Nitrone or Oxaziridine? Further Insights into the Selectivity of Imine Oxidation Catalyzed by Methyltrioxorhenium
Abstract
:1. Introduction
2. Results
3. Discussion and Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogata, Y.; Sawaki, Y. Peracid Oxidation of Imines. Kinetics of Oxazirane Formation from Benzylidene-tert-butylamines and Perbenzoic Acid. J. Am. Chem. Soc. 1973, 95, 4687–4692. [Google Scholar] [CrossRef]
- Christensen, D.; Jørgensen, K.A. Oxidation of Imines to Nitrones by the Permanganate Ion. J. Org. Chem. 1989, 54, 126–131. [Google Scholar] [CrossRef]
- Boyd, D.R.; Coulter, P.B.; McGuckin, M.R.; Sharma, N.D.; Jennings, W.B.; Wilson, V.E. Imines and derivatives. Part 24. Nitrone synthesis by imine oxidation using either a peroxyacid or dimethyldioxirane. J. Chem. Soc. Perkin Trans. 1 1990, 1990, 301–306. [Google Scholar] [CrossRef]
- Kitagawa, O.; Vander Velde, D.; Dutta, D.; Morton, M.; Takusagawa, F.; Aubé, J. Structural Analysis of β-Tum Mimics Containing a Substituted 6-Aminocaproic Acid Linker. J. Am. Chem. Soc. 1995, 117, 5169–5178. [Google Scholar] [CrossRef]
- Davis, F.A.; Chattopadhyay, S.; Towson, J.C.; Lal, S.; Reddy, T. Chemistry of Oxaziridines. 9. Synthesis of 2-Sulfonyl- and 2-Sulfamyloxaziridines Using Potassium Peroxymonosulfate (Oxone). J. Org. Chem. 1988, 53, 2087–2089. [Google Scholar] [CrossRef]
- Hajipour, A.R.; Pyne, S.G. A rapid and efficient synthesis of oxaziridines and diaryl nitrones using Oxone. J. Chem. Res. (S) 1992, 24, 388. [Google Scholar] [CrossRef]
- Mohajer, D.; Iranpoor, N.; Rezaeifard, A. Simple and highly efficient synthesis of oxaziridines by tetrabutylammonium Oxone®. Tetrahedron Lett. 2004, 45, 631–634. [Google Scholar] [CrossRef]
- Kluge, R.; Schulz, M.; Liebsch, S. Sulfonic Peracids—III. Heteroatom Oxidation and Chemoselectivity. Tetrahedron 1996, 52, 5773–5782. [Google Scholar] [CrossRef]
- Damavandi, J.A.; Karami, B.; Zolfigol, M.A. Selective Oxidation of N-Alkyl Imines to Oxaziridines using UHP/Maleic Anhydride System. Synlett 2002, 6, 933–934. [Google Scholar] [CrossRef]
- Kraïem, J.; Ben Othman, R.; Ben Hassine, B. Synthesis of oxaziridines by oxidation of imines with the trichloroacetonitrile–hydrogen peroxide system. Comptes Rendus Chim. 2004, 7, 1119–1126. [Google Scholar] [CrossRef]
- Shailaja, M.; Manjula, A.; Rao, B.V. An inexpensive and selective oxygenation of N-alkyl imines to oxaziridines. Synlett 2005, 7, 1176–1178. [Google Scholar] [CrossRef]
- Singhal, S.; Jain, S.L.; Prasad, V.V.D.N.; Sain, B. An Environmentally Friendly Oxidation System for the Selective Oxygenation of Aldimines to Oxaziridines with Anhydrous TBHP and Alumina-SupportedMoO3 as a Recyclable Heterogeneous Catalyst. Eur. J. Org. Chem. 2007, 2007, 2051–2054. [Google Scholar] [CrossRef]
- Martiny, L.; Jørgensen, K.A. Oxidation of imines to oxaziridines catalysed by transition metal complexes using molecular oxygen as the terminal oxidant. J. Chem. Soc. Perkin Trans. 1 1995, 1995, 699–704. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Miller, M.J. Oxidation of Primary Amines to Oxaziridines Using Molecular Oxygen (O2) as the Ultimate Oxidant. J. Org. Chem. 2001, 66, 8282–8285. [Google Scholar] [CrossRef]
