High-Entropy Materials for Photocatalysis: A Mini Review
Abstract
1. Introduction
2. High-Entropy Materials
2.1. Concept
2.2. Configuration Entropy
2.3. Four Core Effects
2.3.1. High Entropy Effect
2.3.2. Sluggish Diffusion Effect
2.3.3. Lattice Distortion Effect
2.3.4. Cocktail Effect
2.4. HEMs Synthesis for Photocatalysis
2.4.1. Mechanical Procedure
2.4.2. Heating Processes

3. Applications of HEMs in Photocatalysis
3.1. Carbon Dioxide Reduction
3.2. H2 Evolution
3.3. Organic Contaminants Degradation
3.4. Others
4. Structure–Activity Relationship
5. Summary and Outlook
- Diversity of High-Entropy Material Categories
- 2.
- Diversity of Synthesis Methodologies
- 3.
- Diversity of Application Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Lin, G.; Zhao, Y.; Fu, J.; Jiang, D. Renewable Energy in China’s Abandoned Mines. Science 2023, 380, 699–700. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Yang, X.; Zhu, R.; Snaith, H.J. Unlocking Interfaces in Photovoltaics. Science 2024, 384, 846–848. [Google Scholar] [CrossRef] [PubMed]
- Rode, A.; Carleton, T.; Delgado, M.; Greenstone, M.; Houser, T.; Hsiang, S.; Hultgren, A.; Jina, A.; Kopp, R.E.; McCusker, K.E.; et al. Estimating a Social Cost of Carbon for Global Energy Consumption. Nature 2021, 598, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Wenderich, K.; Mul, G. Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem. Rev. 2016, 116, 14587–14619. [Google Scholar] [CrossRef]
- Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A.C.M. Photocatalytic Degradation for Environmental Applications—A Review. J. Chem. Technol. Biotechnol. 2002, 77, 102–116. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Chang, F.; Yan, W.; Wang, X.; Peng, S.; Li, S.; Hu, X. Strengthened Photocatalytic Removal of Bisphenol a by Robust 3D Hierarchical N-p Heterojunctions Bi4O5Br2-MnO2 via Boosting Oxidative Radicals Generation. Chem. Eng. J. 2022, 428, 131223. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Zhao, S.; Chen, B.; Mo, G.; Chen, Z.; Wei, Y.; Wu, Z. Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO2 Reduction Reaction. Nano-Micro Lett. 2026, 18, 26. [Google Scholar] [CrossRef]
- Chang, F.; Li, J.; Bai, W.; Lei, Y.; Liu, D.; Kong, Y. N-Doped Carbon Quantum Dots-Bi4O5Br2 Composites: A Case of van Der Waals Heterojunctions for Efficient Photocatalytic Removal of NO under Visible Light Irradiation. J. Environ. Manag. 2025, 387, 125876. [Google Scholar] [CrossRef]
- Chang, F.; Bao, W.; Li, J.; Zhao, Z.; Liu, D. Photocatalytic NO Removal by Ternary Composites Bi12GeO20/BiOCl/W18O49 Using a Waste Reutilization Strategy. Catalysts 2025, 15, 73. [Google Scholar] [CrossRef]
- HE, X.; Li, C.; SU, T. Preparation of In2O3/BiOBr composite photocatalyst and its performance for photocatalytic CO2 reduction. J. Liaocheng Univ. Sci. 2025, 38, 565–578. [Google Scholar]
- Zhang, Y.; Yu, H.; Zhai, R.; Zhang, J.; Gao, C.; Qi, K.; Yang, L.; Ma, Q. Recent Progress in Photocatalytic Degradation of Water Pollution by Bismuth Tungstate. Molecules 2023, 28, 8011. [Google Scholar] [CrossRef]
- Yin, T.; Long, L.; Tang, X.; Qiu, M.; Liang, W.; Cao, R.; Zhang, Q.; Wang, D.; Zhang, H. Advancing Applications of Black Phosphorus and BP-analog Materials in Photo/Electrocatalysis through Structure Engineering and Surface Modulation. Adv. Sci. 2020, 7, 2001431. [Google Scholar] [CrossRef]
- Chang, F.; Zhao, S.; Lei, Y.; Peng, S.; Liu, D.; Kong, Y. Ball-Milling Fabrication of n-p Heterojunctions Bi4O5Br2/α-MnS with Strengthened Photocatalytic Removal of Bisphenol a in a Z-Scheme Model. Sep. Purif. Technol. 2023, 304, 122324. [Google Scholar] [CrossRef]
- Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. A Review of Direct Z-Scheme Photocatalysts. Small Methods 2017, 1, 1700080. [Google Scholar] [CrossRef]
- Chang, F.; Bao, W.; Li, K.; Bai, W.; Shi, Z.; Liu, D.; Kong, Y. Augmented Photocatalytic NO Removal by the S-Scheme Bi7O9I3/Bi2S3 Heterojunctions with Surface Oxygen Vacancies: Experimental Analyses and Theoretical Calculations. J. Environ. Manag. 2024, 370, 122390. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Fang, J.; Feng, J.; Sun, Q. Study on photocatalytic degradation of aqueous pollutants by a novel two-dimensional red carbon modified g-C3N4 composite photocatalys. J. Liaocheng Univ. Sci. Ed. 2025, 38, 554–564. [Google Scholar]
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme Heterojunction Photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-scheme Photocatalyst. Adv. Mater. 2022, 34, 2107668. [Google Scholar] [CrossRef]
