A Novel Scaffold for Tick Management: Binding of Carbamoyl Carboxylic Acid Analogues to Arginine Kinase
Abstract
1. Introduction
2. Results
2.1. Interactions Between RsAK and CCAs by Fluorescence Quenching
2.2. Interaction Stability Between RsAK and CCAs by Molecular Docking
2.3. Interaction Stability Between RsAK and CCAs by Molecular Dynamics Simulations
3. Discussion
- -
- Combination with Botanical AK Inhibitors: Formulating CCAs with natural AK inhibitors such as flavonoids [39,57], catechins [10,40], or resveratrol [11] could create a synergistic blend. Attacking the same essential target (AK) with distinct chemical scaffolds could enhance efficacy and potentially delay the emergence of resistance.
- -
- Enhanced Efficacy of Essential Oils: Many green acaricides based on essential oils act rapidly but are quickly metabolized [59]. By impairing the tick’s energy metabolism, CCAs could slow the tick’s recovery from the sub-lethal effects of these botanicals, effectively increasing their kill rate and residual activity.
4. Materials and Methods
4.1. Fluorescence Quenching
4.2. Molecular Dockings
4.3. Molecular Dynamics
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Enzymes, Proteins, and Molecules | |
AK | Arginine Kinase |
RsAK | Rhipicephalus sanguineus Arginine Kinase |
LpAK | Limulus polyphemus (horseshoe crab) Arginine Kinase |
ATP | Adenosine Triphosphate |
ADP | Adenosine Diphosphate |
CCAs | Carbamoyl Carboxylic Acid Analogues (the six studied compounds: CCA1 to CCA6) |
CYP450 | Cytochrome P450 |
Biological and Chemical Terms | |
E.C. GST | Enzyme Commission number (a numerical classification scheme for enzymes) Glutathione S-transferase |
MD | Molecular Dynamics |
RMSD | Root Mean Square Deviation |
KD | Dissociation Constant |
Ka | Association Constant |
KSV | Stern–Volmer Constant |
Kq | Quenching Constant |
IC50 | Half Maximal Inhibitory Concentration |
Ki | Inhibition Constant |
ODex | Optical Density at excitation wavelength |
ODem | Optical Density at emission wavelength |
PME | Particle Mesh Ewald (method to calculate long-range electrostatic interactions) |
LINCS | Linear Constraint Solver (an algorithm for constraining bond lengths) |
NVT | Canonical Ensemble (constant Number of particles, Volume, and Temperature) |
NPT | Isothermal-Isobaric Ensemble (constant Number of particles, Pressure, and Temperature) |
Tick Species | |
R. sanguineus | Rhipicephalus sanguineus (the brown dog tick) |
Computational and Analytical Methods | |
PDB | Protein Data Bank |
MMPBSA | Molecular Mechanics Poisson–Boltzmann Surface Area (a method to calculate binding free energies) |
Other General Abbreviations | |
e.g. | For example (exempli gratia) |
i.e. | That is (id est) |
et al. | And others (et alii) |
R2 | Coefficient of Determination (a statistical measure) |
CI | Confidence Interval |
SV | Stern–Volmer (plot) |
DR | Double Reciprocal (plot) |
DL | Double Logarithmic (plot) |
TSAC | Transition State Analog Complex |
References
- Sakthivel, S.; Habeeb, S.K.M.; Raman, C. Screening of Broad Spectrum Natural Pesticides against Conserved Target Arginine Kinase in Cotton Pests by Molecular Modeling. J. Biomol. Struct. Dyn. 2019, 37, 1022–1042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wei, J.; Jiang, H.; Ge, H.; Zheng, Y.; Meng, X.; Qian, K.; Wang, J. Knockdown or Inhibition of Arginine Kinases Enhances Susceptibility of Tribolium Castaneum to Deltamethrin. Pestic. Biochem. Physiol. 2022, 183, 105080. [Google Scholar] [CrossRef]