- Larsen, J.; Jørgensen, K.A.; Christensen, D. Duality of the permanganate ion in the oxidation of imines. Oxidation of imines to amides. J. Chem. Soc. Perkin Trans. 1 1991, 1991, 1187–1190. [Google Scholar] [CrossRef]
- Busqué, F.; de March, P.; Figueredo, M.; Font, J.; Gallagher, T.; Milán, S. Efficient synthesis of (S)-3,4-dihydro-2-pivaloyloxymethyl-2H-pyrrole 1-oxide. Tetrahedron Asymmetry 2002, 13, 437–445. [Google Scholar] [CrossRef]
- Nongkunsarn, P.; Ramsden, C.A. Oxidative Rearrangement of Imines to Formamides using Sodium Perborate. Tetrahedron 1997, 53, 3805–3830. [Google Scholar] [CrossRef]
- An, G.-I.; Kim, M.; Kim, J.Y.; Rhee, H. Oxidation of aldimines to amides by m-CPBA and BF3·OEt2. Tetrahedron Lett. 2003, 44, 2183–2186. [Google Scholar] [CrossRef]
- Llopis, N.; Gisbert, P.; Baeza, A. Direct Synthesis of N,N-Disubstituted Formamides by Oxidation of Imines Using an HFIP/UHP System. J. Org. Chem. 2020, 85, 11072–11079. [Google Scholar] [CrossRef]
- Murahashi, S.-I.; Imada, Y. Synthesis and Transformations of Nitrones for Organic Synthesis. Chem. Rev. 2019, 119, 4684–4716. [Google Scholar] [CrossRef]
- Breuer, E. Nitrones and nitronic acid derivatives: Their structure and their roles in synthesis. In The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives—Part 1; Patai, S., Ed.; Wiley Interscience: New York, NY, USA, 1982; pp. 460–564. [Google Scholar]
- Grigor’ev, I.A. Nitrones: Novel Strategies in Synthesis. In Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis; Feuer, H., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 129–434. [Google Scholar]
- Tufariello, J.J. Nitrones. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; John Wiley & Sons: New York, NY, USA, 1984; Volume 2, pp. 83–168. [Google Scholar]
- Frederickson, M. Optically active isoxazolidines via asymmetric cycloaddition reactions of nitrones with alkenes: Applications in organic synthesis. Tetrahedron 1997, 53, 403–425. [Google Scholar] [CrossRef]
- Gothelf, K.V.; Jørgensen, K.A. Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chem. Rev. 1998, 98, 863–909. [Google Scholar] [CrossRef] [PubMed]
- Goti, A.; Cicchi, S.; Cordero, F.M.; Fedi, V.; Brandi, A. A Straightforward Route to Enantiopure Pyrrolizidines and Indolizidines by Cycloaddition to Pyrroline N-Oxides Derived from the Chiral Pool. Molecules 1999, 4, 1–12. [Google Scholar] [CrossRef]
- Jones, R.C.F.; Martin, J.N. Nitrones. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; The Chemistry of Heterocyclic Compounds; Padwa, A., Pearson, W.H., Eds.; John Wiley & Sons: New York, NY, USA, 2002; Volume 59, pp. 1–81. [Google Scholar] [CrossRef]
- Brandi, A.; Cardona, F.; Cicchi, S.; Cordero, F.M.; Goti, A. [3 + 2] Dipolar Cycloadditions of Cyclic Nitrones with Alkenes. Org. React. 2017, 94, 1–529. [Google Scholar] [CrossRef]
- Koumbis, A.E.; Gallos, J.K. 1,3-Dipolar Cycloadditions in the Synthesis of Carbohydrate Mimics. Part 2: Nitrones and Oximes. Curr. Org. Chem. 2003, 7, 585–628. [Google Scholar] [CrossRef]
