Recent Progress of Low Pt Content Intermetallic Electrocatalysts Toward Proton Exchange Membrane Fuel Cells
Abstract
1. Introduction
2. Pt-Based Intermetallics vs. Pt-Based Alloys
3. Synthesis and Characterization of Carbon-Supported Pt-Based Intermetallics
3.1. Synthesis of Carbon-Supported Pt-Based Intermetallics
3.2. Characterization of Carbon-Supported Pt-Based Intermetallics
4. Performance and Durability of Pt-Based Intermetallics
| Catalysts | Particle Size; Pt Loading | Performance (RDE) | Durability (RDE) | Performance (MEA) | Durability (MEA) | Ref |
|---|---|---|---|---|---|---|
| O-PtCo/EC-300J | ~9 nm; 8 wt% | SA: 8.26 mA cm−2; MA: 2.26 A mgPt−1; ECSA: 27.3 m2 g−1 | 1.5% ECSA loss, 31.6% SA loss, and 19% MA loss (30,000 cycles, 0.6–1.0 V, 100 mV s−1, 60 °C, O2, 0.1 M HClO4) | SA: 2.12 mA cm−2; MA: 0.56 A mgPt−1; ECSA: 26.4 m2 g−1 (80 °C, 100% RH, H2/O2, 150 kPaabs) | 12.8% ECSA loss, 7% SA loss, and 19% MA loss (30,000 cycles 0.6 V (2.5 s)–0.95 V (2.5 s), 80 °C, 100% RH, H2/N2, 150 kPaabs) | [18] |
| Pt3CoNiCu/B-C | 4 nm; 20 wt% | E1/2: 0.893 V; MA: 1.0 A mgPt−1; SA: 2.8 mA cm−2 @0.9 V | 4 mV E1/2 loss; 16% MA loss and 6% SA loss (20,000 cycles, 0.6–1.0 V, 100 mV s−1) | NA | NA | [42] |
| L12-Pt(FeCoNiCuZn)3/C | ~5.75 nm; NA | E1/2: 0.922 V; MA: 0.70 A mgₚₜ−1; SA: 1.34 mA cm−2 @0.9 V | 2 mV E1/2 loss; 2.9% MA loss (30,000 cycles, 0.6–1.0 V, 100 mV/s); 30% MA loss (1.0–1.5 V) | PPD: 600 mW cm−2 (160 °C, HT-PEMFC, H2/O2) | no degradation for 150 h @0.2 A cm−2 (160 °C, HT-PEMFC, H2/O2) | [73] |
| O-PtCo3/C | 5.1 nm; 15 wt% | MA: 0.74 A mg−1; SA: 1.74 mA cm−2 @0.9 V | 5 mV E1/2 loss; 9% MA drop (10,000 cycles, 0.6–1.0 V, 100 mV/s) | NA | NA | [71] |
| Pt3Co/MPC | 4.1 nm; 50.6 wt% | E1/2: 0.914 V | 22% MA increase (40,000 cycles, 0.6–1.0 V, 200 mV s−1, O2,) | PPD: 1 W cm−2 (80 °C, H2/Air, 1 bar) | 19% MA loss @ 0.9 V (30,000 cycles, 80 °C, 0.6 V (3 s)–0.95 V (3 s), H2/Air, 1 bar) | [63] |
| O-PtCo3@HNCS | NA; 20 wt% | E1/2: 0.909 V; MA: 0.54 A mgPt−1 @0.9 V | E1/2 barely degrade; 7.4% MA loss (20,000 cycles, 0.6–1.0 V, 100 mV s−1) | NA | NA | [74] |
| O-PtCo/ZIF-derived C | 5.0 nm; 18.17 wt% | E1/2: 0.92 V; SA: 1.15 mA cm−2 @0.9 V | 12 mV E1/2 loss (30,000 cycles, 0.6–1.0 V, 50 mV s−1); 13 mV E1/2 loss (20,000 cycles, 1.0–1.5 V, 500 mV s−1) | 0.27 A cm−2 at 0.8 V (80 °C, H2/air, 1 bar) | NA | [75] |
| O-PtCo/Zn-N-C/C | 3.3 nm; 19 wt % | MA: 2.99 A mgPt−1 @ 0.9 V | 1.7% activity loss (10,000 cycles, 0.6–0.95 V, 50 mV s−1) | PPD: 1.45 W cm−2; MA: 0.99 A mgPt−1 @ 0.9 ViR-free (80 °C, 100% RH, H2/Air, 150 kPaabs) | 20.7% MA loss (90,000 cycles, 0.6 V (3 s)–0.95 V (3 s), 80 °C, 100% RH, H2/N2, 150 kPaabs) | [39] |
| L12-Pt3Co/ZIF-8-derived C | 4.7–5.4 nm; 40 wt% | E1/2: 0.957 V; MA: 1.5 A mgₚₜ−1 @0.9 V | 23% ECSA loss; 7% MA loss (30,000 cycles, 0.6–0.95 V, 100 mV s−1, 60 °C) | MA: 0.76 A mgₚₜ−1 @0.9 Vᵢᵣ-free (LDV, 80 °C, 100% RH, H2/Air, 150 kPaabs); CD: 1.44 A cm−2 @ 0.7 V (HDV, 80 °C, 100% RH, H2/Air, 250 kPaabs) | 21% MA loss; 17% ECSA loss; 7% CD loss @ 0.7 V (LDV, 30,000 cycles, 0.6 V (3 s)–0.95 V (3 s), 80 °C, 100% RH, H2/N2, 150 kPaabs); 7% CD loss @ 0.7 V (HDV, 60,000 cycles, 0.675 V(5 s)–0.925 V (10 s), H2/air, 90 °C) | [19] |