- Brown, A.E.; Grossman, S.H. The Mechanism and Modes of Inhibition of Arginine Kinase from the Cockroach (Periplaneta americana). Arch. Insect Biochem. Physiol. 2004, 57, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Guan, Q.; Zhang, H.; Zhang, N.; Meng, X.; Liu, H.; Wang, J. RNAi-Mediated Knockdown of Arginine Kinase Genes Leads to High Mortality and Negatively Affect Reproduction and Blood-Feeding Behavior of Culex pipiens pallens. PLoS Negl. Trop. Dis. 2022, 16, e0010954. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein–Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Ellington, W.R. Evolution and Physiological Roles of Phosphagen Systems. Annu. Rev. Physiol. 2001, 63, 289–325. [Google Scholar] [CrossRef]
- Rojas-Cabeza, J.F.; Moreno-Cordova, E.N.; Ayala-Zavala, J.F.; Ochoa-Teran, A.; Sonenshine, D.E.; Valenzuela, J.G.; Sotelo-Mundo, R.R. A Review of Acaricides and Their Resistance Mechanisms in Hard Ticks and Control Alternatives with Synergistic Agents. Acta Trop. 2025, 261, 107519. [Google Scholar] [CrossRef]
- Zhang, N.; Jiang, H.; Meng, X.; Qian, K.; Liu, Y.; Song, Q.; Stanley, D.; Wu, J.; Park, Y.; Wang, J. Broad-Complex Transcription Factor Mediates Opposing Hormonal Regulation of Two Phylogenetically Distant Arginine Kinase Genes in Tribolium castaneum. Commun. Biol. 2020, 3, 631. [Google Scholar] [CrossRef]
- Wang, H.-R.; Zhu, W.-J.; Wang, X. Mechanism of Inhibition of Arginine Kinase by Flavonoids Consistent with Thermodynamics of Docking Simulation. Int. J. Biol. Macromol. 2011, 49, 985–991. [Google Scholar] [CrossRef]
- Paveto, C.; Güida, M.C.; Esteva, M.I.; Martino, V.; Coussio, J.; Flawiá, M.M.; Torres, H.N. Anti-Trypanosoma cruzi Activity of Green Tea (Camellia sinensis) Catechins. Antimicrob. Agents Chemother. 2004, 48, 69–74. [Google Scholar] [CrossRef]
- Valera Vera, E.A.; Sayé, M.; Reigada, C.; Damasceno, F.S.; Silber, A.M.; Miranda, M.R.; Pereira, C.A. Resveratrol Inhibits Trypanosoma Cruzi Arginine Kinase and Exerts a Trypanocidal Activity. Int. J. Biol. Macromol. 2016, 87, 498–503. [Google Scholar] [CrossRef]
- Vindenes, Y.; Mysterud, A. A Seasonal Matrix Population Model for Ixodid Ticks with Complex Life Histories and Limited Host Availability. Ecology 2025, 106, e4511. [Google Scholar] [CrossRef]
- van Duijvendijk, G.; Sprong, H.; Takken, W. Multi-Trophic Interactions Driving the Transmission Cycle of Borrelia afzelii between Ixodes ricinus and Rodents: A Review. Parasit. Vectors 2015, 8, 643. [Google Scholar] [CrossRef]
- Makwarela, T.G.; Seoraj-Pillai, N.; Nangammbi, T.C. Tick Control Strategies: Critical Insights into Chemical, Biological, Physical, and Integrated Approaches for Effective Hard Tick Management. Vet. Sci. 2025, 12, 114. [Google Scholar] [CrossRef]
- Zhou, G.; Somasundaram, T.; Blanc, E.; Parthasarathy, G.; Ellington, W.R.; Chapman, M.S. Transition State Structure of Arginine Kinase: Implications for Catalysis of Bimolecular Reactions. Proc. Natl. Acad. Sci. USA 1998, 95, 8449–8454. [Google Scholar] [CrossRef]
- Gomez-Yanes, A.C.; Moreno-Cordova, E.N.; Garcia-Orozco, K.D.; Laino, A.; Islas-Osuna, M.A.; Lopez-Zavala, A.A.; Valenzuela, J.G.; Sotelo-Mundo, R.R. The Arginine Kinase from the Tick Rhipicephalus sanguineus Is an Efficient Biocatalyst. Catalysts 2022, 12, 1178. [Google Scholar] [CrossRef]
