2/V (vs. RHE) | Jlim (mA cm−2) | Reference |
---|---|---|---|---|---|---|---|---|---|
PYTA-TPEDH-COF | Metal-free | 0.1 M KOH | 2.28–2.36 | 82–85.8 | ~80 | 0.69 | ~0.60 | 2.14 | [70] |
TPETA-TPEDH-COF | Metal-free | 0.1 M KOH | 2.40–2.50 | 75.2–79.8 | N/A | 0.69 | ~0.60 | 1.9 | [70] |
NQ-COF | Metal-free | pH 3.1 (acidic) | N/A | 61–69 | N/A | N/A | N/A | N/A | [92] |
TP-TD-COF | Metal-free | 0.1 M KOH | 2.24 | 81.9–86.2 | N/A | 0.76 | 0.62 | N/A | [61] |
Py-TD-COF | Metal-free | 0.1 M KOH | 2.2–2.5 | 80–92 | N/A | 0.834 | 0.698 | 2.898 | [73] |
Py-TD-COF-NH | Metal-free | 0.1 M KOH | 2.8–3.0 | 50–61 | N/A | 0.829 | 0.693 | 2.891 | [73] |
Br-COF | Metal-free | 0.1 M KOH | 2.26–2.29 | 85.4–85.5 | 80.6 | 0.7 | 0.61 | 2.34 | [93] |
DFTAPB-TFTA-COF | Metal-free | 0.1 M NaOH | 2.1 | 96.25 | 71.1 | 0.698 | ~0.60 | 1.7 | [16] |
BUCT-COF-7/CNT | Metal-free | 0.1 M KOH | 2.41 | 83.4 | ~80 | 0.82 | ~0.71 | N/A | [95] |
TAE-COF | Metal-free | 0.1 M KOH | N/A | 98.2 | 73.0 | N/A | N/A | N/A | [61] |
cCTN:Cl− | Metal-free | 0.1 M KOH | 2.2 | 85.3 | N/A | 0.75 | ~0.60 | N/A | [102] |
TP-TTA-COF | Metal-free | 0.1 M KOH | 2.58–2.68 | 66.0–70.9 | N/A | 0.622 | ~0.57 | 1.32 | [99] |
COF-366 | Metal-free | 0.1 M KOH | 2.4 | 78 | 64 | ~0.60 | ~0.51 | N/A | [98] |
MgP-DHTA-COF | Metalated | 0.1 M KOH | 2.11–2.15 | 96 | 90.6 | 0.68 | 0.6 | 2 | [101] |
PtCl-COF | Metalated | 0.1 M KOH | 2.26–2.37 | 81.6–87.2 | N/A | 0.675 | ~0.58 | 1.83 | [99] |
CoPc-S-COF | Metalated | 0.1 M KOH | 2.0–2.2 | ~94 | ~95 | 0.81 | ~0.72 | N/A | [100] |
Py-Bpy-COF-Zn | Metalated | 0.1 M KOH | 2.06 | 99.1 | N/A | ~0.75 | ~0.65 | N/A | [96] |
Ca-COF-318 | Metalated | 0.1 M KOH | 2.1 | 94–95 | 91 | 0.75 | 0.61 | 2.8 | [97] |
COF-366-Co | Metalated | 0.1 M KOH | 2.2 | 91 | 84 | ~0.67 | ~0.58 | N/A | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Zhao, Y.; Luo, W.; Zhang, Y.; Wang, Y.; Wu, Y. Rational Design Strategies for Covalent Organic Frameworks Toward Efficient Electrocatalytic Hydrogen Peroxide Production. Catalysts 2025, 15, 500. https://doi.org/10.3390/catal15050500
Zheng Y, Zhao Y, Luo W, Zhang Y, Wang Y, Wu Y. Rational Design Strategies for Covalent Organic Frameworks Toward Efficient Electrocatalytic Hydrogen Peroxide Production. Catalysts. 2025; 15(5):500. https://doi.org/10.3390/catal15050500
Chicago/Turabian StyleZheng, Yingjie, Yi Zhao, Wen Luo, Yifan Zhang, Yong Wang, and Yang Wu. 2025. "Rational Design Strategies for Covalent Organic Frameworks Toward Efficient Electrocatalytic Hydrogen Peroxide Production" Catalysts 15, no. 5: 500. https://doi.org/10.3390/catal15050500
APA StyleZheng, Y., Zhao, Y., Luo, W., Zhang, Y., Wang, Y., & Wu, Y. (2025). Rational Design Strategies for Covalent Organic Frameworks Toward Efficient Electrocatalytic Hydrogen Peroxide Production. Catalysts, 15(5), 500. https://doi.org/10.3390/catal15050500