- Bilodeau, D.A.; Margison, K.D.; Serhan, M.; Pezacki, J.P. Bioorthogonal Reactions Utilizing Nitrones as Versatile Dipoles in Cycloaddition Reactions. Chem. Rev. 2021, 121, 6699–6717. [Google Scholar] [CrossRef]
- Brandi, A.; Cardona, F.; Cicchi, S.; Cordero, F.M.; Goti, A. Stereocontrolled Cyclic Nitrone Cycloaddition Strategy for the Synthesis of Pyrrolizidine and Indolizidine Alkaloids. Chem. Eur. J. 2009, 15, 7808–7821. [Google Scholar] [CrossRef]
- Bloch, R. Additions of Organometallic Reagents to C = N Bonds: Reactivity and Selectivity. Chem. Rev. 1998, 98, 1407–1438. [Google Scholar] [CrossRef]
- Enders, D.; Reinhold, U. Asymmetric synthesis of amines by nucleophilic 1,2-addition of organometallic reagents to the CN-double bond. Tetrahedron Asymmetry 1997, 8, 1895–1946. [Google Scholar] [CrossRef]
- Lombardo, M.; Trombini, C. Nucleophilic Additions to Nitrones. Synthesis 2000, 2000, 759–774. [Google Scholar] [CrossRef]
- Merino, P.; Franco, S.; Merchán, F.L.; Tejero, T. Nucleophilic Additions to Chiral Nitrones: New Approaches to Nitrogenated Compounds. Synlett 2000, 2000, 442–454. [Google Scholar] [CrossRef]
- Lombardo, M.; Trombini, C. The Reaction of Nitrones with Organometallic Compounds: Scope, Limitations and Synthetic Applications. Curr. Org. Chem. 2002, 6, 695–713. [Google Scholar] [CrossRef]
- Merino, P. New developments in nucleophilic additions to nitrones. Comptes Rendus Chim. 2005, 8, 775–788. [Google Scholar] [CrossRef]
- Cardona, F.; Goti, A. The Discovery of Novel Metal-Induced Reactions of Nitrones: Not Only Electrophiles and Reagents for [3+2]Cycloadditions. Angew. Chem. Int. Ed. 2005, 44, 7832–7835. [Google Scholar] [CrossRef]
- Janzen, E.G. A critical review of spin trapping in biological systems. In Free Radicals in Biology; Pryor, W.A., Ed.; Academic Press: New York, NY, USA, 1980; pp. 115–154. [Google Scholar]
- Janzen, E.G.; Haire, D.L. Two decades of spin-trapping. In Advances in Free Radical Chemistry; Tanner, D.D., Ed.; JAI Press: Greenwich, CT, USA, 1990; Volume 1, pp. 253–295. [Google Scholar]
- Frejaville, C.; Karoui, H.; Tuccio, B.; Le Moigne, F.; Culcasi, M.; Pietri, S.; Lauricella, R.; Tordo, P. 5-(Diethoxyphosphoryl)-5-methyl-l-pyrroline N-Oxide: A New Efficient Phosphorylated Nitrone for the in Vitro and in Vivo Spin Trapping of Oxygen-Centered Radicals. J. Med. Chem. 1995, 38, 258–265. [Google Scholar] [CrossRef]
- Fevig, T.L.; Bowen, S.M.; Janowick, D.A.; Jones, B.K.; Munson, H.R.; Ohlweiler, D.F.; Thomas, C.E. Design, Synthesis, and in Vitro Evaluation of Cyclic Nitrones as Free Radical Traps for the Treatment of Stroke. J. Med. Chem. 1996, 39, 4988–4996. [Google Scholar] [CrossRef]
- Morozov, D.A.; Kirilyuk, I.A.; Komarov, D.A.; Goti, A.; Bagryanskaya, I.Y.; Kuratieva, N.V.; Grigor’ev, I.A. Synthesis of a Chiral C2-Symmetric Sterically Hindered Pyrrolidine Nitroxide Radical via Combined Iterative Nucleophilic Additions and Intramolecular 1,3-Dipolar Cycloadditions to Cyclic Nitrones. J. Org. Chem. 2012, 77, 10688–10698. [Google Scholar] [CrossRef]