- Nie, C.; Wang, X.; Lu, P.; Zhu, Y.; Li, X.; Tang, H. Advancements in S-Scheme Heterojunction Materials for Photocatalytic Environmental Remediation. J. Mater. Sci. Technol. 2024, 169, 182–198. [Google Scholar] [CrossRef]
- Chang, F.; Li, J.; Kou, Y.; Bao, W.; Shi, Z.; Zhu, G.; Kong, Y. The Intense Charge Migration and Efficient Photocatalytic NO Removal of the S-Scheme Heterojunction Composites Bi7O9I3-BiOBr. Sep. Purif. Technol. 2025, 353, 128402. [Google Scholar] [CrossRef]
- Huang, R.; Zhao, H.; Chen, Z. High-Entropy Materials for Photocatalysis. Nano Mater. Sci. 2024, S2589965124001296, in press. [Google Scholar] [CrossRef]
- He, C.; Li, Y.; Zhou, Z.; Liu, B.; Gao, X. High-entropy Photothermal Materials. Adv. Mater. 2024, 36, 2400920. [Google Scholar] [CrossRef]
- Hua, Y.; Su, G.; Li, Q.; Pang, J.; Sun, B.; Zhang, Y.; Chen, X.; Shi, B.; Meng, J. High Entropy Oxides as a Rising Star in Pollutant Disposal and Resource Recycling: Emerging Advancements and Future Challenges. Crit. Rev. Environ. Sci. Technol. 2025, 55, 25–48. [Google Scholar] [CrossRef]
- Zhu, K.; Qi, S.; Liang, B.; Zhang, H.; Wang, J.; Wang, H.; Ma, W.; Wang, L.; Zong, X. High-entropy Design Boosts Visible-light-induced Photocatalytic Hydrogen Production on Perovskite Oxynitrides. Small 2025, 21, 2500279. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Yang, B.; Zhang, J.; Lu, J. High-Entropy Layered Oxides Nanosheets for Highly Efficient Photoelectrocatalytic Reduction of CO2 and Application Research. Nano Res. 2023, 16, 4775–4785. [Google Scholar] [CrossRef]
- Tatar, D.; Ullah, H.; Yadav, M.; Kojčinović, J.; Šarić, S.; Szenti, I.; Skalar, T.; Finšgar, M.; Tian, M.; Kukovecz, Á.; et al. High-Entropy Oxides: A New Frontier in Photocatalytic CO2 Hydrogenation. ACS Appl. Mater. Interfaces 2024, 16, 29946–29962. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Mu, Q.; Pei, Y.; Hu, S.; Liu, S.; Sun, T.; Gao, G. Synthesis Strategies and Multi-Field Applications of Nanoscale High-Entropy Alloys. Nano Micro Lett. 2025, 17, 283. [Google Scholar] [CrossRef]
- Yang, R.; Yang, L.; Yong, W.; Li, P.; Zhou, M.; Jin, Z. Surface Interrogation of Advanced Electrocatalysts by Scanning Electrochemical Microscopy: Fundamentals, Progress and Perspectives. Chem. Sci. 2025, 16, 18482–18495. [Google Scholar] [CrossRef]
- Zhang, W.; Liaw, P.K.; Zhang, Y. Science and Technology in High-Entropy Alloys. Sci. China Mater. 2018, 61, 2–22. [Google Scholar] [CrossRef]
- Yeh, J.-W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Ahmad, K.A.; Elahi, S.F.; Znad, H.; Ahmad, E. Kinetic and Mechanistic Investigation of Butyl Levulinate Synthesis on ZSM-5 Supported Phosphomolybdic Acid. Sci. Rep. 2025, 15, 9637. [Google Scholar] [CrossRef]
- Kozak, R.; Sologubenko, A.; Steurer, W. Single-Phase High-Entropy Alloys—An Overview. Z. Krist.-Cryst. Mater. 2015, 230, 55–68. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-Entropy Alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Zhang, Y. High-Entropy Materials: A Brief Introduction; Springer: Singapore, 2019; ISBN 978-981-13-8525-4. [Google Scholar]
- Chen, S.; Wang, T.; Li, X.; Cheng, Y.; Zhang, G.; Gao, H. Short-Range Ordering and Its Impact on Thermodynamic Property of High-Entropy Alloys. Acta Mater. 2022, 238, 118201. [Google Scholar] [CrossRef]
- Zhang, Q.; Liaw, P.K.; Yang, H.J.; Qiao, J.W. Short-Range-Ordering Strengthening and the Evolution of Dislocation-Nucleation Modes in an Fe40Mn20Cr20Ni20 High-Entropy Alloy. Mater. Sci. Eng. A 2023, 873, 145038. [Google Scholar] [CrossRef]
- Kormányos, A.; Dong, Q.; Xiao, B.; Li, T.; Savan, A.; Jenewein, K.; Priamushko, T.; Körner, A.; Böhm, T.; Hutzler, A.; et al. Stability of High-Entropy Alloys under Electrocatalytic Conditions. Iscience 2023, 26, 107775. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-H.; Yeh, J.-W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Yeh, J. Overview of High-Entropy Alloys. In High-Entropy Alloys; Gao, M.C., Yeh, J., Liaw, P.K., Zhang, Y., Eds.; Springer International Publishing: Albany, OR, USA, 2016; pp. 15–19. ISBN 978-3-319-27013-5. [Google Scholar]
- Yeh, J.-W.; Lin, S.-J.; Chin, T.-S.; Gan, J.-Y.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chou, S.-Y. Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements. Metall. Mater. Trans. A 2004, 35, 2533–2536. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chang, S.-Y.; Hong, Y.-D.; Chen, S.-K.; Lin, S.-J. Anomalous Decrease in X-Ray Diffraction Intensities of Cu–Ni–Al–Co–Cr–Fe–Si Alloy Systems with Multi-Principal Elements. Mater. Chem. Phys. 2007, 103, 41–46. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, Q.; Li, J.; Liu, B.; Liu, Y. Effect of Lattice Distortion on Solid Solution Strengthening of BCC High-Entropy Alloys. J. Mater. Sci. Technol. 2018, 34, 349–354. [Google Scholar] [CrossRef]
