Effects of Zn Doping on the Morphology and H2 Production Activity of Truncated Octahedral Cu2O Photocatalysts
Abstract
1. Introduction
2. Results and Discussion
2.1. Crystal Structure Analysis
2.2. Surface Morphology
2.3. Nanostructure Characterizations
2.4. Surface Chemical Properties
2.5. Hydrogen Production Efficiency
2.6. Optical and Electrochemical Characteristics
2.7. Band Structure—Mott-Schottky Plot
2.8. Reaction Mechanism
3. Materials and Methods
3.1. Synthesis of Truncated Octahedral Zn-Doped Cu2O Photocatalyst
3.2. Hydrogen Production Experiment Using the Photocatalyst
3.3. Characterization
3.4. Electrochemical Property
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colón, G. Towards the hydrogen production by photocatalysis. Appl. Catal. A. 2016, 518, 48–59. [Google Scholar] [CrossRef]
- Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B Environ. 2019, 244, 1021–1064. [Google Scholar] [CrossRef]
- Fajrina, N.; Tahir, M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen Energy 2019, 44, 540–577. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chiao, Y.C.; Fun, Y.X. Cu2O/CuS/ZnS nanocomposite boosts blue LED-light-driven photocatalytic hydrogen evolution. Catalysts 2022, 12, 1035. [Google Scholar] [CrossRef]
- Chang, C.J.; Wei, Y.H.; Kuo, W.S. Free-standing CuS–ZnS decorated carbon nanotube films as immobilized photocatalysts for hydrogen production. Int. J. Hydrogen Energy 2019, 44, 30553–30562. [Google Scholar] [CrossRef]
- Chiu, M.H.; Kuo, C.C.; Huang, C.W.; Yang, W.D. Preparation of CuS/PbS/ZnO heterojunction photocatalyst for application in hydrogen production. Catalysts 2022, 12, 1677. [Google Scholar] [CrossRef]
- Son, N.; Heo, J.N.; Youn, Y.S.; Kim, Y.; Do, J.Y.; Kang, M. Enhancement of hydrogen productions by accelerating electron-transfers of sulfur defects in the CuS@ CuGaS2 heterojunction photocatalysts. Catalysts 2019, 9, 41. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, Y.G.; Chen, J.; Huang, C.Y.; Hsieh, S.C.; Wu, S.Y. Ionic liquid/surfactant-hydrothermal synthesis of dendritic PbS@CuS core-shell photocatalysts with improved photocatalytic performance. Appl. Surf. Sci. 2021, 546, 149106. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Mohamed, S.H.; Hadia, N.M.A.; Rabia, M.; Awad, M.A. Some characteristics of Cu/Cu2O/CuO nanostructure heterojunctions and their applications in hydrogen generation from seawater: Effect of surface roughening. Phys. Scripta. 2024, 99, 045939. [Google Scholar] [CrossRef]
- Chang, C.J.; Kao, Y.C.; Lin, K.S.; Chen, C.Y.; Kang, C.W.; Yang, T.H. Carbon fiber cloth@BiOBr/CuO as immobilized membrane-shaped photocatalysts with enhanced photocatalytic H2 production activity. J. Taiwan Inst. Chem. Eng. 2023, 149, 104998. [Google Scholar] [CrossRef]
- Ma, J.; Hua, Y.; Cao, Y.; Jia, C.; Li, J. Anchoring Cu2O nanoparticles on g-C3N4 nanosheets for enhanced photocatalytic performance. Fuel 2024, 364, 131139. [Google Scholar] [CrossRef]
- Abdullahi, A.G.; Hafeez, H.Y.; Mohammed, J.; Bala, A.A.; Suleiman, C.E.N.A. Current trends and strategies on the development of Cu2O-based photocatalysts for efficient solar fuel hydrogen production via photocatalytic water splitting. J. Alloys Compd. Commun. 2025, 6, 100061. [Google Scholar] [CrossRef]
