Mild and Effective Decatungstate-Catalyzed Degradation of Methyl Orange Under Visible Light
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photocatalytic Oxidation Degradation of Methyl Orange by O2
2.2. Characterization of Catalysts
3. Experimental
3.1. Preparation of the Photocatalysts
3.2. Characterization
3.3. Photocatalytic Evaluation Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maldotti, A.; Molinari, A.; Amadelli, R. Photocatalysis with Organized Systems for the Oxofunctionalization of Hydrocarbons by O2. Chem. Rev. 2002, 102, 3811–3836. [Google Scholar] [CrossRef] [PubMed]
- Yue, B.; Tang, L.; Zhu, S.; Lin, X. Studies on White Powdery Tungstic Acid-Stability and Photochmistry of Decatungstic Acid in Aqueous Soulution Containing Polyvinyl Alcohol. Chem. J. Chin. Univ. 1998, 19, 1453–1456. [Google Scholar]
- Duncan, D.C.; Netzel, T.L.; Hill, C.L. Early-Time Dynamics and Reactivity of Polyoxometalate Excited States. Identification of a Short-Lived LMCT Excited State and a Reactive Long-Lived Charge-Transfer Intermediate following Picosecond Flash Excitation of [W10O32]4− in Acetonitrile. Inorg. Chem. 1995, 34, 4640–4646. [Google Scholar] [CrossRef]
- Texier, I.; Giannotti, C.; Malato, S.; Richter, C.; Delaire, J. Solar photodegradation of pesticides in water by sodium decatungstate. Catal. Today 1999, 54, 297–307. [Google Scholar] [CrossRef]
- Tanielian, C.; Duffy, K.; Jones, A. Kinetic and Mechanistic Aspects of Photocatalysis by Polyoxotungstates: A Laser Flash Photolysis, Pulse Radiolysis, and Continuous Photolysis Study. J. Phys. Chem. B 1997, 101, 4276–4282. [Google Scholar] [CrossRef]
- Nomiya, K.; Sugie, Y.; Miyazaki, T.; Miwa, M. Catalysis by heteropolyacids-ix. Photocatalytic oxidation of isopropyl alcohol to acetone under oxygen using tetrabutylammonium decatungstate. Polyhedron 1986, 5, 1267–1271. [Google Scholar] [CrossRef]
- Nomiya, K.; Sugie, Y.; Amimoto, K.; Miwa, M. Charge-transfer absorption spectra of some tungsten (VI) and molybdenum (VI) polyoxoanions. Polyhedron 1987, 6, 519–524. [Google Scholar] [CrossRef]
- Lykakis, I.N.; Tanielian, C. Orfanopoulos, Decatungstate Photocatalyzed Oxidation of Aryl Alkanols. Electron Transfer or Hydrogen Abstraction Mechanism? Org. Lett. 2003, 5, 2875–2878. [Google Scholar] [CrossRef]
- Lykakis, I.N.; Tanielian, C.; Seghrouchni, M. Orfanopoulos, Mechanism of decatungstate photocatalyzed oxygenation of aromatic alcohols: Part II. Kinetic isotope effects studies. J. Mol. Catal. A Chem. 2007, 262, 176–184. [Google Scholar] [CrossRef]
- Yang, B.; Hu, W.; Wan, F.; Zhang, C.; Liu, Y. Adjusting effect of additives on decatungstate-photocatalyzed HMF oxidation with molecular oxygen under visible light illumination. Chem. Eng. J. 2020, 396, 125345. [Google Scholar] [CrossRef]
- Su, A.; Chen, M.; Fu, Z.; Yang, B.; She, J.; Wan, F.; Zhang, C.; Liu, Y. Hybridizing Engineering Strategy of Decatungstate. 2. Regulated Effect of Doping Transition Metal Ions on Photocatalytic Oxidation Performance of (nBu4N)4W10O32. Inorg. Chem. 2020, 59, 7520–7530. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, J.; Hu, S.; Deng, Y.; Luo, M.; She, J.; Liu, Y.; Zhang, C.; Tang, S.; Fu, Z. Hybridizing strategy of decatungstate by Au nanoparticles for enhanced photo-catalytic oxidation of hydrocarbons by dioxygens. Appl. Catal. A Gen. 2022, 630, 118473. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, H.; Wan, F.; Deng, Y.; Jiang, D.; Zhang, Q.; Liu, Y.; Zhang, C.; Fu, Z. Molybdenum Isomorphously Substituted Decatungstates as Robust and Renewable Photocatalysts for Visible Light-Driven Oxidation of Hydrocarbons by Molecular Oxygen. ChemCatChem 2021, 13, 2253–2261. [Google Scholar] [CrossRef]