- Li, L.; Fang, Q.; Li, J.; Liu, B.; Liu, Y.; Liaw, P.K. Lattice-Distortion Dependent Yield Strength in High Entropy Alloys. Mater. Sci. Eng. A 2020, 784, 139323. [Google Scholar] [CrossRef]
- Thirathipviwat, P.; Sato, S.; Song, G.; Bednarcik, J.; Nielsch, K.; Jung, J.; Han, J. A Role of Atomic Size Misfit in Lattice Distortion and Solid Solution Strengthening of TiNbHfTaZr High Entropy Alloy System. Scr. Mater. 2022, 210, 114470. [Google Scholar] [CrossRef]
- Tsai, K.-Y.; Tsai, M.-H.; Yeh, J.-W. Sluggish Diffusion in Co–Cr–Fe–Mn–Ni High-Entropy Alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Baranovskii, S.D.; Nenashev, A.V.; Hertel, D.; Gebhard, F.; Meerholz, K. Energy Scales of Compositional Disorder in Alloy Semiconductors. ACS Omega 2022, 7, 45741–45751. [Google Scholar] [CrossRef]
- Dąbrowa, J.; Zajusz, M.; Kucza, W.; Cieślak, G.; Berent, K.; Czeppe, T.; Kulik, T.; Danielewski, M. Demystifying the Sluggish Diffusion Effect in High Entropy Alloys. J. Alloys Compd. 2019, 783, 193–207. [Google Scholar] [CrossRef]
- Kucza, W.; Dąbrowa, J.; Cieślak, G.; Berent, K.; Kulik, T.; Danielewski, M. Studies of “Sluggish Diffusion” Effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni High Entropy Alloys; Determination of Tracer Diffusivities by Combinatorial Approach. J. Alloys Compd. 2018, 731, 920–928. [Google Scholar] [CrossRef]
- Liu, B.; Yang, W.; Cao, G.-H.; Ren, Z. Cocktail Effect on Superconductivity in Hexagonal High-Entropy Alloys. Phys. Rev. Mater. 2024, 8, 114802. [Google Scholar] [CrossRef]
- Sapkota, K.P.; Islam, A.; Hanif, M.A.; Akter, J.; Lee, I.; Hahn, J.R. Hierarchical Nanocauliflower Chemical Assembly Composed of Copper Oxide and Single-Walled Carbon Nanotubes for Enhanced Photocatalytic Dye Degradation. Nanomaterials 2021, 11, 696. [Google Scholar] [CrossRef]
- Tong, C.-J.; Chen, Y.-L.; Yeh, J.-W.; Lin, S.-J.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Microstructure Characterization of Alx CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements. Metall. Mater. Trans. A 2005, 36, 881–893. [Google Scholar] [CrossRef]
- Kc, B.R.; Bastakoti, B.P. Rational Design of High-entropy Materials for Photo and Electrocatalytic Applications. Small Struct. 2025, 6, 2500237. [Google Scholar] [CrossRef]
- Meng, Z.; Xu, Z.; Tian, H.; Zheng, W. Insights into High-Entropy Material Synthesis Dynamics Criteria Based on a Thermodynamic Framework. Mater. Horiz. 2023, 10, 3293–3303. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Dai, S. High-Entropy Materials for Catalysis: A New Frontier. Sci. Adv. 2021, 7, eabg1600. [Google Scholar] [CrossRef]
- An, B.; Yang, M.; Shang, Y.; Sun, C.; Wang, S.; Qian, K.; Zou, X.; Dong, Q.; Shao, Y.; Chu, C.; et al. Broad-Spectrum Photothermal High-Entropy Alloy Powders for Efficient Solar-Driven Antibacterial and Dye Degradation. J. Mater. Chem. A 2025, 13, 7999–8014. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, Y.; Xie, C.; Duan, X.; Lu, X.; Luo, K.; Ye, J.; Wang, X.; Gao, X.; Niu, Q.; et al. Designing Water Resistant High Entropy Oxide Materials. Nat. Commun. 2024, 15, 8306. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, S.; Zhang, Y.; Gao, H.; Zhou, X.; Li, D.; Yang, H.; Fang, L.; Zhang, H.; Syed, A. Novel High Entropy Alloy/NiAl2O4 Photocatalysts for the Degradation of Tetracycline Hydrochloride: Heterojunction Construction, Performance Evaluation and Mechanistic Insights. Ceram. Int. 2024, 50, 29528–29546. [Google Scholar] [CrossRef]
- Anuraag, N.S.; Kumar, U.; Sinha, I.; Prasad, N.K. Nanoparticles of MnFeNiCuBi High Entropy Alloy as Catalyst for Fenton and Photo-Fenton Decomposition of p-Nitrophenol. Inorg. Chem. Commun. 2024, 167, 112843. [Google Scholar] [CrossRef]
- Sembiring, K.C.; Fahrezi, I.A.; Muhdarina, M.; Afandi, A. Complex Concentrated Alloy Catalyst of AlCrFeCoNi for Heterogeneous Degradation of Rhodamine B. Bull. Chem. React. Eng. Catal. 2024, 19, 134–140. [Google Scholar] [CrossRef]
- Sun, X.; Sun, Y. Synthesis of Metallic High-Entropy Alloy Nanoparticles. Chem. Soc. Rev. 2024, 53, 4400–4433. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wang, L.; Huang, Y.; Kong, X.Y.; Ye, L. High-Entropy Catalysts: New Opportunities toward Excellent Catalytic Activities. Mater. Chem. Front. 2024, 8, 179–191. [Google Scholar] [CrossRef]
