Unveiling Silver Catalysis to Access 5-Substituted Tetrazole Through [3+2]Cycloaddition Reaction, Utilizing Novel Silver Supramolecular Coordination Polymer-Based Catalyst: A New Green Horizon
Abstract
1. Introduction
2. Results and Discussion
2.1. Crystal Structure of the {[Ag4(4,4′-Bpy)2.].(BTC).3H2O}, SCP 1
2.2. Infrared Spectra
2.3. Electronic Absorption and Emission Spectra
2.4. Catalytic Activity Study
2.5. Recyclability of SCP 1 Catalyst
3. Experimental
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. Synthesis of SCP {[Ag4(4,4′-Bpy)2.].(BTC).3H2O}, (1)
3.4. Crystallographic Studies
3.5. General Procedure for the Synthesis of 5-Substituted-1H-Tetrazoles via the [3+2] Cycloaddition Reaction
3.6. Physical and Spectroscopic Data of the Synthesized Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butler, N.R. Comprehensive Heterocyclic Chemistry: Five-Membered Rings with More Than Two Heteroatoms and Fused Carbocyclic Derivatives; Katritzky, A.R., Scriven, E.F.V., Eds.; Academic Press, Elsevier: Waltham, MA, USA, 1996; Volume 4, pp. 621–678. [Google Scholar]
- Frija, L.M.; Ismael, A.; Cristiano, M.L. Photochemical transformations of tetrazole derivatives: Applications in organic synthesis. Molecules 2010, 15, 3757–3774. [Google Scholar] [CrossRef]
- Garjaei, S.S.; Koukabi, N.; Parouch, A.N. Nano-Fe3O4/In: A heterogeneous magnetic nanocatalyst for synthesis of tetrazole derivatives under solvent-free conditions. Inorg. Nano-Met. Chem. 2022, 52, 1050–1058. [Google Scholar] [CrossRef]
- Venkatesan, P.; Kanagaraj, H. A Pharmacological Update of Triazole Derivatives: A Review. Curr. Top. Med. Chem. 2024, 24, 2033–2049. [Google Scholar] [CrossRef] [PubMed]
- Khanage, S.G.; Raju, A.; Mohite, P.B.; Pandhare, R.B. Analgesic activity of some 1,2,4-triazole heterocycles clubbed with pyrazole, tetrazole, isoxazole, and pyrimidine. Adv. Pharm. Bull. 2013, 3, 13–18. [Google Scholar]
- Dong, S.; Wang, T.; Wang, H.; Qian, K.; Zhang, Z.; Zuo, Y.; Luo, G.; Jin, Y.; Wang, Z. Synthesis and Evaluation of 5-(o-Tolyl)-1H-tetrazole Derivatives as Potent Anticonvulsant Agents. Arch. Pharm. 2017, 350, 1600389. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, L.; Liu, J.; Liu, G. Bioisosteres in Drug Discovery: Focus on Tetrazole. Future Med. Chem. 2019, 12, 91–93. [Google Scholar] [CrossRef]
- Gao, F.; Xiao, J.Q.; Huang, G. Current scenario of tetrazole hybrids for antibacterial activity. Eur. J. Med. Chem. 2019, 184, 111744. [Google Scholar] [CrossRef]
- Matta, C.F.; Arabi, A.A.; Weaver, D.F. The bioisosteric similarity of the tetrazole and carboxylate anions: Clues from the topologies of the electrostatic potential and of the electron density. Eur. J. Med. Chem. 2010, 45, 1868–1872. [Google Scholar] [CrossRef] [PubMed]
- Borne, F.B. Nonsteroidal anti-inflammatory agents. In Foye’s Principles of Medicinal Chemistry; William, D.A., Lemke, T.L., Eds.; Lippincott, William and Wilkins: Philadelphia, PA, USA, 2002; pp. 751–790. [Google Scholar]
- Wang, G.-X.; Sun, B.-P.; Peng, C.-H. An Improved Synthesis of Valsartan. Org. Process Res. Dev. 2011, 15, 986–988. [Google Scholar]
- Larsen, R.D.; King, A.O.; Chen, C.Y.; Corley, E.G.; Foster, B.S.; Roberts, F.E.; Yang, C.; Lieberman, D.R.; Reamer, R.A.; Tschaen, D.M.; et al. Efficient Synthesis of Losartan, A Nonpeptide Angiotensin II Receptor Antagonist. J. Org. Chem. 1994, 59, 6391–6394. [Google Scholar] [CrossRef]
- Gomm, W.; Röthlein, C.; Schüssel, K.; Brückner, G.; Schröder, H.; Heß, S.; Frötschl, R.; Broich, K.; Haenisch, B. N-Nitrosodimethylamine-Contaminated Valsartan and the Risk of Cancer—A Longitudinal Cohort Study Based on German Health Insurance Data. Dtsch. Ärzteblatt Int. 2021, 118, 357–362. [Google Scholar]