- Lykakis, I.N.; Orfanopoulos, M. Deuterium kinetic isotope effects in homogeneous decatungstate catalyzed photooxygenation of 1, 1-diphenylethane and 9-methyl-9H-fluorene: Evidence for a hydrogen abstraction mechanism. Tetrahedron Lett. 2005, 46, 7835–7839. [Google Scholar] [CrossRef]
- Lykakis, I.N. Orfanopoulos, Photooxidation of aryl alkanes by a decatungstate/triethylsilane system in the presence of molecular oxygen. Tetrahedron Lett. 2004, 45, 7645–7649. [Google Scholar] [CrossRef]
- Lykakis, I.N. Orfanopoulos, Decatungstate-Catalyzed Photooxygenation of S-2-Phenylbutane and Cumene via a Free Carbon-Radical Intermediate. Curr. Org. Chem. 2009, 13, 1737–1745. [Google Scholar] [CrossRef]
- Molinari, A.; Amadelli, R.; Mazzacani, A.; Sartori, G.; Maldotti, A. Tetralkylammonium and Sodium Decatungstate Heterogenized on Silica: Effects of the Nature of Cations on the Photocatalytic Oxidation of Organic Substrates. Langmuir 2002, 18, 5400–5405. [Google Scholar] [CrossRef]
- Maldotti, A.; Molinari, A.; Varani, G.; Lenarda, M.; Storaro, L.; Bigi, F.; Maggi, R.; Mazzacani, A.; Sartori, G. Immobilization of (n-Bu4N)4W10O32 on Mesoporous MCM-41 and Amorphous Silicas for Photocatalytic Oxidation of Cycloalkanes with Molecular Oxygen. J. Catal. 2002, 209, 210–216. [Google Scholar] [CrossRef]
- Lykakis, I.N.; Orfanopoulos, M. Lone Selectivity of the Decatungstate-Sensitized Photooxidation of 1-Substituted Cycloalkenes. Synlett 2004, 12, 2131–2134. [Google Scholar]
- Lykakis, I.; Vougioukalakis, G.; Orfanopoulos, M. Homogeneous decatungstate-catalyzed photooxygenation of tetrasubstituted alkenes: A deuterium kinetic isotope effect study. J. Org. Chem. 2006, 71, 8740–8747. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, C.; Wang, X.; Wang, Y.; Wang, E.; Zou, Y.; Ding, H.; Feng, S. Microporous Decatungstates: Synthesis and Photochemical Behavior. Chem. Mater. 2001, 13, 4058–4064. [Google Scholar] [CrossRef]
- Molinari, A.; Bratovcic, A.; Magnacca, G.; Maldotti, A. Matrix effects on the photocatalytic oxidation of alcohols by [nBu4N]4W10O32 incorporated into sol-gel silica. Dalton Trans. 2010, 39, 7826–7833. [Google Scholar] [CrossRef] [PubMed]
- Maldotti, A.; Molinari, A.; Bigi, F. Selective photooxidation of diols with silica bound W10O324−. J. Catal. 2008, 253, 312–317. [Google Scholar] [CrossRef]
- Ni, L.; Ni, J.; Lv, Y.; Yang, P.; Cao, Y. Photooxygenation of hydrocarbons over efficient and reusable decatungstate heterogenized on hydrophobically-modified mesoporous silica. Chem. Commun. 2009, 2171–2173. [Google Scholar] [CrossRef]
- Fornal, E.; Giannotti, C. Photocatalyzed oxidation of cyclohexane with heterogenized decatungstate. J. Photochem. Photobiol. A Chem. 2007, 188, 279–286. [Google Scholar] [CrossRef]
- Moriguchi, I.; Orishikida, K.; Tokuyama, Y.; Watabe, H.; Kagawa, S.; Teraoka, Y. Photocatalytic Property of a Decatungstate-Containing Bilayer System for the Conversion of 2-Propanol to Acetone. Chem. Mater. 2001, 13, 2430–2435. [Google Scholar] [CrossRef]