- Das, S.; Sanjay, M.; Kumar, S.; Sarkar, S.; Tiwary, C.S.; Chowdhury, S. Magnetically Separable MnFeCoNiCu-Based High Entropy Alloy Nanoparticles for Photocatalytic Oxidation of Antibiotic Cocktails in Different Aqueous Matrices. Chem. Eng. J. 2023, 476, 146719. [Google Scholar] [CrossRef]
- Das, S.; Sanjay, M.; Singh Gautam, A.R.; Behera, R.; Tiwary, C.S.; Chowdhury, S. Low Bandgap High Entropy Alloy for Visible Light-Assisted Photocatalytic Degradation of Pharmaceutically Active Compounds: Performance Assessment and Mechanistic Insights. J. Environ. Manag. 2023, 342, 118081. [Google Scholar] [CrossRef] [PubMed]
- Wang, N. FeCoNiMnCuTi High Entropy Amorphous Alloys and M50Ti50 (M = Fe, Cu, FeCoNiMnCu) Amorphous Alloys: Novel and Efficient Catalysts for Heterogeneous Photo-Fenton Decomposition of Rhodamine B. Surf. Interfaces 2022, 33, 102265. [Google Scholar] [CrossRef]
- Xin, Y.; Li, S.; Qian, Y.; Zhu, W.; Yuan, H.; Jiang, P.; Guo, R.; Wang, L. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catal. 2020, 10, 11280–11306. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Z.; Liu, J.; Do-Thanh, C.-L.; Chen, H.; Xu, S.; Lin, Q.; Jiao, Y.; Wang, J.; Wang, Y.; et al. Entropy-Stabilized Single-Atom Pd Catalysts via High-Entropy Fluorite Oxide Supports. Nat. Commun. 2020, 11, 3908. [Google Scholar] [CrossRef]
- Burmeister, C.F.; Kwade, A. Process Engineering with Planetary Ball Mills. Chem. Soc. Rev. 2013, 42, 7660. [Google Scholar] [CrossRef]
- Edalati, P.; Fuji, M.; Edalati, K. Superfunctional High-Entropy Alloys and Ceramics by Severe Plastic Deformation. Rare Met. 2023, 42, 3246–3268. [Google Scholar] [CrossRef]
- Hidalgo-Jiménez, J.; Akbay, T.; Sauvage, X.; Ishihara, T.; Edalati, K. Mixed Atomic-Scale Electronic Configuration as a Strategy to Avoid Cocatalyst Utilization in Photocatalysis by High-Entropy Oxides. Acta Mater. 2025, 283, 120559. [Google Scholar] [CrossRef]
- Hidalgo-Jiménez, J.; Akbay, T.; Ishihara, T.; Edalati, K. Investigation of a High-Entropy Oxide Photocatalyst for Hydrogen Generation by First-Principles Calculations Coupled with Experiments: Significance of Electronegativity. Scr. Mater. 2024, 250, 116205. [Google Scholar] [CrossRef]
- Akrami, S.; Edalati, P.; Fuji, M.; Edalati, K. High-Pressure Torsion for Highly-Strained and High-Entropy Photocatalysts. Kona Powder Part. J. 2024, 41, 123–139. [Google Scholar] [CrossRef]
- Edalati, P.; Itagoe, Y.; Ishihara, H.; Ishihara, T.; Emami, H.; Arita, M.; Fuji, M.; Edalati, K. Visible-Light Photocatalytic Oxygen Production on a High-Entropy Oxide by Multiple-Heterojunction Introduction. J. Photochem. Photobiol. A 2022, 433, 114167. [Google Scholar] [CrossRef]
- Akrami, S.; Edalati, P.; Shundo, Y.; Watanabe, M.; Ishihara, T.; Fuji, M.; Edalati, K. Significant CO2 Photoreduction on a High-Entropy Oxynitride. Chem. Eng. J. 2022, 449, 137800. [Google Scholar] [CrossRef]
- Akrami, S.; Murakami, Y.; Watanabe, M.; Ishihara, T.; Arita, M.; Fuji, M.; Edalati, K. Defective High-Entropy Oxide Photocatalyst with High Activity for CO2 Conversion. Appl. Catal. B 2022, 303, 120896. [Google Scholar] [CrossRef]
- Edalati, K.; Li, H.-W.; Kilmametov, A.; Floriano, R.; Borchers, C. High-Pressure Torsion for Synthesis of High-Entropy Alloys. Metals 2021, 11, 1263. [Google Scholar] [CrossRef]
- Edalati, P.; Wang, Q.; Razavi-Khosroshahi, H.; Fuji, M.; Ishihara, T.; Edalati, K. Photocatalytic Hydrogen Evolution on a High-Entropy Oxide. J. Mater. Chem. A 2020, 8, 3814–3821. [Google Scholar] [CrossRef]
- Hidalgo-Jiménez, J.; Akbay, T.; Sauvage, X.; Van Eijck, L.; Watanabe, M.; Huot, J.; Ishihara, T.; Edalati, K. Hybrid d0 and d10 Electronic Configurations Promote Photocatalytic Activity of High-Entropy Oxides for CO2 Conversion and Water Splitting. J. Mater. Chem. A 2024, 12, 31589–31602. [Google Scholar] [CrossRef]
- Calazans Neto, J.V.; Celles, C.A.S.; De Andrade, C.S.A.F.; Afonso, C.R.M.; Nagay, B.E.; Barão, V.A.R. Recent Advances and Prospects in β-Type Titanium Alloys for Dental Implants Applications. ACS Biomater. Sci. Eng. 2024, 10, 6029–6060. [Google Scholar] [CrossRef]
- Shuai, C.; Feng, P.; Zhang, L.; Gao, C.; Hu, H.; Peng, S.; Min, A. Correlation between Properties and Microstructure of Laser Sintered Porous β -Tricalcium Phosphate Bone Scaffolds. Sci. Technol. Adv. Mater. 2013, 14, 55002. [Google Scholar] [CrossRef]
- Liu, S.; Mu, W.; Liu, H.; Liu, L.; Li, R.; Shi, J.; Wang, C.; Chang, M.; Zhou, E. Flower-like In4Se3 Anchored on Bi-High Entropy Materials: A Noble Metal-Modified Hybrid for Enhanced Visible-Light Photocatalysis. Ceram. Int. 2025, 51, 43848–43860. [Google Scholar] [CrossRef]