- Floyd, R.A.; Kopke, R.D.; Choi, C.-H.; Foster, S.B.; Doblas, S.; Towner, R.A. Nitrones as therapeutics. Free Radic. Biol. Med. 2008, 45, 1361–1374. [Google Scholar] [CrossRef]
- Villamena, F.A.; Das, A.; Nash, K.M. Potential implication in the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med. Chem. 2012, 4, 1171–1207. [Google Scholar] [CrossRef]
- Rosselin, M.; Poeggeler, B.; Durand, G. Nitrone Derivatives as Therapeutics: From Chemical Modification to Specific-targeting. Curr. Top. Med. Chem. 2017, 17, 2006–2022. [Google Scholar] [CrossRef]
- Floyd, R.A. Nitrones as therapeutics in age-related diseases. Aging Cell 2006, 5, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Marco-Contelles, J. Recent Advances on Nitrones Design for Stroke Treatment. J. Med. Chem. 2020, 63, 13413–13427. [Google Scholar] [CrossRef] [PubMed]
- Soldaini, G.; Cardona, F.; Goti, A. Catalytic Oxidation of Imines Based on Methyltrioxorhenium/Urea Hydrogen Peroxide: A Mild and Easy Chemo- and Regioselective Entry to Nitrones. Org. Lett. 2007, 9, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Heaney, H. Novel Organic Peroxygen Reagents for Use in Organic Synthesis. Top. Curr. Chem. 1993, 164, 1–19. [Google Scholar] [CrossRef]
- Herrmann, W.A.; Kühn, F.E. Organorhenium Oxides. Acc. Chem. Res. 1997, 30, 169–180. [Google Scholar] [CrossRef]
- Espenson, J.H. Atom-transfer reactions catalyzed by methyltrioxorhenium(VII)—Mechanisms and applications. Chem. Commun. 1999, 1999, 479–488. [Google Scholar] [CrossRef]
- Nannelli, L.; Goti, A. Synthesis of Nitrones by Methyltrioxorhenium Catalyzed Direct Oxidation of Secondary Amines. Tetrahedron Lett. 1996, 37, 6025–6028. [Google Scholar] [CrossRef]
- Saladino, R.; Neri, V.; Cardona, F.; Goti, A. Oxidation of N,N-Disubstituted Hydroxylamines to Nitrones with Hydrogen Peroxide Catalyzed by Polymer-Supported Methylrhenium Trioxide Systems. Adv. Synth. Catal. 2004, 346, 639–647. [Google Scholar] [CrossRef]
- Cardona, F.; Bonanni, M.; Soldaini, G.; Goti, A. One-Pot Synthesis of Nitrones from Primary Amines and Aldehydes Catalyzed by Methyltrioxorhenium. ChemSusChem 2008, 1, 327–332. [Google Scholar] [CrossRef]
- Jain, S.L.; Singhal, S.; Sain, B. [Bmim]BF4-immobilized rhenium-catalyzed highly efficient oxygenation of aldimines to oxaziridines using solid peroxides as oxidants. J. Organomet. Chem. 2007, 692, 2930–2935. [Google Scholar] [CrossRef]
- Kamath, V.P.; Xue, J.; Juarez-Brambila, J.J.; Morris, C.B.; Ganorkar, R.; Morris, P.E., Jr. Synthesis of analogs of forodesine HCl, a human purine nucleoside phosphorylase inhibitor—Part I. Bioorg. Med. Chem. Lett. 2009, 19, 2624–2626. [Google Scholar] [CrossRef] [PubMed]
- Diez-Martinez, A.; Gultekin, Z.; Delso, I.; Tejero, T.; Merino, P. Synthesis of N-(Benzyloxyethyl)- and N-(Alkoxycarbonylmethyl)nitrones. Synthesis 2010, 4, 678–688. [Google Scholar] [CrossRef]
- Davis, F.A.; Theddu, N.; Edupuganti, R. Asymmetric Total Synthesis of (S)-(+)-Cocaine and the First Synthesis of Cocaine C-1 Analogs from N-Sulfinyl β-Amino Ester Ketals. Org. Lett. 2010, 12, 4118–4121. [Google Scholar] [CrossRef]