| N-doped O-Pt3Co/C | 3.4 nm; 24 wt% | E1/2: 0.943 V; MA: 2.11 A mgPt−1; SA: 4.02 mA cm−2 @0.9 V | no E1/2 decline; 19% MA loss (30,000 cycles, 0.6–1.1 V, 50 mV s−1) | PPD: 2.40 W cm−2 (H2/O2), 1.01 W cm−2 (H2/air) (80 °C) | 21.3% MA loss (30,000 cycles, 0.6 V (3 s)–0.95 V (3 s), 80 °C, H2/N2); no obvious loss (100 h @1.5 A cm−2, H2/air, 80 °C, 100% RH) | [76] |
| PtCoNi@NC/G | 5 nm; 6.1 wt% | E1/2: 0.932 V; MA: 1.357 A mgPt−1; SA: 1.1 mA cm−2 @0.9 V | 10.1 mV E1/2 loss; <20% MA loss (10,000 cycles, 0.6–1.0 V, 200 mV s−1) | PPD: 0.866 W cm−2 (80 °C, 100% RH, H2/Air, 150 kPaabs), 2.031 W cm−2 (H2/O2, 250 kPaabs) | 3.68% PPD loss (10,000 cycles, 0.6 V (2.5 s)–0.95 V (2.5 s), 80 °C, 100% RH, H2/N2, 150 kPaabs) | [21] |
| O-PtCoFe/C | 4.4 nm; NA | E1/2: 0.87 V; MA: 382.8 mA mgPt−1 | 10 mV E1/2 decay; 11.1% MA loss (10,000 cycles, 0.6–1.1 V, O2, 100 mV s−1) | PPD: 599 mW cm−2 (65 °C, 100% RH, H2/O2, 1 bar) | 3% PPD loss (30,000 cycles, 0.6–1.1 V, 100 mV s−1, 65 °C, 100% RH) | [77] |
| L12-Al-Pt3Co@Pt/C | 4–6 nm; ~15 wt% | E1/2: 0.923 V; MA: 1.174 A mgPt−1 | 2 mV E1/2 loss; 7.1% MA loss (30,000 cycles, 0.6–1 V, O2, 50 mV s−1) | PPD: 1 W cm−2 (80 °C, 100% RH, H2/Air, 1 bar) | 9% PPD loss (30,000 cycles, 0.6–1.1 V, 50 mV s−1, 80 °C, 100% RH, H2/Air, 1 bar) | [48] |
| O-Pt3Fe@NC/C | 4.0 nm; 6–10 wt% | E1/2: 0.926 V; MA: 1.66 A mgₚₜ−1 @ 0.9 V | 2 mV E1/2 loss; 7.2% MA loss; 4.8% SA loss (60,000 cycles) | 1.8 A cm−2 at 0.6 V; PPD: 1.6 W cm−2 (80 °C, 100% RH, H2/O2, 0.2 MPa) | 19.1% activity loss after 100 h at 0.5 V | [54] |
| O-PtNi3/C@NC | NA; 17 wt% | E1/2: 0.940 V; MA: 1.16 A mgₚₜ−1; SA: 2.90 mA cm−2 @0.9 V | No obvious loss (10,000 cycles, 0.6–1.0 V, 100 mV s−1) | NA | NA | [47] |
| fct-PtFe/C@NC | 6.5 nm; | MA: 1.2 A·mgₚₜ−1 | negligible activity loss (10,000 cycles, 0.6–1.0 V, Ar/O2, 50 mV s−1) | PPD: 0.5 W cm−2 | 3.4% PPD loss (100 h) | [49] |
| O-CoPt@Pt@NC/C | 3–4.5 nm; ~40 wt% | ECSA: 58.2 m2 g−1; MA: 2.07 A mgPt−1@0.9 V; SA: 3.95 mA cm−2 | 18.8% ECSA loss; 35.5% MA loss (30,000 cycles, 0.6–1.0 V, O2, 0.1 M HClO4 | MA:0.53 A mg−1; PPD: 1.18 W cm−2 (80 °C, 100% RH, H2/air, 250 kPaabs) | 15.4% activity loss (30,000 cycles, 0.6 V (3 s)–0.95 V (3 s), 80 °C, 100% RH, H2/N2, 150 kPaabs) | [62] |
| O-PtCo@C/C | 3.0 nm; NA | MA: ~1.2 A mgₚₜ−1; SA:1.6 mA cm−2 | NA | PPD: ~ 1 W cm−2 (80 °C, 100% RH, H2/O2 150 kPaabs) | 18.8 mV loss @0.8 A cm−2 (30,000 cycles, 0.6 V (3 s)–0.95 V (3 s), 80 °C, 100% RH, H2/N2, 150 kPaabs) | [61] |
| O-PtCo@NC/C | 4.3 nm; 20 wt% | SA: 1.51 A cm−2 @0.9 V | no loss in MA (30,000 cycles, 0.65 V (3 s)–1 V (3 s) | 150 mA cm−2 @0.8 V (80 °C, 80% RH, H2/O2) | 23.0% ECSA loss; 16.6% CD loss @0.8 V (30,000 cycles, 0.6 V (3 s)–0.95 V (3 s), 80 °C, H2/N2) | [70] |
| L10-FePt@NC/rGO | 4–7 nm; 28.7 wt% | MA: 1.96 A mgPt−1; SA: 4.1 mA cm−2 @0.9 V | ECSA, MA increase (20,000 cycles, 0.6–1.0 V) | NA | NA | [56] |
| O-Pt-Fe@NC/C | 3.8 nm; 27 wt% | MA: 0.53 A·mgₚₜ−1 | 4 mV E1/2 loss; 14.1% MA loss (10,000 cycles, 0.6–1.0 V, 100 mV s−1) | NA | NA | [50] |