- Han, Y.; Tian, M.; Wang, C.; Zong, T.; Wang, X. High-Entropy Spinel Oxide (Fe0.2Mg0.2Mn0.1Al0.3Cr0.2)3O4 as a Highly Active and Stable Redox Material for Methane Driven Solar Thermochemical Water Splitting. Appl. Catal. B 2023, 339, 123096. [Google Scholar] [CrossRef]
- Pourmand Tehrani, Z.; Fromme, T.; Reichenberger, S.; Gökce, B.; Ishihara, T.; Lippert, T.; Edalati, K. Laser Fragmentation of a High-Entropy Oxide for Enhanced Photocatalytic Carbon Dioxide (CO2) Conversion and Hydrogen (H2) Production. Adv. Powder Technol. 2024, 35, 104448. [Google Scholar] [CrossRef]
- Sun, L.; Wang, W.; Lu, P.; Liu, Q.; Wang, L.; Tang, H. Enhanced Photocatalytic Hydrogen Production and Simultaneous Benzyl Alcohol Oxidation by Modulating the Schottky Barrier with Nano High-Entropy Alloys. Chin. J. Catal. 2023, 51, 90–100. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, Q.; Xia, R.; Meyer, T.J. CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Acc. Chem. Res. 2020, 53, 255–264. [Google Scholar] [CrossRef]
- Sahara, G.; Ishitani, O. Efficient Photocatalysts for CO2 Reduction. Inorg. Chem. 2015, 54, 5096–5104. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Y.; Ye, W.; Li, Y. CO2 Reduction: From the Electrochemical to Photochemical Approach. Adv. Sci. 2017, 4, 1700194. [Google Scholar] [CrossRef] [PubMed]
- Hasanvandian, F.; Fayazi, D.; Kakavandi, B.; Giannakis, S.; Sharghi, M.; Han, N.; Bahadoran, A. Revitalizing CO2 Photoreduction: Fine-Tuning Electronic Synergy in Ultrathin g-C3N4 with Amorphous (CoFeNiMnCu)S2 High-Entropy Sulfide Nanoparticles for Enhanced Sustainability. Chem. Eng. J. 2024, 496, 153771. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, R.; Zhao, H.; Wang, J.; Jia, L.; Hu, Y.; Wang, K.; Wang, X. Preparation of (Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 High-Entropy Oxide with Narrow Bandgap for Photocatalytic CO2 Reduction with Water Vapor. Appl. Surf. Sci. 2023, 612, 155809. [Google Scholar] [CrossRef]
- Hidalgo-Jiménez, J.; Akbay, T.; Sauvage, X.; Ishihara, T.; Edalati, K. Photocatalytic Carbon Dioxide Methanation by High-Entropy Oxides: Significance of Work Function. Appl. Catal. B 2025, 371, 125259. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, J.; Guo, H.; Weng, B.; Zhang, H.; Saha, R.A.; Zhang, M.; Lai, F.; Zhou, Y.; Juan, R.; et al. Noble-metal-free High-entropy Alloy Nanoparticles for Efficient Solar-driven Photocatalytic CO2 Reduction. Adv. Mater. 2024, 36, 2313209. [Google Scholar] [CrossRef]
- Cordero Rodríguez, D.V.; Liu, H.; Chen, L.; Yan, X.; Li, Y.; Liang, J.; Tian, F. Hierarchical (CdZnCuCoFe)S1.25/ZnIn2S4 Heterojunction for Photocatalytic CO2 Reduction: Insights into S-Scheme Charge Transfer Pathways in Type-I Band Alignment. ACS Appl. Energy Mater. 2024, 7, 5967–5976. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Z.; Zhang, R.; Wang, K.; Wang, X. Cu-(Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 Heterojunction Derived from High Entropy Oxide Precursor and Its Photocatalytic Activity for CO2 Reduction with Water Vapor. Appl. Surf. Sci. 2024, 651, 159226. [Google Scholar] [CrossRef]
- Shi, Z.; Li, C.; Huang, N.; Jiang, Z.; Wang, L.; Huang, Y.; Kong, X.Y.; Wong, P.K.; Ye, L. Highly Selective Formation of CO from Domestic Wastewater with Zero CO2 Emissions through Solar Energy Catalysis. Appl. Catal. B 2024, 343, 123542. [Google Scholar] [CrossRef]
- Lasia, A. Hydrogen Evolution Reaction. In Handbook of Fuel Cells, 1st ed.; Wiley: New York, NY, USA, 2010; Volume 29, pp. 414–440. ISBN 978-0-470-74151-1. [Google Scholar]
- Dempsey, J.L.; Brunschwig, B.S.; Winkler, J.R.; Gray, H.B. Hydrogen Evolution Catalyzed by Cobaloximes. Acc. Chem. Res. 2009, 42, 1995–2004. [Google Scholar] [CrossRef]
- Lasia, A. Mechanism and Kinetics of the Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2019, 44, 19484–19518. [Google Scholar] [CrossRef]
- He, J.; Zhang, W.; Liu, Z.; Wang, Z.; Lu, K.; Yang, K. Rational design of Cd0.8Zn().2S/carbon quantum dots composite photocatalytic material for efficient hydrogen evolution. J. Liaocheng Univ. Sci. Ed. 2025, 38, 421–429. [Google Scholar]
- Qi, S.; Zhu, K.; Xu, T.; Zhang, H.; Guo, X.; Wang, J.; Zhang, F.; Zong, X. Water-stable High-entropy Metal-organic Framework Nanosheets for Photocatalytic Hydrogen Production. Adv. Mater. 2024, 36, 2403328. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; Zhang, J.; Mamatkulov, S.; Dai, K.; Ruzimuradov, O.; Low, J. Two-Dimensional High-Entropy Selenides for Boosting Visible-Light-Driven Photocatalytic Performance. ACS Nano 2024, 18, 20740–20750. [Google Scholar] [CrossRef]