- Carraro, M.; Gardan, M.; Scorrano, G.; Drioli, E.; Fontananova, E.; Bonchio, M. Solvent-free, heterogeneous photooxygenation of hydrocarbons by Hyflon® membranes embedding a fluorous-tagged decatungstate. Chem. Commun. 2006, 4533–4535. [Google Scholar] [CrossRef]
- Su, A.; Chen, M.; Fu, Z.; Yang, B.; She, J.; Wan, F.; Zhang, C.; Liu, Y. Hybridizing engineering strategy of non-lacunary (nBu4N)4W10O32 by carbon quantum dot with remarkably enhanced visible-light-catalytic oxidation performance. Appl. Catal. A Gen. 2019, 587, 117261. [Google Scholar] [CrossRef]
- LXu, Y.; Tian, Q.P.; Xu, M.; Xie, S.; Huang, H. Preparation of small of small sand garins/TiO2 and its photocatalytic behaviors in degradation of methylene blue. Ind. Catal. 2022, 30, 45–47. [Google Scholar]
- Tao, J.Q.; Wang, Y.Q.; Zhang, Z.M.; Lang, D. Study on the technology of electro Fenton reaction by using MoS2 as co-catalyst. Appl. Chem. Ind. 2020, 49, 3361–3371. [Google Scholar]
- Matilainen, A.; Vepsalainen, M.; Sillanpaa, M. Natural organic matter removal by coagulation during drinking water treatment: A review. Adv. Colloid Interface Sci. 2010, 159, 189–197. [Google Scholar] [CrossRef]
- Zhuang, H.S.; He, N. Preparation of sodium decatungastate and photocatalytic degradation of methyl orange solution. Ind. Water Treat. 2006, 26, 53–56. [Google Scholar]
- Niu, P.; Hao, J.C. Photocatalytic degradation of methyl orange by titanium dioxide-decatungstate nanocomposite films supported on glass slides. Colloids Surf. A Physicochem. Eng. Asp. 2013, 431, 127–132. [Google Scholar] [CrossRef]
- Shi, D.; Zhao, J.-W.; Chen, L.; Ma, P.; Wang, J.; Niu, J. Four types of 1D or 2D organic-inorganic hybrids assembled by arsenotungstates and CuII-LnIII/IV heterometals. CrystEngComm 2012, 14, 3108–3119. [Google Scholar] [CrossRef]
- Wilson, K.; Lee, A.F.; Macquarrie, D.J.; Clark, J.H. Structure and reactivity of sol–gel sulphonic acid silicas. Appl. Catal. A Gen. 2002, 228, 127–133. [Google Scholar] [CrossRef]
- Ženíšek, J.; Ondračka, P.; Čechal, J.; Souček, P.; Holec, D.; Vašina, P. W 4f electron binding energies in amorphous W-B-C systems. Appl. Surf. Sci. 2022, 586, 152824. [Google Scholar] [CrossRef]
- Chenakin, S.; Kruse, N. XPS characterization of transition metal oxalates. Appl. Surf. Sci. 2020, 515, 146041. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, J.; Zhang, M.; Yuan, Q.; Dong, B. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B-Environ. 2015, 163, 298–305. [Google Scholar] [CrossRef]
- Deng, Y.; Tang, L.; Feng, C.; Zeng, G.; Chen, Z.; Wang, J.; Feng, H.; Peng, B.; Liu, Y.; Zhou, Y. Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light. Appl. Catal. B Environ. 2018, 235, 225–237. [Google Scholar] [CrossRef]
- Lei, Z.N.; Wang, W.Q.; Sun, T.; Liu, E.Z.; Gao, T. Efficient photocatalytic H2 evolution over SnS2/twinned Mn0.5Cd0.5S hetero-homojunction with double S-scheme charge transfer routes. J. Mater. Sci. Technol. 2025, 216, 81–92. [Google Scholar] [CrossRef]