- Dong, C.; Dickie, D.A.; Maio, W.A.; Manz, T.A. Synthesis and Characterization of N,N′-Bismesityl Phenanthrene-9,10-diimine and Imine−Nitrone. ACS Omega 2018, 3, 16858–16865. [Google Scholar] [CrossRef]
- Biyani, S.A.; Lytle, C.; Hyun, S.-H.; McGuire, M.A.; Pendyala, R.; Thompson, D.H. Development of a Continuous Flow Synthesis of Lorazepam. Org. Process Res. Dev. 2022, 26, 2715–2727. [Google Scholar] [CrossRef]
- Najjar, R.; Safa, K.D. Methyltrioxorhenium Catalyzed Synthesis of Dinitrones from Primary Diamines and Non-Enolizable Aldehydes. Lett. Org. Chem. 2011, 8, 495–499. [Google Scholar] [CrossRef]
- Merino, P.; Greco, G.; Tejero, T.; Hurtado-Guerrero, R.; Matute, R.; Chiacchio, U.; Corsaro, A.; Pistarà, V.; Romeo, R. Stereoselective 1,3-dipolar cycloadditions of nitrones derived from amino acids. Asymmetric synthesis of N-(alkoxycarbonylmethyl)-3-hydroxypyrrolidin-2-ones. Tetrahedron 2013, 69, 9381–9390. [Google Scholar] [CrossRef]
- Xue, F.; Lu, H.; He, L.; Li, W.; Zhang, D.; Liu, X.-Y.; Qin, Y. Formal Total Syntheses of (−)- and (+)-Actinophyllic Acid. J. Org. Chem. 2018, 83, 754–764. [Google Scholar] [CrossRef]
- Clemente, F.; Matassini, C.; Giachetti, S.; Goti, A.; Morrone, A.; Martínez-Bailén, M.; Orta, S.; Merino, P.; Cardona, F. Piperidine Azasugars Bearing Lipophilic Chains: Stereoselective Synthesis and Biological Activity as Inhibitors of Glucocerebrosidase (GCase). J. Org. Chem. 2021, 86, 12745–12761. [Google Scholar] [CrossRef]
- Singh, B.; Jain, S.L.; Rana, B.S.; Khatri, P.K.; Sinha, A.K.; Sain, B. Silica-Immobilized Highly Dispersed Oxo–Rhenium and its Catalytic Activity for the Direct Synthesis of Nitrones. ChemCatChem 2010, 2, 1260–1264. [Google Scholar] [CrossRef]
- Leung, C.H.; Voutchkova, A.M.; Crabtree, R.H.; Balcells, D.; Eisenstein, O. Atom economic synthesis of amides via transition metal catalyzed rearrangement of oxaziridines. Green Chem. 2007, 9, 976–979. [Google Scholar] [CrossRef]
- Pews, R.G. A Novel Synthesis of 3-Phenyloxaziridines. J. Org. Chem. 1967, 32, 1628. [Google Scholar] [CrossRef]
- Karami, B.; Montazerozohori, M.; Moghadam, M.; Farahi, M. Iron and manganese (III)—Porphyrins as new applicable catalysts for selective oxidation of imines with urea–hydrogen peroxide. J. Chem. Res. 2007, 2007, 275–277. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, K.; Chen, G. Synthesis and Application of Phenyl Nitrone Derivatives as Acidic and Microbial Corrosion Inhibitors. J. Chem. 2015, 2015, 201259. [Google Scholar] [CrossRef]
- Colonna, S.; Pironti, V.; Carrea, G.; Pasta, P.; Zambianchi, F. Oxidation of secondary amines by molecular oxygen and cyclohexanone monooxygenase. Tetrahedron 2004, 60, 569–575. [Google Scholar] [CrossRef]
- Ballard, N.; Aguirre, M.; Simula, A.; Agirre, A.; Leiza, J.R.; Asua, J.M.; van Es, S. New Class of Alkoxyamines for Efficient Controlled Homopolymerization of Methacrylates. ACS Macro Lett. 2016, 5, 1019–1022. [Google Scholar] [CrossRef]