- Lin, J.; Hsiao, Y.; Li, C.; Tseng, C.; He, Z.; Gardner, A.M.; Chen, Y.; Yang, C.; Wang, C.; Lin, S.; et al. Spectroscopic and Theoretical Insights Into High-Entropy-Alloy Surfaces and Their Interfaces with Semiconductors for Enhanced Photocatalytic Hydrogen Production. Small 2025, 21, 2503512. [Google Scholar] [CrossRef]
- Chang, S.C.; Chen, H.-Y.; Chen, P.-H.; Lee, J.-T.; Wu, J.M. Piezo-Photocatalysts Based on a Ferroelectric High-Entropy Oxide. Appl. Catal. B 2023, 324, 122204. [Google Scholar] [CrossRef]
- Hai, H.T.N.; Nguyen, T.T.; Nishibori, M.; Ishihara, T.; Edalati, K. Photoreforming of Plastic Waste into Valuable Products and Hydrogen Using a High-Entropy Oxynitride with Distorted Atomic-Scale Structure. Appl. Catal. B 2025, 365, 124968. [Google Scholar] [CrossRef]
- Wang, J.; Niu, X.; Wang, R.; Zhang, K.; Shi, X.; Yang, H.Y.; Ye, J.; Wu, Y. High-Entropy Alloy-Enhanced ZnCdS Nanostructure Photocatalysts for Hydrogen Production. Appl. Catal. B 2025, 362, 124763. [Google Scholar] [CrossRef]
- Xiang, X.; Cheng, B.; Zhu, B.; Jiang, C.; Liang, G. High-Entropy Alloy Nanocrystals Boosting Photocatalytic Hydrogen Evolution Coupled with Selective Oxidation of Cinnamyl Alcohol. Chin. J. Catal. 2025, 68, 326–335. [Google Scholar] [CrossRef]
- Guo, H.; Wang, G.; Li, H.; Xia, C.; Dong, B.; Cao, L. Direct Z-Scheme High-Entropy Metal Phosphides/ZnIn2S4 Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Colloids Surf. A 2023, 674, 131915. [Google Scholar] [CrossRef]
- Güler, Ö.; Boyrazlı, M.; Albayrak, M.G.; Güler, S.H.; Ishihara, T.; Edalati, K. Photocatalytic Hydrogen Evolution of TiZrNbHfTaOx High-Entropy Oxide Synthesized by Mechano-Thermal Method. Materials 2024, 17, 853. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D. Heterogeneous Photocatalytic Organic Synthesis: State-of-the-Art and Future Perspectives. Green Chem. 2016, 18, 5391–5411. [Google Scholar] [CrossRef]
- Fukuzumi, S.; Ohkubo, K. Selective Photocatalytic Reactions with Organic Photocatalysts. Chem. Sci. 2013, 4, 561–574. [Google Scholar] [CrossRef]
- Wang, C.-C.; Li, J.-R.; Lv, X.-L.; Zhang, Y.-Q.; Guo, G. Photocatalytic Organic Pollutants Degradation in Metal–Organic Frameworks. Energy Environ. Sci. 2014, 7, 2831–2867. [Google Scholar] [CrossRef]
- Yu, X.; Wang, S.; Zhang, Y.; Yu, X.; Gao, H.; Yang, H.; Fang, L.; Zhang, H.; Syed, A. Utilization of Stable and Efficient High-entropy (Ni0.2Zn0.2Mg0.2Cu0.2Co0.2)Al2O4 Catalyst with Polyvalent Transition Metals to Boost Peroxymonosulfate Activation toward Pollutant Degradation. Small 2025, 21, 2410819. [Google Scholar] [CrossRef]
- Dang, J.; Pei, W.; Hao, X.; Geng, Y.; Jing, L.; Zhao, S.; Dong, Y.; Chen, X.; Hu, J. Study of the Photocatalytic Degradation of Oxytetracycline Using (FeCoGaCrAl)2O3-Doped Titanium Dioxide as a High-Entropy Oxide. J. Chem. Technol. Biotechnol. 2025, 100, 1191–1200. [Google Scholar] [CrossRef]
- Jia, D.; Chigan, T.; Li, X.; Li, H.; Yang, P. Photocatalytic Degradation Performance for High-Entropy Oxide (La0.2Ce0.2Gd0.2Zr0.2Fex)O2 Enriched with Defects. J. Alloys Compd. 2024, 982, 173808. [Google Scholar] [CrossRef]
- Das, S.; Kumar, S.; Sarkar, S.; Pradhan, D.; Tiwary, C.S.; Chowdhury, S. High Entropy Spinel Oxide Nanoparticles for Visible Light-Assisted Photocatalytic Degradation of Binary Mixture of Antibiotic Pollutants in Different Water Matrixes. J. Mater. Chem. A 2024, 12, 16815–16830. [Google Scholar] [CrossRef]
- He, L.; Zhou, J.; Sun, Y.; Liu, D.; Liu, X. Efficient Removal of Tetracycline Hydrochloride by High Entropy Oxides in Visible Photo-Fenton Catalytic Process. Environ. Technol. 2024, 45, 4656–4669. [Google Scholar] [CrossRef]
- Shen, H.; Ma, C.; Qi, Z.; Ding, J.; Li, D.; Ma, B.; Zhang, X.; Cao, G.; Lu, Y. Exceptional Visible-Light Photocatalytic Activity Induced by Lattice Distortion in Medium-Entropy Perovskite Oxide La0.5Sr0.5Fe0.5Ti0.5O3. J. Environ. Chem. Eng. 2025, 13, 115753. [Google Scholar] [CrossRef]
- Hakan, Y. Fabricating FeCrCoZrLa High Entropy Alloy towards Enhanced Photocatalytic Degradation of Methylene Blue Dye. Indian J. Pure Appl. Phys. 2023, 61, 258–267. [Google Scholar] [CrossRef]
- Zakir, O.; Guler, O.; Idouhli, R.; Nayad, A.; Khadiri, M.E.; Guler, S.H.; Abouelfida, A.; Dikici, B. Enhanced Photocatalytic Abilities of Innovative NbTaZrMoW High-Entropy Alloys (HEAs): A Comparative Analysis with Its High Entropy Oxide (HEO) Counterpart. J. Mater. Sci. 2024, 59, 12050–12064. [Google Scholar] [CrossRef]