| L10-Pt2CuGa/C | 4.1 nm; NA | ECSA: 48.6 m2 g−1; E1/2: 0.936 V; MA: 1.39 A mgPt−1; SA: 2.86 mA cm−2 @0.9 V | 8 mV E1/2 loss; 23.9 % ECSA loss (30,000 cycles, 0.6–1.0 V, 100 mV s−1, O2,) | PPD: 2.6 W cm−2; (80 °C, 100% RH, H2/O2 150 kPaabs); PPD: 1.24 W cm−2; (80 °C, 100% RH, H2/air, 150 kPaabs) | 15% PPD loss (H2/O2); 19% PPD loss (H2/air) (30,000 cycles, 80 °C, 100% RH, H2/N2, 100 mV s−1) | [78] |
| N-doped O-Pt3Co/C | ~7.9 nm; 18.03 wt% | ECSA: 25.23 m2 g−1; MA: 275.76 mA mgPt −1 @ 0.9 V | 21.5% MA loss (20,000 cycles, 0.6–1.1 V, 0.1 M HClO4, 200 mV/s) | NA | NA | [79] |
| PtCo/C | 3.2 nm; 29.4 wt% | E1/2: 0.93 V; MA:1.28 A mgₚₜ−1 @0.9 V | 11 mV E1/2 loss (40,000 cycles, 0.6–1.0 V, 100 mV s−1) | PPD: 2.38 W cm−2; MA:1.28 A mgₚₜ−1 @0.9 V (80 °C, 100% RH, H2/O2 150/200 kPaabs) | 1% PPD decay (50 h @ 0.6 V, 80 °C, 100% RH, H2/air 200 kPaabs) | [41] |
| O-Pt3Co/C | 5 nm; 30.72 wt% | E1/2: 0.943 V; MA: 0.51 m A mgₚₜ−1, SA: 1.1 mA cm−2 @0.9 V | 3% ECSA loss; 25 mV E1/2 loss (4000 cycles, 0.05–1.0 V, 50 mV s−1) | NA | NA | [80] |
| O-Pt3Fe NWs/C | 11 nm; 20.2 wt% | SA:2.5 mA cm−2; MA: 0.98 A mgPt−1 @0.9 V | No obvious change (30,000 cycles, 0.6–1.0 V, 100 mV s−1, O2, 0.1 M HClO4) | PPD: 1.05 W cm−2; MA: 0.67 A mgPt−1 @ 0.9 VIR-free (80 °C, 100% RH, H2/air, 150 kPaabs) | 26.0% current density loss at 0.7 V (7000 cycles, 0.6 V (5 s)–0.95 V (5 s), 80 °C, 100% RH, H2/N2) | [20] |
| O-Pt3Mn/C | 4.23 nm; 20 wt% | MA: 0.386 A mgPt−1; SA: 0.877 mA cm−2 @0.9 V | 26.5% MA loss; 20.5% SA loss; 10% ECSA loss (10,000 cycles, 0.6–1.1 V, O2, 50 mV s−1) | 550 mA cm−2 @ 0.7 V; PPD: 582 mW cm−2 (65 °C, 100% RH, H2/air) | 11.63% CD loss @ 0.7 V; 6.5% PPD loss (10,000 cycles, 0.6–1.1 V, H2/N2, 50 mV s−1) | [68] |
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Johnson, N.; Liebreich, M.; Kammen, D.M.; Ekins, P.; McKenna, R.; Staffell, I. Realistic roles for hydrogen in the future energy transition. Nat. Rev. Clean Technol. 2025, 1, 351–371. [Google Scholar] [CrossRef]
- Zhang, F.; Zu, B.; Wang, B.; Qin, Z.; Yao, J.; Wang, Z.; Fan, L.; Jiao, K. Developing long-durability proton-exchange membrane fuel cells. Joule 2025, 9, 101853. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, W.; Xing, L.; Li, J.; Wang, N.; Meng, L.; Ye, S.; Yang, X.; Chen, H.; Du, L. Stability/Durability Challenges of Cathode Catalysts for PEM Fuel Cells: Experiments, Mechanisms, and Perspectives Beyond Three-Electrode System. Energy Environ. Sci. 2025, 18, 9054–9092. [Google Scholar] [CrossRef]
- Wang, J.X.; Markovic, N.M.; Adzic, R.R. Kinetic Analysis of Oxygen Reduction on Pt(111) in Acid Solutions: Intrinsic Kinetic Parameters and Anion Adsorption Effects. J. Phys. Chem. B 2004, 108, 4127–4133. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, J.; Li, X. Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev. 2022, 5, 13. [Google Scholar] [CrossRef]
- James, B.D. Fuel Cell Cost and Performance Analysis. Available online: https://www.hydrogen.energy.gov/pdfs/review22/fc353_james_2022_o.pdf (accessed on 7 June 2022).