- Newsholme, E.A.; Beis, I.; Leech, A.R.; Zammit, V.A. The Role of Creatine Kinase and Arginine Kinase in Muscle. Biochem. J. 1978, 172, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Vasconcellos, B.M.; Guimarães Ribeiro, V.; Campos, N.d.N.; da Silva Romão Mota, L.G.; Moreira, M.F. A Comprehensive Review of Arginine Kinase Proteins: What We Need to Know? Biochem. Biophys. Rep. 2024, 40, 101837. [Google Scholar] [CrossRef]
- Sabadin, G.A.; Salomon, T.B.; Leite, M.S.; Benfato, M.S.; Oliveira, P.L.; da Silva Vaz, I. An Insight into the Functional Role of Antioxidant and Detoxification Enzymes in Adult Rhipicephalus microplus Female Ticks. Parasitol. Int. 2021, 81, 102274. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, V.L.; Klafke, G.M.; Torres, T.T. Detoxification Mechanisms Involved in Ivermectin Resistance in the Cattle Tick, Rhipicephalus (Boophilus) Microplus. Sci. Rep. 2018, 8, 12401. [Google Scholar] [CrossRef] [PubMed]
- Duscher, G.G.; Galindo, R.C.; Tichy, A.; Hummel, K.; Kocan, K.M.; de la Fuente, J. Glutathione S-Transferase Affects Permethrin Detoxification in the Brown Dog Tick, Rhipicephalus sanguineus. Ticks Tick. Borne Dis. 2014, 5, 225–233. [Google Scholar] [CrossRef]
- Jia, N.; Wang, J.; Shi, W.; Du, L.; Sun, Y.; Zhan, W.; Jiang, J.-F.; Wang, Q.; Zhang, B.; Ji, P.; et al. Large-Scale Comparative Analyses of Tick Genomes Elucidate Their Genetic Diversity and Vector Capacities. Cell 2020, 182, 1328–1340.e13. [Google Scholar] [CrossRef]
- Khan, M.F.; Murphy, C.D. Cunninghamella spp. Produce Mammalian-Equivalent Metabolites from Fluorinated Pyrethroid Pesticides. AMB Express 2021, 11, 101. [Google Scholar] [CrossRef]
- Khan, M.F.; Liao, J.; Liu, Z.; Chugh, G. Bacterial Cytochrome P450 Involvement in the Biodegradation of Fluorinated Pyrethroids. J. Xenobiot. 2025, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Yamaguchi, M. Characterization of a Novel Superoxide Dismutase in Nilaparvata lugens. Arch. Insect Biochem. Physiol. 2022, 109, e21862. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Zhou, X.; Huang, Y.; Zhang, W.; Chen, S. Characterization of the Role of Esterases in the Biodegradation of Organophosphate, Carbamate, and Pyrethroid Pesticides. J. Hazard. Mater. 2021, 411, 125026. [Google Scholar] [CrossRef] [PubMed]
- Villarino, M.A.; Waghela, S.D.; Wagner, G.G. Biochemical Detection of Esterases in the Adult Female Integument of Organophosphate-Resistant Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 2003, 40, 52–57. [Google Scholar] [CrossRef]
- Gaudêncio, F.N.; Klafke, G.M.; Tunholi-Alves, V.M.; Ferreira, T.P.; Coelho, C.N.; da Fonseca, A.H.; da Costa Angelo, I.; Pinheiro, J. Activity of Carboxylesterases, Glutathione-S-Transferase and Monooxygenase on Rhipicephalus microplus Exposed to Fluazuron. Parasitol. Int. 2017, 66, 584–587. [Google Scholar] [CrossRef]
- Hernandez, E.P.; Kusakisako, K.; Talactac, M.R.; Galay, R.L.; Hatta, T.; Fujisaki, K.; Tsuji, N.; Tanaka, T. Glutathione S-Transferases Play a Role in the Detoxification of Flumethrin and Chlorpyrifos in Haemaphysalis longicornis. Parasit. Vectors 2018, 11, 460. [Google Scholar] [CrossRef]
- Ruiz-May, E.; Álvarez-Sánchez, M.E.; Aguilar-Tipacamú, G.; Elizalde-Contreras, J.M.; Bojórquez-Velázquez, E.; Zamora-Briseño, J.A.; Vázquez-Carrillo, L.I.; López-Esparza, A. Comparative Proteome Analysis of the Midgut of Rhipicephalus microplus (Acari: Ixodidae) Strains with Contrasting Resistance to Ivermectin Reveals the Activation of Proteins Involved in the Detoxification Metabolism. J. Proteom. 2022, 263, 104618. [Google Scholar] [CrossRef]