- Yu, X.; Kou, S.; Zhang, J.; Tang, X.; Yang, Q.; Yao, B. Preparation and characterization of Cu2O nano-particles and their photocatalytic degradation of fluroxypyr. Environ. Technol. 2018, 39, 2967–2976. [Google Scholar] [CrossRef]
- Yu, X.; Chen, H.; Ji, Q.; Chen, Y.; Wei, Y.; Zhao, N.; Yao, B. p-Cu2O/n-ZnO heterojunction thin films with enhanced photoelectrochemical properties and photocatalytic activities for norfloxacin. Chemosphere 2021, 267, 129285. [Google Scholar] [CrossRef]
- Men, X.; Liang, H.; Fan, X.; Bai, J. Synergistic incorporation of MoS2 cocatalyst into ZnIn2S4 nanoflower architectures for efficient photocatalytic H2 production and selective benzyl alcohol oxidation. Opt. Mater. 2025, 166, 117208. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, J.; Wei, L.; Liu, Y.; Yang, C. Z-scheme heterostructure of Fe-doped SnO2 decorated layered g-C3N4 with enhanced photocatalytic activity under simulated solar light irradiation. Opt. Mater. 2020, 101, 109769. [Google Scholar] [CrossRef]
- Kamalakannan, S.; Balasubramaniyan, N.; Neppolian, B. Z-scheme based fabrication of Cu2CdSnS4/Au/g-C3N4 ternary heterojunction with enhanced photocatalytic hydrogen production. Opt. Mater. 2025, 164, 117051. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, J.; Li, J. Reinforced photocatalytic H2 generation behavior of S-scheme NiO/g-C3N4 heterojunction photocatalysts with enriched nitrogen vacancies. Opt. Mater. 2023, 135, 113296. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, S.; Ma, C.; Zhou, Y.; Ye, Z.; Dai, X.; Cao, X. Synthesis of Z-type heterojunction bifunctional composites with Mn-doped CdS nanoparticles supported on NH2-MIL-125 (Ti) for hydrogen evolution and antibiotic degradation under visible light. Opt. Mater. 2023, 135, 113087. [Google Scholar] [CrossRef]
- Sahoo, U.; Pattnayak, S.; Choudhury, S.; Aparajita, P.; Das, S.; Hota, G. B, S co-doped g-C3N4 hollow nanotubes/MIL-53 heterostructure: A MOF derived high performance Z scheme photocatalyst for bisphenol A degradation and H2 evolution. Opt. Mater. 2025, 160, 116778. [Google Scholar] [CrossRef]
- Mdlovu, N.V.; Lin, K.S.; Chang, C.J.; Lin, Y.S.; Hassan, S.F. Adsorption and photocatalytic degradation of dye contaminants in wastewater over W-doped titania nanotubes. J. Taiwan Inst. Chem. Eng. 2023, 146, 104863. [Google Scholar] [CrossRef]
- Nie, J.; Yu, X.; Liu, Z.; Zhang, J.; Ma, Y.; Chen, Y.; Chang, Z. Energy band reconstruction mechanism of Cl-doped Cu2O and photocatalytic degradation pathway for levofloxacin. J. Clean. Prod. 2022, 363, 132593. [Google Scholar] [CrossRef]
- Mdlovu, N.V.; Yang, N.C.; Lin, K.S.; Chang, C.J.; Dinh, K.T.; Lin, Y.G. Formulation and characterization of W-doped titania nanotubes for adsorption/photodegradation of methylene blue and basic violet 3 dyes. Catal. Today 2022, 388, 36–46. [Google Scholar] [CrossRef]
- Patil, A.B.; Jadhav, B.D.; Bhoir, P. Optical band gap modification of Ce/ZnO for visible light photocatalytic H2 production from aqueous methanol solution. Opt. Mater. 2021, 121, 111503. [Google Scholar] [CrossRef]
- Tsay, C.Y.; Chung, C.Y.; Chang, C.J.; Chang, Y.C.; Chen, C.Y.; Wu, S.Y. Fe-doped g-C3N4/Bi2MoO6 heterostructured composition with improved visible photocatalytic activity for rhodamine B degradation. Molecules 2024, 29, 2631. [Google Scholar] [CrossRef]