- Wang, J.; Kim, J.; Choi, S.; Wang, H.; Lim, J. A Review of Carbon-Supported Nonprecious Metals as Energy-Related Electrocatalysts. Small Methods 2020, 4, 2000621. [Google Scholar] [CrossRef]
- Wang, J.; Kong, H.; Zhang, J.; Hao, Y.; Shao, Z.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef] [PubMed]
- Stamenkovic, V.; Mun, B.S.; Mayrhofer, K.J.J.; Ross, P.N.; Markovic, N.M.; Rossmeisl, J.; Greeley, J.; Norskov, J.K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 2006, 45, 2897–2901. [Google Scholar] [CrossRef]
- Kim, C.; Dionigi, F.; Beermann, V.; Wang, X.; Möller, T.; Strasser, P. Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO2RR). Adv. Mater. 2019, 31, 1805617. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Shen, X.; Pan, Y.; Yao, L.; Peng, Z. Platinum Alloy Catalysts for Oxygen Reduction Reaction: Advances, Challenges and Perspectives. ChemNanoMat 2020, 6, 32–41. [Google Scholar] [CrossRef]
- Asset, T.; Chattot, R.; Fontana, M.; Mercier-Guyon, B.; Job, N.; Dubau, L.; Maillard, F. A Review on Recent Developments and Prospects for the Oxygen Reduction Reaction on Hollow Pt-alloy Nanoparticles. ChemPhysChem 2018, 19, 1552–1567. [Google Scholar] [CrossRef] [PubMed]
- Čolić, V.; Bandarenka, A.S. Pt Alloy Electrocatalysts for the Oxygen Reduction Reaction: From Model Surfaces to Nanostructured Systems. ACS Catal. 2016, 6, 5378–5385. [Google Scholar] [CrossRef]
- Feng, X.; Zhou, Z.; Zhang, H.-J.; Ma, Z.; Xue, Y. Pt-Based Ternary Alloy on Nanohoneycomb Nitrogen-Doped Carbon Support for Highly Active and Stable Oxygen Reduction Reaction. ACS Appl. Nano Mater. 2025, 8, 5775–5783. [Google Scholar] [CrossRef]
- Kitchin, J.R.; Nørskov, J.K.; Barteau, M.A.; Chen, J.G. Role of Strain and Ligand Effects in the Modification of the Electronic and Chemical Properties of Bimetallic Surfaces. Phys. Rev. Lett. 2004, 93, 156801. [Google Scholar] [CrossRef]
- Zhang, J.; Vukmirovic, M.B.; Xu, Y.; Mavrikakis, M.; Adzic, R.R. Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates. Angew. Chem. Int. Ed. 2005, 44, 2132–2135. [Google Scholar] [CrossRef]
- Li, J.; Sharma, S.; Liu, X.; Pan, Y.-T.; Spendelow, J.S.; Chi, M.; Jia, Y.; Zhang, P.; Cullen, D.A.; Xi, Z.; et al. Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule 2019, 3, 124–135. [Google Scholar] [CrossRef]
- Liang, J.; Yu, H.; Zachman, M.J.; Hwang, S.; Qi, M.; Zeng, Y.; Zhang, B.; Li, J.; Guo, J.; Dun, C.; et al. Creating Favorable Pt/Co Interfaces via a Two-Step Approach for Constructing Highly Durable PtCo Intermetallic Fuel Cell Catalysts. Adv. Mater. 2025, e10847. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jiang, K.; Wang, F.; Geng, S.; Liu, Y.; Meng, S.; Su, H.; Zhu, S.; Bu, L.; Chen, C.; et al. Gas Dynamically Confined Synthesis of Platinum-Based Intermetallic Nanowires for Active and Ultrastable Oxygen Reduction Catalysis. ACS Nano 2025, 19, 31201–31212. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yin, Y.; Ren, B.; Qin, Y.; Wen, G.; Chen, Z. ZIF-derived ternary Pt-Co-Ni alloy as the superior active and durable catalyst for PEMFC. Nano Energy 2024, 120, 109154. [Google Scholar] [CrossRef]
- Luo, C.; Wan, K.; Wang, J.; Li, B.; Yang, D.; Ming, P.; Zhang, C. A review of ordered PtCo3 catalyst with higher oxygen reduction reaction activity in proton exchange membrane fuel cells. J. Colloid Interface Sci. 2025, 679, 165–190. [Google Scholar] [CrossRef]
- Wu, R.; Zuo, J.; Zhao, L.; Zhu, Z.; Li, Q.; Niu, X.; Chen, J.S. MOF-derived ordered porous nitrogen-doped carbon integrated with Pt3Co alloy catalyst for efficient oxygen reduction reaction. Chem. Commun. 2025, 61, 5742–5745. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://global.toyota/pages/news/images/2020/12/09/1200/20201209_01_02_en.pdf (accessed on 9 December 2020).