- Chan, K.S.; Yeung, M.L.; Chan, W.-k.; Wang, R.-J.; Mak, T.C.W. Chromium and Tungsten Pentacarbonyl Groups as Reactivity and Selectivity Auxiliaries in [3 + 2] Cycloaddition of Alkynyl Fischer Carbene Complexes with N-Alkyl Nitrones. J. Org. Chem. 1995, 60, 1741–1747. [Google Scholar] [CrossRef]
- Dias, A.G.; Santos, C.E.V.; Cyrino, F.Z.G.A.; Bouskela, E.; Costa, P.R.R. N-tert-Butyl and N-methyl nitrones derived from aromatic aldehydes inhibit macromolecular permeability increase induced by ischemia/reperfusion in hamsters. Bioorg. Med. Chem. 2009, 17, 3995–3998. [Google Scholar] [CrossRef]
- Poulsen, P.H.; Vergura, S.; Monleón, A.; Jørgensen, D.K.B.; Jørgensen, K.A. Controlling Asymmetric Remote and Cascade 1,3-Dipolar Cycloaddition Reactions by Organocatalysis. J. Am. Chem. Soc. 2016, 138, 6412–6415. [Google Scholar] [CrossRef]
- Hammami, R.; Maldivi, P.; Philouze, C.; Carret, S.; Darses, B.; Touil, S.; Poisson, J.-F. Synthesis of 4-Phosphinylpyrrolidin-3-ones via [3+2] Cycloaddition of Nitrones with Phosphinylallenes. Adv. Synth. Catal. 2023, 365, 1385–1390. [Google Scholar] [CrossRef]
- Li, T.-Z.; Liu, S.-J.; Sun, Y.-W.; Deng, S.; Tan, W.; Jiao, Y.; Zhang, Y.-C.; Shi, F. Regio- and Enantioselective (3+3) Cycloaddition of Nitrones with 2-Indolylmethanols Enabled by Cooperative Organocatalysis. Angew. Chem. Int. Ed. 2021, 60, 2355–2363. [Google Scholar] [CrossRef] [PubMed]
- Boudou, C.; Berges, M.; Sagnes, C.; Sopkova-De Oliveira Santos, J.; Perrio, S.; Metzner, P. trans-(±)-2-tert-Butyl-3-phenyloxaziridine: A Unique Reagent for the Oxidation of Thiolates into Sulfenates. J. Org. Chem. 2007, 72, 5403–5406. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Ju, J.; Choe, J.; Song, K.H.; Lee, S. The Scope and Limitation of Nickel-Catalyzed Aminocarbonylation of Aryl Bromides from Formamide Derivatives. J. Org. Chem. 2009, 74, 6358–6361. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, X.; Zhang, Y.; Chen, C.; Chen, W. Copper-Catalyzed N-Methylation of Amides and O-Methylation of Carboxylic Acids by Using Peroxides as the Methylating Reagents. Org. Lett. 2013, 15, 3326–3329. [Google Scholar] [CrossRef]
- Scott, G.D. Method Using Lifespan-Altering Compounds for Altering the Lifespan of Eukaryotic Organisms, and Screening for such Compounds. US20090163545 A1, 25 June 2009. [Google Scholar]
- Wen, X.; Chen, W.; Chen, J. Nickel-catalyzed aminocarbonylation of aryl halides with carbamoylsilanes: Efficient synthesis of secondary (primary) aromatic amides. Appl. Organomet. Chem. 2019, 33, e5174. [Google Scholar] [CrossRef]
Entry | R | Imine | Solvent (Conc., M) | UHP (Equiv.) | MTO (mol%) | T (°C) | Time (h) | Conversion (%) * | Products (Ratio) * |
---|---|---|---|---|---|---|---|---|---|
1 | Me | 1a | MeOH (0.5) | 3 | 4 | 20 | 24 | 100 | 2a § |
2 | MeOH (0.5) | 3 | 2 | 50 | 4 | 100 | 2a ç | ||
3 | MeOH (6.0) | 2 | 1 | 20 | 18 | 100 | 4a/2a (1.2:1) ç | ||
4 | [bmim]BF4 (6.0) | 2 | 1 | 50 | 3.5 | 74 | 4a ç | ||
5 | [bmim]BF4 (6.0) | 2 | 1 | 50 | 18 | 100 | 4a | ||
6 | [bmim]BF4 (6.0) | 2 | 1 | 50 | 1 | 39 | 4a ç | ||
7 | [bmim]BF4 (0.5) | 3 | 2 | 20 | 18 | 100 | 4a | ||