- Qi, X.-L.; Su, X.-F.; Lu, G.-Q.; Liu, C.-X.; Liang, G.-M.; Cheng, H.-M. The Effect of Silencing Arginine Kinase by RNAi on the Larval Development of Helicoverpa armigera. Bull. Entomol. Res. 2015, 105, 555–565. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, F.; Guo, S.-Y.; Wang, X. The Tryptophane Residues of Dimeric Arginine Kinase: Roles of Trp-208 and Trp-218 in Active Site and Conformation Stability. Biochimie 2004, 86, 379–386. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera–A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Falcioni, F.; Molt, R.W.; Jin, Y.; Waltho, J.P.; Hay, S.; Richards, N.G.J.; Blackburn, G.M. Arginine Kinase Activates Arginine for Phosphorylation by Pyramidalization and Polarization. ACS Catal. 2024, 14, 6650–6658. [Google Scholar] [CrossRef]
- Aranda, J.; Zinovjev, K.; Roca, M.; Tuñón, I. Dynamics and Reactivity in Thermus aquaticus N6-Adenine Methyltransferase. J. Am. Chem. Soc. 2014, 136, 16227–16239. [Google Scholar] [CrossRef]
- Azzi, A.; Clark, S.A.; Ellington, W.R.; Chapman, M.S. The Role of Phosphagen Specificity Loops in Arginine Kinase. Protein Sci. 2004, 13, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Schröder, M.-P.; Pfeiffer, I.P.-M.; Mordhorst, S. Methyltransferases from RiPP Pathways: Shaping the Landscape of Natural Product Chemistry. Beilstein J. Org. Chem. 2024, 20, 1652–1670. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Terán, A.; Estrada-Manjarrez, J.; Martínez-Quiroz, M.; Landey-Álvarez, M.A.; Alcántar Zavala, E.; Pina-Luis, G.; Santacruz Ortega, H.; Gómez-Pineda, L.E.; Ramírez, J.-Z.; Chávez, D.; et al. A Novel and Highly Regioselective Synthesis of New Carbamoylcarboxylic Acids from Dianhydrides. Sci. World J. 2014, 2014, e725981. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-Q.; Zhu, W.-J.; Lü, Z.-R.; Xia, Y.; Yang, J.-M.; Zou, F.; Wang, X.-Y. The Effect of Rutin on Arginine Kinase: Inhibition Kinetics and Thermodynamics Merging with Docking Simulation. Int. J. Biol. Macromol. 2009, 44, 149–155. [Google Scholar] [CrossRef]
- Moreno-Cordova, E.N.; Alvarez-Armenta, A.; Garcia-Orozco, K.D.; Arvizu-Flores, A.A.; Islas-Osuna, M.A.; Robles-Zepeda, R.E.; Lopez-Zavala, A.A.; Laino, A.; Sotelo-Mundo, R.R. Binding of Green Tea Epigallocatechin Gallate to the Arginine Kinase Active Site from the Brown Recluse Spider (Loxosceles laeta): A Potential Synergist to Chemical Pesticides. Heliyon 2024, 10, e34036. [Google Scholar] [CrossRef]
- Li, Y.-J.; Gu, F.-M.; Chen, H.-C.; Liu, Z.-X.; Song, W.-M.; Wu, F.-A.; Sheng, S.; Wang, J. Binding Characteristics of Pheromone-Binding Protein 1 in Glyphodes Pyloalis to Organophosphorus Insecticides: Insights from Computational and Experimental Approaches. Int. J. Biol. Macromol. 2024, 260, 129339. [Google Scholar] [CrossRef]
- De Rouck, S.; İnak, E.; Dermauw, W.; Van Leeuwen, T. A Review of the Molecular Mechanisms of Acaricide Resistance in Mites and Ticks. Insect Biochem. Mol. Biol. 2023, 159, 103981. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Nayak, D.; Brieba, L.G.; Sousa, R. Major Conformational Changes During T7RNAP Transcription Initiation Coincide with, and Are Required for, Promoter Release. J. Mol. Biol. 2005, 353, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Corbella, M.; Pinto, G.P.; Kamerlin, S.C.L. Loop Dynamics and the Evolution of Enzyme Activity. Nat. Rev. Chem. 2023, 7, 536–547. [Google Scholar] [CrossRef]
- Peng, Y.; Hansen, A.L.; Bruschweiler-Li, L.; Davulcu, O.; Skalicky, J.J.; Chapman, M.S.; Brüschweiler, R. The Michaelis Complex of Arginine Kinase Samples the Transition State at a Frequency That Matches the Catalytic Rate. J. Am. Chem. Soc. 2017, 139, 4846–4853. [Google Scholar] [CrossRef]