- Lin, F.; Li, M.; Zeng, L.; Luo, M.; Guo, S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem. Rev. 2023, 123, 12507–12593. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Shi, Z.; Li, B.; Meyer, Q.; Zhao, C. Engineering Platinum-Based Alloy Catalysts for Oxygen Reduction Reaction in Hydrogen Fuel Cells: A Mini-Review. Energy Fuels 2025, 39, 16049–16064. [Google Scholar] [CrossRef]
- Zuo, C.; Su, Q.; Wang, K.; Guo, Q. Recent advances of intermetallic nanocatalysts: From structure feature, synthetic control to the enhanced electrocatalytic performance in PEMFCs. Int. J. Hydrogen Energy 2025, 157, 150435. [Google Scholar] [CrossRef]
- Tian, H.; Wang, X.; Ge, J.; Wan, H.; Ma, W.; Xie, G.; Ge, J. Pt-based intermetallic compound catalysts for the oxygen reduction reaction: From problems to recent developments. J. Energy Chem. 2024, 99, 302–324. [Google Scholar] [CrossRef]
- Peng, H. 8-Brazing of nickel, ferrite and titanium–aluminum intermetallics. In Advances in Brazing; Sekulić, D.P., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 221–248. [Google Scholar] [CrossRef]
- Sauthoff, G. Intermetallics. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Kim, D.; Saal, J.E.; Zhou, L.; Shang, S.; Du, Y.; Liu, Z.-K. Thermodynamic modeling of fcc order/disorder transformations in the Co–Pt system. Calphad 2011, 35, 323–330. [Google Scholar] [CrossRef]
- Lu, X.-G.; Sundman, B.; Ågren, J. Thermodynamic assessments of the Ni–Pt and Al–Ni–Pt systems. Calphad 2009, 33, 450–456. [Google Scholar] [CrossRef]
- Entel, P.; Gruner, M.E.; Rollmann, G.; Hucht, A.; Sahoo, S.; Zayak, A.T.; Herper, H.C.; Dannenberg, A. First-principles investigations of multimetallic transition metal clusters. Philos. Mag. 2008, 88, 2725–2738. [Google Scholar] [CrossRef]
- Abe, T.; Sundman, B.; Onodera, H. Thermodynamic assessment of the Cu–Pt system. J. Phase Equilibria Diffus. 2006, 27, 5–13. [Google Scholar] [CrossRef]
- Li, J.; Sun, S. Intermetallic Nanoparticles: Synthetic Control and Their Enhanced Electrocatalysis. Acc. Chem. Res. 2019, 52, 2015–2025. [Google Scholar] [CrossRef]
- Yan, Y.; Du, J.S.; Gilroy, K.D.; Yang, D.; Xia, Y.; Zhang, H. Intermetallic Nanocrystals: Syntheses and Catalytic Applications. Adv. Mater. 2017, 29, 1605997. [Google Scholar] [CrossRef]
- Vanýsek, P. Electrochemical Series. In Corrosion: Materials; Cramer, S.D., Covino, B.S., Jr., Eds.; ASM International: Russell Township, OH, USA, 2010; Volume 13B. [Google Scholar]
- Kim, J.; Lee, Y.; Sun, S. Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2010, 132, 4996–4997. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, Y.; Xia, J.; Hu, S.; Chen, N.; Ding, T.; Zhan, C.; Pao, C.-W.; Hu, Z.; Huang, W.-H.; et al. Atom-glue stabilized Pt-based intermetallic nanoparticles. Sci. Adv. 2024, 10, eadq6727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, X.; Jiang, G.; Zhu, H.; Guo, S.; Su, D.; Lu, G.; Sun, S. Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization. J. Am. Chem. Soc. 2014, 136, 7734–7739. [Google Scholar] [CrossRef]
- Kong, F.; Huang, Y.; Yu, X.; Li, M.; Song, K.; Guo, Q.; Cui, X.; Shi, J. Oxygen Vacancy-Mediated Synthesis of Inter-Atomically Ordered Ultrafine Pt-Alloy Nanoparticles for Enhanced Fuel Cell Performance. J. Am. Chem. Soc. 2024, 146, 30078–30090. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Jing, Y.; Gao, S.; Zhang, W.; Zhang, Y.; Liu, H.; Liang, C.; Ji, C.; Rao, Y.; Wu, J.; et al. Hydrogenated borophene enabled synthesis of multielement intermetallic catalysts. Nat. Commun. 2023, 14, 7414. [Google Scholar] [CrossRef]