- Ingrosso, C.; Corricelli, M.; Disha, A.; Fanizza, E.; Bianco, G.V.; Depalo, N.; Panniello, A.; Agostiano, A.; Striccoli, M.; Curri, M.L. Solvent dispersible nanocomposite based on Reduced Graphene Oxide and in-situ decorated gold nanoparticles. Carbon 2019, 152, 777–787. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Yasumoto, N.; Imai, J.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Ohtani, B.; Hirai, T. Quantum tunneling injection of hot electrons in Au/TiO2 plasmonic photocatalysts. Nanoscale 2017, 9, 8349–8361. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Shi, J.-W.; Ma, D.; Fan, Z.; Lu, L.; Niu, C. In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution. Chem. Eng. J. 2017, 322, 435–444. [Google Scholar] [CrossRef]
- Aragon-Martinez, O.H.; Isiordia-Espinoza, M.A.; Galicia, O.; Romo, S.A.; Gómez, A.G.; Romano-Moreno, S.; Martinez-Morales, F. Measurement of levofloxacin in human plasma samples for a reliable and accessible drug monitoring. Clin. Biochem. 2017, 50, 73–79. [Google Scholar] [CrossRef]
- Zheng, J.; Chang, F.; Jiao, M.; Xu, Q.; Deng, B.; Hu, X. A visible-light-driven heterojuncted composite WO3/Bi12O17Cl2: Synthesis, characterization, and improved photocatalytic performance. J. Colloid Interface Sci. 2018, 510, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Sun, M.; Gao, B.; Ding, W.; Zhang, Z.; Anandan, S.; Umar, A. Hydrothermally regulating phase composition of TiO2 nanocrystals toward high photocatalytic activity. J. Alloys Compd. 2021, 850, 156653. [Google Scholar] [CrossRef]
- Mao, C.; Zuo, F.; Hou, Y.; Bu, X.; Feng, P. In Situ Preparation of a Ti3+ Self-Doped TiO2 Film with Enhanced Activity as Photoanode by N2H4 Reduction. Angew. Chem. Int. Ed. 2014, 53, 10485–10489. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, B.; Wu, J.; Dong, Q.; Zhang, X.; Xu, H. Effects of Hydroxylation on PbS Quantum Dot Sensitized TiO2 Nanotube Array Photoelectrodes. Electrochim. Acta 2016, 187, 480–487. [Google Scholar] [CrossRef]
- Wu, W.; Fu, Z.; Tang, S.; Zou, S.; Wen, X.; Meng, Y.; Sun, S.; Deng, J.; Liu, Y.; Yin, D. (nBu4N)4W10O32-catalyzed selective oxygenation of cyclohexane by molecular oxygen under visible light irradiation. Appl. Catal. B-Environ. 2015, 164, 113–119. [Google Scholar] [CrossRef]
- Yang, B.; Fu, Z.; Su, A.; She, J.; Chen, M.; Tang, S.; Hu, W.; Zhang, C.; Liu, Y. Influence of tetraalkylammonium cations on quality of decatungstate and its photocatalytic property in visible light-triggered selective oxidation of organic compounds by dioxygens. Appl. Catal. B Environ. 2019, 242, 249–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Yu, L.; Zha, L.; He, F.; Ma, J.; Wu, O.; Zhang, H.; Chen, X.; Yu, S.; Lei, M.; et al. Mild and Effective Decatungstate-Catalyzed Degradation of Methyl Orange Under Visible Light. Catalysts 2025, 15, 494. https://doi.org/10.3390/catal15050494
Wu W, Yu L, Zha L, He F, Ma J, Wu O, Zhang H, Chen X, Yu S, Lei M, et al. Mild and Effective Decatungstate-Catalyzed Degradation of Methyl Orange Under Visible Light. Catalysts. 2025; 15(5):494. https://doi.org/10.3390/catal15050494
Chicago/Turabian StyleWu, Wenfeng, Lin Yu, Lei Zha, Feifei He, Jiajia Ma, Ouyang Wu, Huanhuan Zhang, Xinlan Chen, Shuyin Yu, Mengjing Lei, and et al. 2025. "Mild and Effective Decatungstate-Catalyzed Degradation of Methyl Orange Under Visible Light" Catalysts 15, no. 5: 494. https://doi.org/10.3390/catal15050494
APA StyleWu, W., Yu, L., Zha, L., He, F., Ma, J., Wu, O., Zhang, H., Chen, X., Yu, S., Lei, M., Yang, L.-L., Chen, J., & Luo, X. (2025). Mild and Effective Decatungstate-Catalyzed Degradation of Methyl Orange Under Visible Light. Catalysts, 15(5), 494. https://doi.org/10.3390/catal15050494