- Akhirudin, I.; Budi, S. Electrodeposition of Zn-doped Cu2O for the Photodegradation of Methylene Blue. J. Phys. Conf. Ser. 2020, 1428, 012064. [Google Scholar] [CrossRef]
- Zerouali, M.; Bouras, D.; Daïra, R.; Fellah, M.; Boudjema, B.; Barille, R.; El-Hiti, G.A. Effect of Zn-doped CuO thin films on structural, morphological, optical, and electrical properties for photocatalysis application. Opt. Mater. 2024, 152, 115495. [Google Scholar] [CrossRef]
- Mohtar, S.S.; Aziz, F.; Ismail, A.F.; Sambudi, N.S.; Abdullah, H.; Rosli, A.N.; Ohtani, B. Impact of doping and additive applications on photocatalyst textural properties in removing organic pollutants: A review. Catalysts 2021, 11, 1160. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, J.; Zhang, J.; Niu, J.; Zhao, J.; Wei, Y.; Yao, B. Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation pathways and intermediates. Chem. Eng. J. 2019, 374, 316–327. [Google Scholar] [CrossRef]
- Kumar Jacob, S.S.; Kulandaisamy, I.; Poul Raj, I.L.; Abdeltawab, A.A.; Mohammady, S.Z.; Ubaidullah, M. Improved optoelectronic properties of spray pyrolysis coated Zn doped Cu2O thin films for photodetector applications. Opt. Mater. 2021, 116, 111086. [Google Scholar] [CrossRef]
- Borik, M.A.; Diab, M.A.; El-Sabban, H.A.; El-Adasy, A.B.A.; El-Gaby, M.S. Designed construction of boosted visible-light Z-scheme TiO2/PANI/Cu2O heterojunction with elaborated photocatalytic degradation of organic dyes. Synth. Met. 2024, 306, 117642. [Google Scholar] [CrossRef]
- Nesa, M.; Sharmin, M.; Hossain, K.S.; Bhuiyan, A.H. Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films. J. Mater. Sci. Mater. Electron. 2017, 28, 12523–12534. [Google Scholar] [CrossRef]
- Yuan, B.; Liu, X.; Cai, X.; Fang, X.; Liu, J.; Wu, M.; Zhu, Q. Preparation of zinc and cerium or both doped Cu2O photoelectric material via hydrothermal method. Sol. Energy 2020, 196, 74–79. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Y.; Meng, D.; Wang, D. One-step hydrothermal synthesis and enhanced photocatalytic performance of pine-needle-like Zn-doped CuO nanostructures. J. Mater. Sci. Mater. Electron. 2016, 27, 12884–12890. [Google Scholar] [CrossRef]
- Goyal, C.P.; Goyal, D.; Ganesh, V.; Ramgir, N.S.; Navaneethan, M.; Hayakawa, Y.; Muthamizhchelvan, C.; Ikeda, H.; Ponnusamy, S. Improvement of Photocatalytic Activity by Zn Doping in Cu2O. Phys. Solid State 2020, 62, 1796–1802. [Google Scholar] [CrossRef]
- Poulson, S.R.; Drever, J.I. Aqueous complexing of nickel and zinc with 3-(N-morpholino) propanesulfonic acid and the solubility products of nickel and zinc hydroxides. Talanta 1996, 43, 1975–1981. [Google Scholar] [CrossRef]
- Shimizu, H.; Sasano, J.; Khoo, P.L.; Izaki, M. Chemical Preparation of Metallic Cu Layer on Glass Substrate Using Intermediate Cu(OH)2/Cu(O,S) Bilayer. J. Electrochem. Soc. 2022, 169, 122506. [Google Scholar] [CrossRef]
- Cocco, F.; Elsener, B.; Fantauzzi, M.; Atzei, D.; Rossi, A. Nanosized surface films on brass alloys by XPS and XAES. RSC Adv. 2016, 6, 31277–31289. [Google Scholar] [CrossRef]
- Biesinger, M.C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334. [Google Scholar] [CrossRef]
- Azenha, C.; Mateos-Pedrero, C.; Lagarteira, T.; Mendes, A.M. Tuning the selectivity of Cu2O/ZnO catalyst for CO2 electrochemical reduction. J. CO2 Util 2023, 68, 102368. [Google Scholar] [CrossRef]