- Liu, F.; Guo, Y.; Zhong, Y.; Li, J.; Zhang, H.; Shi, L.; Lin, X.; Ye, F.; Ge, K.; Yuan, S.; et al. Sulfur-bridge ligands altering the microenvironment of single-atom CoN3S sites to boost the oxygen reduction reaction. Chem. Commun. 2024, 60, 4064–4067. [Google Scholar] [CrossRef]
- Ma, M.; Shen, L.; Zhao, Z.; Guo, P.; Liu, J.; Xu, B.; Zhang, Z.; Zhang, Y.; Zhao, L.; Wang, Z. Activation methods and underlying performance boosting mechanisms within fuel cell catalyst layer. eScience 2024, 4, 100254. [Google Scholar] [CrossRef]
- Kim, J.; Rong, C.; Liu, J.P.; Sun, S. Dispersible Ferromagnetic FePt Nanoparticles. Adv. Mater. 2009, 21, 906–909. [Google Scholar] [CrossRef]
- Yamamoto, S.; Morimoto, Y.; Ono, T.; Takano, M. Magnetically superior and easy to handle L1-FePt nanocrystals. Appl. Phys. Lett. 2005, 87, 032503. [Google Scholar] [CrossRef]
- Tamada, Y.; Morimoto, Y.; Yamamoto, S.; Takano, M.; Nasu, S.; Ono, T. Effects of annealing time on structural and magnetic properties of L10-FePt nanoparticles synthesized by the SiO2-nanoreactor method. J. Magn. Magn. Mater. 2007, 310, 2381–2383. [Google Scholar] [CrossRef]
- Wu, W.; Qu, W.; Wang, Z.; Tan, Y.; Chen, R.; Chen, S.; Lv, H.; Zhong, J.; Cheng, N. Single-atom Al precisely modulate the strain of Pt3Co intermetallic for superior oxygen catalytic performance. Chem. Eng. J. 2024, 491, 151987. [Google Scholar] [CrossRef]
- Chung, D.Y.; Jun, S.W.; Yoon, G.; Kwon, S.G.; Shin, D.Y.; Seo, P.; Yoo, J.M.; Shin, H.; Chung, Y.-H.; Kim, H.; et al. Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, T.; Zhao, X.; Zhang, J.; Lu, Y.; Shen, J.; Lu, S.; Tu, Z.; Xin, H.L.; Wang, D. Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis. Appl. Catal. B Environ. 2020, 279, 119370. [Google Scholar] [CrossRef]
- Sun, K.; Li, J.; Wang, F.; He, W.; Fei, M.; Lu, Z.; Zhang, H.; Liu, J.; Zou, Z. Highly enhanced durability of a graphitic carbon layer decorated PtNi3 alloy electrocatalyst toward the oxygen reduction reaction. Chem. Commun. 2019, 55, 5693–5696. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Liu, Y.; Rui, Z.; Li, J.; Liu, J.; Zou, Z. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.-X.; Gao, X.; Goldsmith, B.R.; Cong, Y.; Zhai, Z.; Miao, S.; Jiang, Q.; Dou, Y.; Wang, J.; et al. Nitrogen-doped graphene layers for electrochemical oxygen reduction reaction boosted by lattice strain. J. Catal. 2019, 378, 113–120. [Google Scholar] [CrossRef]
- Cao, X.; Guo, H.; Han, Y.; Li, M.; Shang, C.; Zhao, R.; Huang, Q.; Li, M.; Zhang, Q.; Lv, F.; et al. Sandwiching intermetallic Pt3Fe and ionomer with porous N-doped carbon layers for oxygen reduction reaction. Nat. Commun. 2025, 16, 2851. [Google Scholar] [CrossRef]
- Wang, B.; Lu, M.; Chen, D.; Zhang, Q.; Wang, W.; Kang, Y.; Fang, Z.; Pang, G.; Feng, S. NixFeyN@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. J. Mater. Chem. A 2021, 9, 13562–13569. [Google Scholar] [CrossRef]
- Yoo, T.Y.; Yoo, J.M.; Sinha, A.K.; Bootharaju, M.S.; Jung, E.; Lee, H.S.; Lee, B.-H.; Kim, J.; Antink, W.H.; Kim, Y.M.; et al. Direct Synthesis of Intermetallic Platinum–Alloy Nanoparticles Highly Loaded on Carbon Supports for Efficient Electrocatalysis. J. Am. Chem. Soc. 2020, 142, 14190–14200. [Google Scholar] [CrossRef]
- Ko, K.; Kim, D.; Min, J.; Sravani, B.; Kim, Y.; Lee, S.; Sul, T.; Jang, S.; Jung, N. Redesign of Anode Catalyst for Sustainable Survival of Fuel Cells. Adv. Sci. 2024, 11, 2307073. [Google Scholar] [CrossRef] [PubMed]