- Doublié, S.; Tabor, S.; Long, A.M.; Richardson, C.C.; Ellenberger, T. Crystal Structure of a Bacteriophage T7 DNA Replication Complex at 2.2 Å Resolution. Nature 1998, 391, 251–258. [Google Scholar] [CrossRef]
- Si, Y.-X.; Lee, J.; Cai, Y.; Yin, S.-J.; Yang, J.-M.; Park, Y.-D.; Qian, G.-Y. Molecular Dynamics Simulations Integrating Kinetics for Pb2+-Induced Arginine Kinase Inactivation and Aggregation. Process Biochem. 2015, 50, 729–737. [Google Scholar] [CrossRef]
- Adeyemi, O.S.; Whiteley, C.G. Interaction of Metal Nanoparticles with Recombinant Arginine Kinase from Trypanosoma Brucei: Thermodynamic and Spectrofluorimetric Evaluation. Biochim. Et. Biophys. Acta (BBA)-Gen. Subj. 2014, 1840, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Blethen, S.L.; Kaplan, N.O. Characteristics of Arthropod Arginine Kinases. Biochemistry 1968, 7, 2123–2135. [Google Scholar] [CrossRef]
- Ellington, W.R.; Hines, A.C. Mitochondrial Activities of Phosphagen Kinases Are Not Widely Distributed in the Invertebrates. Biol. Bull. 1991, 180, 505–507. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Miranda, C.; Flint, C.; Harris, E.; Wu, G. Nutrients Limit Production of Insects for Food and Feed: An Emphasis on Nutritionally Essential Amino Acids. Anim. Front. 2023, 13, 64–71. [Google Scholar] [CrossRef]
- Martins, J.C.S.; Assunção Romão, H.A.; Canettieri, C.K.; Cercilian, A.C.; Oliveira, P.R.O.; Ferreira, C.; Terra, W.R.; de Oliveira Dias, R. The Loss of the Urea Cycle and Ornithine Metabolism in Different Insect Orders: An Omics Approach. Insect Mol. Biol. 2025, 34, 632–644. [Google Scholar] [CrossRef]
- Pekáriková, D.; Rajská, P.; Kazimírová, M.; Pecháňová, O.; Takáč, P.; Nuttall, P.A. Vasoconstriction Induced by Salivary Gland Extracts from Ixodid Ticks. Int. J. Parasitol. 2015, 45, 879–883. [Google Scholar] [CrossRef]
- Jalovecka, M.; Malandrin, L.; Urbanova, V.; Mahmood, S.; Snebergerova, P.; Peklanska, M.; Pavlasova, V.; Sima, R.; Kopacek, P.; Perner, J.; et al. Activation of the Tick Toll Pathway to Control Infection of Ixodes Ricinus by the Apicomplexan Parasite Babesia Microti. PLoS Pathog. 2024, 20, e1012743. [Google Scholar] [CrossRef]
- Kitsou, C.; Fikrig, E.; Pal, U. Tick Host Immunity: Vector Immunomodulation and Acquired Tick Resistance. Trends Immunol. 2021, 42, 554–574. [Google Scholar] [CrossRef] [PubMed]
- Dzik, J.M. Evolutionary Roots of Arginase Expression and Regulation. Front. Immunol. 2014, 5, 544. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yao, P.; Chu, X.; Hao, L.; Guo, X.; Xu, B. Isolation of Arginine Kinase from Apis Cerana Cerana and Its Possible Involvement in Response to Adverse Stress. Cell Stress. Chaperones 2015, 20, 169–183. [Google Scholar] [CrossRef]
- Higa, L.D.O.S.; Garcia, M.V.; Rodrigues, V.D.S.; Bonatte-Junior, P.; Barradas-Piña, F.T.; Barros, J.C.; Andreotti, R. Effects of Cypermethrin, Chlorpyrifos and Piperonyl Butoxide-Based Pour-on and Spray Acaricides on Controlling the Tick Rhipicephalus Microplus. Syst. Appl. Acarol. 2019, 24, 278. [Google Scholar] [CrossRef]
- Selles, S.M.A.; Kouidri, M.; González, M.G.; González, J.; Sánchez, M.; González-Coloma, A.; Sanchis, J.; Elhachimi, L.; Olmeda, A.S.; Tercero, J.M.; et al. Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review. Pathogens 2021, 10, 1379. [Google Scholar] [CrossRef]
- Stern, O.; Volmer, M. Über Die Abklingungszeit Der Fluoreszenz. Phys. Z. 1919, 20, 183–188. [Google Scholar] [CrossRef]