- Moretti, G.; Beck, H.P. On the Auger parameter of Cu (II) compounds. Surf. Interface Anal. 2022, 54, 803–812. [Google Scholar] [CrossRef]
- Idriss, H. On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo-and electro-catalysts for water splitting and other materials applications. Surf. Sci. 2021, 712, 121894. [Google Scholar] [CrossRef]
- Wang, S.; Shi, W.; Lu, C. Chemisorbed oxygen on the surface of catalyst-improved cataluminescence selectivity. Anal. Chem. 2016, 88, 4987–4994. [Google Scholar] [CrossRef]
- Li, T.; Abuelgasim, S.; Wang, W.; Xiao, Y.; Liu, C.; Ying, Y.; Liu, D. Enhanced soot oxidation by oxygen vacancies via K+ doped CuFe2O4 spinel catalysts. Int. J. Energy Res. 2022, 46, 15376–15386. [Google Scholar] [CrossRef]
- Meena, P.L.; Surela, A.K.; Chhachhia, L.K.; Meena, J.; Meena, R. Investigation of the photocatalytic potential of C/N-co-doped ZnO nanorods produced via a mechano-thermal process. Nanoscale Adv. 2025, 7, 1335–1352. [Google Scholar] [CrossRef]
- Zhu, C.; Panzer, M.J. Synthesis of Zn:Cu2O Thin Films Using a Single Step Electrodeposition for Photovoltaic Applications. ACS Appl. Mater. Interfaces 2015, 7, 5624–5628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jing, D.; Guo, L.; Yao, X. In situ photochemical synthesis of Zn-doped Cu2O hollow microcubes for high efficient photocatalytic H2 production. ACS Sustain. Chem. Eng. 2014, 2, 1446–1452. [Google Scholar] [CrossRef]
- Hu, F.; Zou, Y.; Wang, L.; Wen, Y.; Xiong, Y. Photostable Cu2O photoelectrodes fabricated by facile Zn-doping electrodeposition. Int. J. Hydrogen Energy 2016, 41, 15172–15180. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Liu, M.M.; Chen, J.L.; Xie, K.F.; Fang, S.M. Dendritic branching Z-scheme Cu2O/TiO2 heterostructure photo-catalysts for boosting H2 production. J. Phys. Chem. Solids 2021, 152, 109948. [Google Scholar] [CrossRef]
- Park, B.H.; Park, H.; Kim, T.; Yoon, S.J.; Kim, Y.; Son, N.; Kang, M. S-scheme assisted Cu2O/ZnO flower-shaped heterojunction catalyst for breakthrough hydrogen evolution by water splitting. Int. J. Hydrogen Energy 2021, 46, 38319–38335. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, Y.L.; Jiu, B.B.; Gong, F.L.; Chen, J.L.; Fang, S.M.; Zhang, H.L. Highly enhanced photocatalytic H2 evolution of Cu2O microcube by coupling with TiO2 nanoparticles. Nanotechnology 2019, 30, 145401. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, Y.; Cheng, L.; Chen, J.; Zhao, Y. A Stable Plasmonic Cu@Cu2O/ZnO Heterojunction for Enhanced Photocatalytic Hydrogen Generation. ChemSusChem 2018, 11, 1505–1511. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Cai, X.L.; Li, Y.L.; Liu, M.M.; Ding, C.L.; Chen, J.L.; Fang, S.M. Facile synthesis of hollow p-Cu2O/n-ZnO mi-crospheres with enhanced photocatalytic H2 production. Chem. Phys. Lett. 2019, 734, 136748. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Abdel-wahab, M.S.; Elfayoumi, M.A.K.; Tawfik, W.Z. Highly efficient sputtered Ni-doped Cu2O photoelec-trodes for solar hydrogen generation from water-splitting. Int. J. Hydrogen Energy 2023, 48, 1863–1876. [Google Scholar] [CrossRef]
- Chang, C.J.; Tsai, Z.T.; Lin, K.S.; Nian, Y.H. Enhanced photocatalytic H2 production of flower-like MoS2@Ag2S photocatalysts with matched band structures. Photochem. Photobiol. A Chem. 2023, 445, 115027. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, S. Effect of particle size on photoluminescence emission intensity in ZnO. Acta Mater. 2011, 59, 3024–3031. [Google Scholar] [CrossRef]