- Ogbede, J.U.; Giaever, G.; Nislow, C. A genome-wide portrait of pervasive drug contaminants. Sci. Rep. 2021, 11, 12487. [Google Scholar] [CrossRef] [PubMed]
- Ukhade, S.; Sonawane, S. Nitrosamine Contamination in Pharmaceuticals: A Comprehensive Review on Nitrosation Pathways, Potential Root Cause, Detection, Risk Assessment, and Mitigation Strategies. Biotech. Res. Asia 2024, 21, 893–911. [Google Scholar] [CrossRef]
- Gunasekaran, P.M.; Chertow, G.M.; Bhalla, V.; Byrd, J.B. Current status of angiotensin receptor blocker recalls. Hypertension 2019, 74, 1275–1278. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Reddy, C.R.; Kumar, D.N.; Krishnaiah, M.; Narender, R. A simple, advantageous synthesis of 5-substituted 1H-tetrazoles. Synlett 2010, 3, 391–394. [Google Scholar] [CrossRef]
- Roh, J.; Artamonova, T.V.; Vavrova, K.; Koldobskii, G.I.; Hrabalek, A. Practical synthesis of 5-substituted tetrazoles under microwave irradiation. Synthesis 2009, 13, 2175–2178. [Google Scholar] [CrossRef]
- Vorona, S.; Artamonova, T.; Zevatskii, Y.; Myznikov, L. An improved protocol for the preparation of 5-substituted tetrazoles from organic thiocyanates and nitriles. Synthesis 2014, 46, 781–786. [Google Scholar] [CrossRef]
- Cantillo, D.; Gutmann, B.; Kappe, C.O. Mechanistic insights on azide-nitrile cycloadditions: On the dialkyltin oxide-trimethylsilyl azide route and a new Vilsmeier-Haack-type organocatalyst. J. Am. Chem. Soc. 2011, 133, 4465–4475. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, H.; Usami, Y.; Komeda, S.; Harusawa, S. Efficient transformation of inactive nitriles into 5-substituted 1H-tetrazoles using microwave irradiation and their applications. Synthesis 2013, 45, 1051–1059. [Google Scholar] [CrossRef]
- Coca, A.; Feinn, L.; Dudley, J. Microwave Synthesis of 5-Substituted 1H-Tetrazoles Catalyzed by Bismuth Chloride in Water. Synth. Commun. 2015, 45, 1023–1030. [Google Scholar] [CrossRef]
- Saraswat, S.K.; Naglah, A.M.; Makasana, J.; Bakar, H.A.; Ballal, S.; Abosaoda, M.K.; Kavitha, V.; Bareja, L.; Bhakuni, P.N.; Doshi, O.P. Fe3O4@SiO2-LY-C-D-Pd as a new, effective, and magnetically recoverable catalyst for the synthesis of 1H-tetrazoles and asymmetric biphenyls. Sci. Rep. 2025, 15, 12875. [Google Scholar] [CrossRef]
- Mittal, R.; Awasthi, S.K. Recent advances in the synthesis of 5-substituted 1H-tetrazoles: A complete survey (2013–2018). Synthesis 2019, 51, 3765–3783. [Google Scholar] [CrossRef]
- Prakash, S.; Sreedhar, B.; Naidu, N.V.S. Gum Acacia Stabilized Ag-TiO2 and Ag-SiO2: Sustainable Nanocatalysts for Direct and Convenient Synthesis of 5-Substituted 1H-tetrazoles. SynOpen 2023, 7, 680–689. [Google Scholar] [CrossRef]
- Amoneit, M.; Weckowska, D.; Spahr, S.; Wagner, O.; Adeli, M.; Mai, I.; Haag, R. Green chemistry and responsible research and innovation: Moving beyond the 12 principles. J. Clean. Prod. 2024, 484, 144011. [Google Scholar] [CrossRef]
- Al-Romaizan, A.N.; Bawaked, S.M.; Saleh, T.S.; Moustafa, M.M.M. The Q-Tube-Assisted Green Sustainable Synthesis of Fused Azines: New Synthetic Opportunities via Innovative Green Technology. Appl. Sci. 2023, 13, 11864. [Google Scholar] [CrossRef]
- El-bendary, M.M.; Akhdhar, A.; Saleh, T.S. Novel biologically active paddlewheel-like palladium thiocyanate complex catalyzed cyanation of alkyl bromide utilizing Q-tube system: A green perspective. Polyhedron 2024, 252, 116889. [Google Scholar] [CrossRef]