- Pradhan, S.; Barick, K.C.; Anuraag, N.S.; Mutta, V.; Prasad, N.K. Development of Ferrimagnetic (Mn0.6Cr0.6Co0.6Fe0.6Al0.6)O4 High Entropy Oxide for Photo-Fenton Degradation of Organic Dye. Appl. Surf. Sci. 2025, 688, 162343. [Google Scholar] [CrossRef]
- Fu, H.; Li, S.; Lin, Y.; Wu, X.; Lin, T.; Zhao, C.; Gao, M.; Lin, C. Enhancement of Piezo–Photocatalytic Activity in Perovskite (Bi0.2Na0.2Ba0.2K0.2La0.2)TiO3 Oxides via High Entropy Induced Lattice Distortion and Energy Band Reconfiguration. Ceram. Int. 2024, 50, 9159–9168. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Z.; Xu, Z.; He, Y.; Lao, Y. Elemental Zn Modulation of Interfacial Structure and in Situ Construction of (FeCoNiCuZn)O High-Entropy Oxide/ZnO Heterojunction for Photocatalytic Rhodamine B Dyes. J. Alloys Compd. 2024, 1008, 176504. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Wang, N.; Xiao, Z.; Wu, B.; Zhang, W.; Wang, Y. Flexible Amorphous (Fe0.5Co0.5)70B21Ta4Ti5 High-Entropy Alloy Catalyst Showing High Activity and Stability in Degrading Eosin Y. Appl. Surf. Sci. 2023, 616, 156567. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Shi, Z.; Su, N.; Li, C.; Huang, Y.; Huang, N.; Deng, Y.; Li, H.; Ma, T.; et al. Peroxide-Mediated Selective Conversion of Biomass Polysaccharides over High Entropy Sulfides via Solar Energy Catalysis. Energy Environ. Sci. 2023, 16, 1531–1539. [Google Scholar] [CrossRef]
- Anandkumar, M.; Kannan, P.K.; Sudarsan, S.; Uchaev, D.A.; Trofimov, E.A. Reusable High-Entropy Oxide Environmental Photocatalyst towards Toxic Cr(VI) Reduction with Tailored Bandgap via Solution Combustion Synthesis. Adv. Powder Technol. 2024, 35, 104429. [Google Scholar] [CrossRef]
- Xu, F.; Xu, B.-F.; Ai, Q.-Y.; Wang, A.-J.; Mei, L.-P.; Song, P.; Feng, J.-J. Synergistic Signal Amplification of Ultrathin Nanowire-like PtCoFeRuMo High-Entropy Nanozyme and Z-Scheme WO3/ZnIn2S4 Heterostructure for Split-Typed Photoelectrochemical Aptasensing of Myoglobin. Chem. Eng. J. 2024, 489, 151374. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen Transformations in Modern Agriculture and the Role of Biological Nitrification Inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, F.; Zhang, L.; Wang, R.; Ji, L.; Liu, Q.; Luo, Y.; Guo, H.; Li, Y.; Gao, P.; et al. Electrocatalytic Hydrogenation of N2 to NH3 by MnO: Experimental and Theoretical Investigations. Adv. Sci. 2019, 6, 1801182. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Hidalgo-Jiménez, J.; Edalati, K. High-Entropy Oxide Photocatalysts for Green Ammonia Synthesis from Nitrogen Fixation in Water. Scr. Mater. 2025, 269, 116931. [Google Scholar] [CrossRef]
- Etafo, N.O.; Okmi, A.; Dey, S.; Alzahrani, H.; Bamisaye, A. Influence and Applications of Refractive Index on the Catalytic Perfomance of Photo-Responsive Materials. Environ. Surf. Interfaces 2025, 3, 237–264. [Google Scholar] [CrossRef]
- Tan, A.J.; Xie, Y.; Chen, Z.; Lin, J. Rapid laser synthesis of medium-entropy alloy nanostructures for neutral seawater electrolysis. Sustain. Energy Fuels 2025, 9, 1011–1019. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, S.; Meng, A.C.; Zheng, B.; Chen, Z.; Tour, J.M.; Lin, J. Laser-Induced High-Entropy Alloys as Long-Duration Bifunctional Electrocatalysts for Seawater Splitting. Energy Environ. Sci. 2024, 17, 8670–8682. [Google Scholar] [CrossRef]
- Addanki Tirumala, R.T.; Khatri, N.; Ramakrishnan, S.B.; Mohammadparast, F.; Khan, M.T.; Tan, S.; Wagle, P.; Puri, S.; McIlroy, D.N.; Kalkan, A.K.; et al. Tuning Catalytic Activity and Selectivity in Photocatalysis on Mie-Resonant Cuprous Oxide Particles: Distinguishing Electromagnetic Field Enhancement Effect from the Heating Effect. ACS Sustain. Chem. Eng. 2023, 11, 15931–15940. [Google Scholar] [CrossRef]
- Yang, T.-H.; Harn, Y.-W.; Pan, M.-Y.; Huang, L.-D.; Chen, M.-C.; Li, B.-Y.; Liu, P.-H.; Chen, P.-Y.; Lin, C.-C.; Wei, P.-K.; et al. Ultrahigh Density Plasmonic Hot Spots with Ultrahigh Electromagnetic Field for Improved Photocatalytic Activities. Appl. Catal. B 2016, 181, 612–624. [Google Scholar] [CrossRef]
- Kumar, S.; Addanki Tirumala, R.T.; Gyawali, S.; Le, T.; Tan, S.; Goswami, D.Y.; Wang, B.; Bristow, A.D.; Andiappan, M. Plasmonic versus Dielectric Mie Resonance-Mediated Photocatalytic Reverse Water–Gas Shift Reaction on Copper-Based Nanocubes. ACS Nano 2025, 19, 30941–30949. [Google Scholar] [CrossRef] [PubMed]