- Labarde, Q.; Godoy, A.O.; Dubau, L.; Micoud, F.; Chatenet, M. Carbon-Capped PtNi Catalysts for the Oxygen Reduction Reaction in Acidic Environment: A Durability Study. Electrocatalysis 2025, 16, 117–131. [Google Scholar] [CrossRef]
- Tian, L.; Gao, X.; Zhu, M.; Huang, Z.; Wu, B.; Chen, C.; Ma, X.; Ruan, Y.; Guo, W.; Meng, X.; et al. Double Confinement Design to Access Highly Stable Intermetallic Nanoparticles for Fuel Cells. Adv. Mater. 2025, 37, 2417095. [Google Scholar] [CrossRef]
- Chougule, S.S.; Jeffery, A.A.; Roy Chowdhury, S.; Min, J.; Kim, Y.; Ko, K.; Sravani, B.; Jung, N. Antipoisoning catalysts for the selective oxygen reduction reaction at the interface between metal nanoparticles and the electrolyte. Carbon Energy 2023, 5, e293. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Z.; Zhang, A.; Yan, X.; Xue, W.; Peng, B.; Xin, H.L.; Pan, X.; Duan, X.; Huang, Y. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat. Nanotechnol. 2022, 17, 968–975. [Google Scholar] [CrossRef]
- Yoo, T.Y.; Lee, J.; Kim, S.; Her, M.; Kim, S.-Y.; Lee, Y.-H.; Shin, H.; Jeong, H.; Sinha, A.K.; Cho, S.-P.; et al. Scalable production of an intermetallic Pt–Co electrocatalyst for high-power proton-exchange-membrane fuel cells. Energy Environ. Sci. 2023, 16, 1146–1154. [Google Scholar] [CrossRef]
- Ke, F.; Cheng, Q.; Tong, D.; Liu, D.; Xu, X.; Chen, Y.; Zou, L.; Yang, H. Mesoporous confined Pt-based intermetallic compound with wrinkled carbon to enhance the performance towards oxygen reduction reaction for proton exchange membrane fuel cells. J. Power Sources 2024, 603, 234357. [Google Scholar] [CrossRef]
- Duan, X.; Cao, F.; Ding, R.; Li, X.; Li, Q.; Aisha, R.; Zhang, S.; Hua, K.; Rui, Z.; Wu, Y.; et al. Cobalt-Doping Stabilized Active and Durable Sub-2 nm Pt Nanoclusters for Low-Pt-Loading PEMFC Cathode. Adv. Energy Mater. 2022, 12, 2103144. [Google Scholar] [CrossRef]
- Malik, M.A.; Wani, M.Y.; Hashim, M.A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab. J. Chem. 2012, 5, 397–417. [Google Scholar] [CrossRef]
- Yang, C.-L.; Wang, L.-N.; Yin, P.; Liu, J.; Chen, M.-X.; Yan, Q.-Q.; Wang, Z.-S.; Xu, S.-L.; Chu, S.-Q.; Cui, C.; et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, H.; Li, J.; Chen, J.; Song, Y. A convenient protocol for the evaluation of commercial Pt/C electrocatalysts toward oxygen reduction reaction. J. Electroanal. Chem. 2020, 870, 114172. [Google Scholar] [CrossRef]
- Lim, J.; Jung, C.; Hong, D.; Bak, J.; Shin, J.; Kim, M.; Song, D.; Lee, C.; Lim, J.; Lee, H.; et al. Atomically ordered Pt3Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells. J. Mater. Chem. A 2022, 10, 7399–7408. [Google Scholar] [CrossRef]
- Liu, J.; Sun, C.Q.; Zhu, W. Origin of efficient oxygen reduction reaction on Pd monolayer supported on Pd-M (M = Ni, Fe) intermetallic alloy. Electrochim. Acta 2018, 282, 680–686. [Google Scholar] [CrossRef]
- Gao, Y.; Uchiyama, T.; Yamamoto, K.; Watanabe, T.; Tominaka, S.; Thakur, N.; Sato, R.; Teranishi, T.; Imai, H.; Sakurai, Y.; et al. Origin of High Activity and Durability of Confined Ordered Intermetallic PtCo Catalysts for the Oxygen Reduction Reaction in Rotating Disk Electrode and Fuel Cell Operating Conditions. ACS Catal. 2023, 13, 10988–11000. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, X.; Kang, Y.; Miao, L.; Xia, D.; Gan, L. Structurally Ordered Low-Pt Intermetallic Electrocatalysts toward Durably High Oxygen Reduction Reaction Activity. Adv. Funct. Mater. 2019, 29, 1902987. [Google Scholar] [CrossRef]