- Karazmoudeh, N.J.; Soltanieh, M.; Hasheminiasari, M. Structural and photocatalytic properties of undoped and Zn-doped CuO thin films deposited by reactive magnetron sputtering. J. Alloys Compd. 2023, 947, 169564. [Google Scholar] [CrossRef]
- Chang, C.J.; Lee, Z.; Wang, C.F. Photocatalytic hydrogen production by stainless steel@ZnS core–shell wire mesh photocatalyst from saltwater. Int. J. Hydrogen Energy 2014, 39, 20754–20763. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Cui, M.; Li, X.; Niu, L.; Wu, X.; Shao, C. Z-type ZnIn2S4 homojunction for high performance photocatalytic hydrogen evolution. Chem. Eng. J. 2025, 507, 160370. [Google Scholar] [CrossRef]
- Wang, M.; Wang, K.; Jin, Z. Fabrication of Zn-doped Cu2O for auxiliary graphdiyne to enhance photocatalytic H2 evolution performance. J. Environ. Chem. Eng. 2024, 12, 113530. [Google Scholar] [CrossRef]
- Jafari, H.; Sadeghzadeh, S.; Rabbani, M.; Rahimi, R. Effect of Nb on the structural, optical and photocatalytic properties of Al-doped ZnO thin films fabricated by the sol-gel method. Ceram. Int. 2018, 44, 20170–20177. [Google Scholar] [CrossRef]
- Han, C.; Duan, L.; Zhao, X.; Hu, Z.; Niu, Y.; Geng, W. Effect of Fe doping on structural and optical properties of ZnO films and nanorods. J. Alloys Compd. 2019, 770, 854–863. [Google Scholar] [CrossRef]
- Cai, W.; Liu, J.; Luo, Y.; Liao, Z.; Li, B.; Xiang, X.; Fang, Y. Bifunctional CdS-MoO2 catalysts for selective oxidation of lactic acid coupled with photocatalytic H2 production. J. Colloid Interface Sci. 2024, 675, 836–847. [Google Scholar] [CrossRef] [PubMed]







| Material | Morphology | Sacrificial Agent | Light Source | Activity (μmol/g.h) | Ref |
|---|---|---|---|---|---|
| Cu2O/TiO2 | Dendrite | Methanol | 300 W Xe lamp | 2337.0 | [49] |
| Cu2O/ZnO | Cube | 10% Lactic acid | 300 W Xe lamp | 208.9 | [50] |
| Cu2O-TiO2 | Cube | 20% Methanol | 300 W Xe lamp | 3002.5 | [51] |
| NiFe2O4/Cu2O | Particle | 2% Methanol | 250 W metal halide lamp | 3.98 | [52] |
| p-Cu2O/n-ZnO | Hollow spheres | 20 % Methanol | visible light | 129.6 | [53] |
| Zn-doped Cu2O | Truncated octagonal | 30% Lactic acid | 300 W Xe lamp | 9690 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pundi, A.; Kang, C.-W.; Chang, C.-J. Effects of Zn Doping on the Morphology and H2 Production Activity of Truncated Octahedral Cu2O Photocatalysts. Catalysts 2025, 15, 1030. https://doi.org/10.3390/catal15111030
Pundi A, Kang C-W, Chang C-J. Effects of Zn Doping on the Morphology and H2 Production Activity of Truncated Octahedral Cu2O Photocatalysts. Catalysts. 2025; 15(11):1030. https://doi.org/10.3390/catal15111030
Chicago/Turabian StylePundi, Arul, Chun-Wen Kang, and Chi-Jung Chang. 2025. "Effects of Zn Doping on the Morphology and H2 Production Activity of Truncated Octahedral Cu2O Photocatalysts" Catalysts 15, no. 11: 1030. https://doi.org/10.3390/catal15111030
APA StylePundi, A., Kang, C.-W., & Chang, C.-J. (2025). Effects of Zn Doping on the Morphology and H2 Production Activity of Truncated Octahedral Cu2O Photocatalysts. Catalysts, 15(11), 1030. https://doi.org/10.3390/catal15111030