8 | [bmim]BF4 (0.5) | 2 # | 1 | 20 | 20 | 57 | 4a | ||
9 | [bmim]PF6 (0.5) | 3 | 2 | 20 | 18 | 100 | 4a/2a (3.8:1) ç | ||
10 | nBu | 1b | MeOH (0.5) | 3 | 2 | 20 | 4 | 100 | 2b |
11 | MeOH (0.5) | 3 | 2 | 50 | 4 | 62 | 2b | ||
12 | [bmim]BF4 (6.0) | 2 | 1 | 50 | 20 | 0 | _ | ||
13 | [bmim]PF6 (0.5) | 3 | 2 | 50 | 4 | 80 | 2b | ||
14 | iPr | 1c | MeOH (0.5) | 3 | 2 | 20 | 18 | 67 | 2c |
15 | MeOH (0.5) | 3 | 4 | 20 | 24 | 100 | 2c $ | ||
16 | MeOH (0.5) | 3 | 2 | 50 | 1 | 39 | 2c | ||
17 | [bmim]BF4 (6.0) | 2 | 1 | 50 | 20 | 0 | _ | ||
18 | cHex | 1d | MeOH (0.5) | 3 | 2 | 20 | 4 | 82 | 2d |
19 | MeOH (0.5) | 3 | 4 | 20 | 40 | 100 | 2d & | ||
20 | MeOH (0.5) | 3 | 2 | 50 | 4 | 67 | 2d | ||
21 | [bmim]BF4 (6.0) | 2 | 1 | 20 | 7 | 0 | _ | ||
22 | [bmim]BF4 (6.0) | 2 | 1 | 50 | 20 | 0 | _ | ||
23 | [bmim]PF6 (0.5) | 3 | 2 | 20 | 18 | 33 | 2d | ||
24 | tBu | 1e | MeOH (0.5) | 3 | 2 | 0 | 5 | 0 | _ |
25 | MeOH (0.5) | 3 | 2 | 20 | 5 | 0 | _ | ||
26 | MeOH (0.5) | 3 | 2 | 50 | 5 | 0 | _ | ||
27 | [bmim]BF4 (6.0) | 2 | 1 | 50 | 20 | 11 | 3e |
Entry | Ar | Imine | Solvent (Conc., M) | UHP (Equiv.) | MTO (mol%) | T (°C) | Time (h) | Conversion (%) * | Products (Ratio) * |
---|---|---|---|---|---|---|---|---|---|
1 | 4-MeOC6H4 | 1f | MeOH (0.5) | 3 | 2 | 20 | 48 | 100 | 2f |
2 | [bmim]BF4 (6.0) | 2 | 1 | 50 | 4 | 45 | 4f | ||
3 | [bmim]BF4 (6.0) | 2 | 2 | 50 | 48 | 46 | 4f | ||
4 | [bmim]BF4 (0.5) | 3 | 2 | 20 | 20 | 30 | 4f | ||
5 | 4-BrC6H4 | 1g | MeOH (0.5) | 3 | 2 | 20 | 20 | 100 | 2g |
6 | [bmim]BF4 (6.0) | 2 | 2 | 50 | 48 | 10 | 4g | ||
7 | 3-MeO,4-BnOC6H3 | 1h | MeOH (0.5) | 3 | 2 | 20 | 20 | 100 | 2h |
8 | [bmim]BF4 (6.0) | 2 | 2 | 50 | 48 | 24 | 4h | ||
9 | 2-MeC6H4 | 1i | MeOH (0.5) | 3 | 2 | 20 | 48 | 100 | 2i |
10 | [bmim]BF4 (6.0) | 2 | 2 | 50 | 48 | 27 | 4i | ||
11 | 4-O2NC6H4 | 1j | MeOH (0.5) | 3 | 2 | 20 | 20 | 82 | 2j/4j (12.7:1) |
12 | [bmim]BF4 (6.0) | 2 | 2 | 50 | 48 | 9 | 4j | ||
13 | 2-Naphth | 1k | MeOH (0.5) | 3 | 2 | 20 | 20 | 100 | 2k/4k (15.7:1) |
14 | [bmim]BF4 (6.0) | 2 | 2 | 50 | 48 | 23 | 4k |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matassini, C.; Bonanni, M.; Cardona, F.; Goti, A. Nitrone or Oxaziridine? Further Insights into the Selectivity of Imine Oxidation Catalyzed by Methyltrioxorhenium. Catalysts 2025, 15, 344. https://doi.org/10.3390/catal15040344
Matassini C, Bonanni M, Cardona F, Goti A. Nitrone or Oxaziridine? Further Insights into the Selectivity of Imine Oxidation Catalyzed by Methyltrioxorhenium. Catalysts. 2025; 15(4):344. https://doi.org/10.3390/catal15040344
Chicago/Turabian StyleMatassini, Camilla, Marco Bonanni, Francesca Cardona, and Andrea Goti. 2025. "Nitrone or Oxaziridine? Further Insights into the Selectivity of Imine Oxidation Catalyzed by Methyltrioxorhenium" Catalysts 15, no. 4: 344. https://doi.org/10.3390/catal15040344
APA StyleMatassini, C., Bonanni, M., Cardona, F., & Goti, A. (2025). Nitrone or Oxaziridine? Further Insights into the Selectivity of Imine Oxidation Catalyzed by Methyltrioxorhenium. Catalysts, 15(4), 344. https://doi.org/10.3390/catal15040344