- Ren, X.; Liu, B.; Liang, X.; Wang, Y.; Lv, Q.; Liu, A. Review—Current Progress of Non-Precious Metal for ORR Based Electrocatalysts Used for Fuel Cells. J. Electrochem. Soc. 2021, 168, 044521. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, T.; Song, M.; Wang, S.; Zhang, J.; Huang, X.; Lu, S.; Wang, D. High-entropy L12-Pt(FeCoNiCuZn)3 intermetallics for ultrastable oxygen reduction reaction. J. Energy Chem. 2023, 86, 158–166. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, X.; Shen, T.; Zhu, Y.; Wang, D. Hollow Porous Carbon-Confined Atomically Ordered PtCo3 Intermetallics for an Efficient Oxygen Reduction Reaction. ACS Catal. 2022, 12, 5380–5387. [Google Scholar] [CrossRef]
- Wang, X.X.; Hwang, S.; Pan, Y.T.; Chen, K.; He, Y.; Karakalos, S.; Zhang, H.; Spendelow, J.S.; Su, D.; Wu, G. Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal-Organic Frameworks for Oxygen Reduction. Nano Lett. 2018, 18, 4163–4171. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, H.; Hu, Y.; Zhou, F.; Gao, X.; He, D.; Zhao, X.; Zhao, C.; Wang, J.; Tie, W.; et al. In Situ Nitrogen Infiltration into an Ordered Pt3Co Alloy with sp–d Hybridization to Boost Fuel Cell Performance. ACS Catal. 2024, 14, 5858–5867. [Google Scholar] [CrossRef]
- Xue, Y.; Deng, X.; Yan, Y.; Zhang, J.; Wang, G.; Wang, R.; Chen, J. PtCoFe Intermetallic Alloy Catalyst Derived from PtFe@CoO with High Stability for Oxygen Reduction Reaction. ChemElectroChem 2023, 10, e202300094. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Z.; Liang, J.; Li, S.; Lu, G.; Priest, C.; Wang, T.; Han, J.; Wu, G.; Wang, X.; et al. Inducing Covalent Atomic Interaction in Intermetallic Pt Alloy Nanocatalysts for High-Performance Fuel Cells. Angew. Chem. Int. Ed. 2023, 62, e202302134. [Google Scholar] [CrossRef]
- Liu, M.; Hu, A.; Ma, Y.; Wang, G.; Zou, L.; Chen, X.; Yang, H. Nitrogen-doped Pt3Co intermetallic compound nanoparticles: A durable oxygen reduction electrocatalyst. J. Electroanal. Chem. 2020, 871, 114267. [Google Scholar] [CrossRef]
- Xiong, Y.; Xiao, L.; Yang, Y.; DiSalvo, F.J.; Abruña, H.D. High-Loading Intermetallic Pt3Co/C Core–Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR). Chem. Mater. 2018, 30, 1532–1539. [Google Scholar] [CrossRef]
- Yuan, X.; Jiang, X.; Cao, M.; Chen, L.; Nie, K.; Zhang, Y.; Xu, Y.; Sun, X.; Li, Y.; Zhang, Q. Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Res. 2019, 12, 429–436. [Google Scholar] [CrossRef]












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Song, Q.; Xie, Y.; Zhang, W.; Xu, Q.; Su, H. Recent Progress of Low Pt Content Intermetallic Electrocatalysts Toward Proton Exchange Membrane Fuel Cells. Catalysts 2025, 15, 1070. https://doi.org/10.3390/catal15111070
Liu H, Song Q, Xie Y, Zhang W, Xu Q, Su H. Recent Progress of Low Pt Content Intermetallic Electrocatalysts Toward Proton Exchange Membrane Fuel Cells. Catalysts. 2025; 15(11):1070. https://doi.org/10.3390/catal15111070
Chicago/Turabian StyleLiu, Huiyuan, Qian Song, Yan Xie, Weiqi Zhang, Qian Xu, and Huaneng Su. 2025. "Recent Progress of Low Pt Content Intermetallic Electrocatalysts Toward Proton Exchange Membrane Fuel Cells" Catalysts 15, no. 11: 1070. https://doi.org/10.3390/catal15111070
APA StyleLiu, H., Song, Q., Xie, Y., Zhang, W., Xu, Q., & Su, H. (2025). Recent Progress of Low Pt Content Intermetallic Electrocatalysts Toward Proton Exchange Membrane Fuel Cells. Catalysts, 15(11), 1070. https://doi.org/10.3390/catal15111070