- Negrín-Montecelo, Y.; Geneidy, A.H.A.; Govorov, A.O.; Alvarez-Puebla, R.A.; Besteiro, L.V.; Correa-Duarte, M.A. Balancing Near-Field Enhancement and Hot Carrier Injection: Plasmonic Photocatalysis in Energy-Transfer Cascade Assemblies. ACS Photonics 2023, 10, 3310–3320. [Google Scholar] [CrossRef] [PubMed]
- Tirumala, R.T.A.; Gyawali, S.; Le, T.; Kumar, S.; Tan, S.; Wang, B.; Bristow, A.D.; Andiappan, M. Visible-Light-Driven Photocatalytic Carbon–Carbon Coupling Reaction under Atmospheric Temperature and Pressure Conditions Using Hybrid Cu2O–Pd Nanostructures. ACS Appl. Mater. Interfaces 2025, 17, 26651–26660. [Google Scholar] [CrossRef] [PubMed]









| Catalyst | Activity (h−1·g−1) | Light Source | Ref. |
|---|---|---|---|
| TiZrHfNbTaO10 | CO, 25.2 mmol CH4, 9.9 μmol | 400 W mercury lamp 300 W Xe lamp | [80] |
| TiZrHfNbTaO11 | CO, 50 μmol | 150 W Xe lamp | [85] |
| (CoFeNiMnCu)S2@UCN | syngas, 1823 μmol CH4, 250 μmol | 300 W Xe lamp | [90] |
| (Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 | CO, 23.1 μmol CH4, 2.89 μmol | 300 W Xe lamp | [91] |
| TiZrNbTaZnO10 | CO, 25.3 μmo CH4, 9.99 μmol | 400 W mercury lamp | [92] |
| FeCoNiCuMn | CO, 235.2 μmol CH4, 19.9 μmol | Solar driven | [93] |
| (CdZnCuCoFe)S1.25/ZnIn2S4 | CO, 2.43 μmol | 300 W Xe lamp | [94] |
| Cu-(Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 | CO, 5.66 μmol CH4, 33.84 μmol | 300 W Xe lamp | [95] |
| (CdNiCuCoFe)SX | CO, 35 μmol | Xenon arc lamp | [96] |
| Catalyst | Activity (h−1·g−1) | Light Source | Ref. |
|---|---|---|---|
| In4Se3/Pt/Bi-HEAM | H2, 5700 μmol | 300 W Xe lamp | [83] |
| HCN/HEA | H2, 2.4 mmol C7H6O, 5.44 mmol | 300 W Xe lamp | [86] |
| HE-MOF-NS | H2, 13.24 mmol | Solar driven | [101] |
| Cd0.9Zn1.2Mn0.4Cu1.8Cr1.2Se4.5 | H2, 16.08 mmol | Solar driven | [102] |
| Pd@Pt0.4Pd0.15Ir0.15Ru0.15Rh0.15/TiO2 | H2, 2.031 μmol | 300 W Xe lamp | [103] |
| (Ca38%ZrYCeCr)O2 | H2, 677 μmol | 150 W Xe lamp | [104] |
| HEON | H2, 0.543 mmol | 300 W Xe lamp | [105] |
| ZnCdS/HEA | H2, 5.99 mmol | 300 W Xe lamp | [106] |
| HEA/CdS | H2, 7.15 mmol | 300 W Xe lamp | [107] |
| HEMP | H2, 4630.21 μmol | 300 W Xe lamp | [108] |
| Catalyst | Applications | Light Source | Activity | Ref. |
|---|---|---|---|---|
| FeCoMnNiTiVCr | E. coli S. aureus | 300 W Xe lamp | (78.5, 84)% (73.5, 78)% | [58] |
| FeCoNiCrTi | TC | 300 W Xe lamp | 84.6% in 2 h | [60] |
| AlCrFeCoNi | Rhodamine B | UV lamp | 97.5% in 1 h | [62] |
| MnFeCoNiCu | SMX OFX CFX | 300 W Xe lamp | 95% in 2 h 94% in 2 h 89% in 2 h | [65] |
| (Ni0.2Zn0.2Mg0.2Cu0.2Co0.2)Al2O4 | DCF SMX TC IBP | 450 W mercury lamp | 99% in 2 h 94% in 2 h 86% in 2 h 80% in 2 h | [71] |
| HEAM | TC | 300 W Xe lamp | 97% in 1 h | [83] |
| Pt18Ni26Fe15Co14Cu27 | Benzyl alcohol | 300 W Xe lamp | 5.44 mmol·h−1·g−1 | [86] |
| (Ni0.2Zn0.2Mg0.2Cu0.2Co0.2)Al2O4 | E. coli S. aureus | 300 W Xe lamp | 87.0% in 1.5 h 90.2% in 1.5 h | [113] |
| TiO2/HEO-800 | OTC | 32 W UV lamp | 70.5% | [114] |
| (La0.2Ce0.2Gd0.2Zr0.2Fex)O2 | TTP | 300 W Xe lamp | 94.5% in 3 h | [115] |
| (FeCoNiCuZn)aOb | SMX OFX | 250 W mercury lamp | 97% in 1.5 h 95% in 1.5 h | [116] |
| (Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)3O4 | TC-HCl | 300 W Xe lamp | 92.9% in 1 h | [117] |
| (CeGdHfPrZr)O2 | Methylene blue | UV-lamp | 100% in 4 h | [118] |
| FeCrCoZrLa | Methylene blue | 300 W Xe lamp | 89.76% in 2 h | [119] |
| ZrNbTaMoW | Methylene blue | 300 W UV lamp | 58.77% in 0.5 h | [120] |
| (Mn0.6Cr0.6Co0.6Fe0.6Al0.6)O4 | Methylene blue | UV lamp | 100% in 1.5 h | [121] |
| LSFTO | Rhodamine B | 300 W Xe lamp | 99.88% in 2 h | [118] |
| (Bi0.2Na0.2Ba0.2K0.2La0.2)TiO3 | Rhodamine B | 300 W Xe lamp | 98% in 2 h | [122] |
| Zn/(FeNiCuCo)1.5 | Rhodamine B | 500 W mercury lamp | 99.45% in 1.5 h | [123] |
| (Fe0.5Co0.5)70B21Ta4Ti5 | Eosin Y | 300 W Xe lamp | 100% in 29 min | [124] |
| (CdZnCuCoFe)Sx | Biomass | Xe arc lamp | CO: 1.73 mmol·h−1·g−1 | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, W.; Chang, F.; Li, K.; Kou, Y.; Tian, W. High-Entropy Materials for Photocatalysis: A Mini Review. Catalysts 2025, 15, 1152. https://doi.org/10.3390/catal15121152
Bai W, Chang F, Li K, Kou Y, Tian W. High-Entropy Materials for Photocatalysis: A Mini Review. Catalysts. 2025; 15(12):1152. https://doi.org/10.3390/catal15121152
Chicago/Turabian StyleBai, Wenhao, Fei Chang, Kaiwen Li, Yujjie Kou, and Wei Tian. 2025. "High-Entropy Materials for Photocatalysis: A Mini Review" Catalysts 15, no. 12: 1152. https://doi.org/10.3390/catal15121152
APA StyleBai, W., Chang, F., Li, K., Kou, Y., & Tian, W. (2025). High-Entropy Materials for Photocatalysis: A Mini Review. Catalysts, 15(12), 1152. https://doi.org/10.3390/catal15121152