- Gehlen, M.H. The Centenary of the Stern-Volmer Equation of Fluorescence Quenching: From the Single Line Plot to the SV Quenching Map. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100338. [Google Scholar] [CrossRef]
- Lehrer, S. Solute Perturbation of Protein Fluorescence. Quenching of the Tryptophyl Fluorescence of Model Compounds and of Lysozyme by Iodide Ion. Biochemistry 1971, 10, 3254–3263. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Alatorre-Barajas, J.A.; Ramírez-Zatarain, S.D.; Ochoa-Terán, A.; Cordova, J.; Reynoso-Soto, E.A.; Chávez, D.; Miranda-Soto, V.; Labastida-Galván, V.; Ordoñez, M. An Efficient Method for the Synthesis of New Non-Symmetrical Naphthalenediimides. ChemistrySelect 2018, 3, 11943–11949. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2025 Update. Nucleic Acids Res. 2025, 53, D1516–D1525. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform 2011, 3, 33. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. Gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
CCA | KD (·10−6 M) | * Ka (·10−4 M−1) | * Ksv (·10−4 M−1) † | Kq (·10−4 M−1) § | Fa § | n ‡ |
---|---|---|---|---|---|---|
CCA1 | 19.07 | 5.24 | 15.44 | 7.68 | 1 | 1.34 |
R2~0.993 | * | R2~0.96 | R2~0.998 | § | R2~0.993 | |
CCA2 | 32.33 | 3.09 | 1.94 | 1.48 | 1 | 1.08 |
R2~0.687 | * | R2~0.92 | R2~0.991 | § | R2~0.981 | |
CCA3 | 43.62 | 2.29 | 8.48 | - | - | - |
R2~0.990 | * | R2~0.36 | - | - | - | |
CCA4 | 13.30 | 7.52 | 19.67 | 7.85 | 1 | 1.42 |
R2~0.945 | * | R2~0.89 | R2~0.993 | § | R2~0.987 | |
CCA5 | 649.4 | 0.154 | 0.9 | - | - | - |
- | * | R2~0.02 | - | - | - | |
CCA6 | 53.37 | 1.87 | 7.05 | 0.03 | 1 | 1.35 |
R2~0.945 | * | R2~0.98 | R2~0.993 | § | R2~0.999 |
CCA | Catalytic Residue (s) | Other Residue (s) |
---|---|---|
CCA1 | Arg309 | Lys189, Arg280 |
CCA3 | - | Lys189, Arg280 |
CCA4 | Arg124, Arg309 | Arg280, Arg312 |
CCA5 | Arg309 | Arg280 |
CCA6 | Arg124, Arg309 | Arg280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Cabeza, J.F.; Moreno-Cordova, E.N.; Álvarez-Armenta, A.; Castro-Riquelme, C.L.; Muhlia-Almazan, A.; Lopez-Zavala, A.A.; Santacruz-Ortega, H.; Ochoa-Terán, A.; Sotelo-Mundo, R.R. A Novel Scaffold for Tick Management: Binding of Carbamoyl Carboxylic Acid Analogues to Arginine Kinase. Catalysts 2025, 15, 982. https://doi.org/10.3390/catal15100982
Rojas-Cabeza JF, Moreno-Cordova EN, Álvarez-Armenta A, Castro-Riquelme CL, Muhlia-Almazan A, Lopez-Zavala AA, Santacruz-Ortega H, Ochoa-Terán A, Sotelo-Mundo RR. A Novel Scaffold for Tick Management: Binding of Carbamoyl Carboxylic Acid Analogues to Arginine Kinase. Catalysts. 2025; 15(10):982. https://doi.org/10.3390/catal15100982
Chicago/Turabian StyleRojas-Cabeza, Jose F., Elena N. Moreno-Cordova, Andrés Álvarez-Armenta, Christian L. Castro-Riquelme, Adriana Muhlia-Almazan, Alonso A. Lopez-Zavala, Hisila Santacruz-Ortega, Adrián Ochoa-Terán, and Rogerio R. Sotelo-Mundo. 2025. "A Novel Scaffold for Tick Management: Binding of Carbamoyl Carboxylic Acid Analogues to Arginine Kinase" Catalysts 15, no. 10: 982. https://doi.org/10.3390/catal15100982
APA StyleRojas-Cabeza, J. F., Moreno-Cordova, E. N., Álvarez-Armenta, A., Castro-Riquelme, C. L., Muhlia-Almazan, A., Lopez-Zavala, A. A., Santacruz-Ortega, H., Ochoa-Terán, A., & Sotelo-Mundo, R. R. (2025). A Novel Scaffold for Tick Management: Binding of Carbamoyl Carboxylic Acid Analogues to Arginine Kinase. Catalysts, 15(10), 982. https://doi.org/10.3390/catal15100982