- Al-Zaydi, K.M.; Saleh, T.S.; Alqahtani, N.F.; Bagazi, M.S. Bis(pyridine)enaminone as a Precursor for the Synthesis of Bis(azoles) and Bis(azine) Utilizing Recent Economic Green Chemistry Technology: The Q-Tube System. Molecules 2023, 28, 2355. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Behbehani, H. The first Q-Tube based high-pressure synthesis of anti-cancer active thiazolo[4,5-c]pyridazines via the [4 + 2] cyclocondensation of 3-oxo-2-arylhydrazonopropanals with 4-thiazolidinones. Sci. Rep. 2020, 10, 6492. [Google Scholar]
- Shaikh, S.A.; Ahmed, N.S.I.; Bawazir, W.; Saleh, T.S.; Mostafa, M.M.M. Harnessing Q-tube pressure reactor for the synthesis of novel pyrano[2,3-d]thiazole derivatives utilizing Mg–Al-layered double hydroxide catalyst: Catalysis meets sustainability. Dalton Trans. 2025, 54, 11282–11295. [Google Scholar]
- Mokhtar, M.; Alhashedi, B.F.A.; Kashmery, H.; Ahmed, N.S.; Saleh, T.S.; Narasimharao, K. Highly Efficient Nanosized Mesoporous CuMgAl Ternary Oxide Catalyst for Nitro-Alcohol Synthesis: Ultrasound-Assisted Sustainable Green Perspective for the Henry Reaction. ACS Omega 2020, 5, 6532–6544. [Google Scholar] [CrossRef]
- Mady, M.F.; Saleh, T.S.; El-Kateb, A.A. Microwave-assisted synthesis of novel pyrazole and pyrazolo[3,4-d]pyridazine derivatives incorporating diaryl sulfone moiety as potential antimicrobial agents. Res. Chem. Intermed. 2016, 42, 753–769. [Google Scholar] [CrossRef]
- Bassyouni, F.A.; Saleh, T.S.; ElHefnawi, M.M. Synthesis, pharmacological activity evaluation and molecular modeling of new polynuclear heterocyclic compounds containing benzimidazole derivatives. Arch. Pharm. Res. 2012, 35, 2063–2075. [Google Scholar] [CrossRef]
- Saleh, T.S.; Narasimharao, K.; Ahmed, N.S.; Basahel, S.N.; Al-Thabaiti, S.A.; Mokhtar, M. Mg–Al hydrotalcite as an efficient catalyst for microwave assisted regioselective 1,3-dipolar cycloaddition of nitrilimines with the enaminone derivatives: A green protocol. J. Mol. Catal. A Chem. 2013, 367, 12–22. [Google Scholar] [CrossRef]
- Sun, D.; Cao, R.; Sun, Y.; Bi, W.; Li, X.; Wang, Y.; Shi, Q.; Li, X. Novel Silver-Containing Supramolecular Frameworks Constructed by Combination of Coordination Bonds and Supramolecular Interactions. Inorg. Chem. 2003, 42, 7512–7518. [Google Scholar] [CrossRef]
- Blake, A.J.; Li, W.-S.; Champness, N.R.; Hubberstey, P.; Schröder, M. Long-range chain orientation in 1-D co-ordination polymers as a function of synthetic route: New insights into ligand self-assembly. J. Chem. Soc. Dalton Trans. 2000, 4285–4291. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Li, H.J. T-Shaped Molecular Building Units in the Porous Structure of Ag(4,4′-bpy)·NO3. Am. Chem. Soc. 1996, 118, 295–296. [Google Scholar] [CrossRef]
- Sokolov, A.N.; Friščić, T.; Blais, S.; Ripmeester, J.A.; MacGillivray, L.R. Persistent one-dimensional face-to-face π-stacks within organic cocrystals. Cryst. Growth Des. 2006, 6, 2427–2428. [Google Scholar] [CrossRef]
- Goher, M.A.S.; Youssef, A.A.; Mautner, F.A. Synthesis and structural characterization of two new anionic cobalt (III) azide complexes of 2, 3-and 2, 5-pyridine dicarboxylic acids. Polyhedron 2006, 25, 1531. [Google Scholar] [CrossRef]
- Jena, S.; Routray, C.; Dutta, J.; Biswal, H.S. Hydrogen Bonding Directed Reversal of 13C NMR Chemical Shielding. Angew. Chem. 2022, 134, e202207521. [Google Scholar] [CrossRef]
- Jaffé, H.H.; Orchin, M. Theory and Applications of Ultraviolet Spectroscopy, 5th ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1970. [Google Scholar]
- Etaiw, S.E.H.; Abd El-Aziz, D.M.; Ibrahim, M.; Badr El-din, A.S. Synthesis and crystal structures of three novel coordination polymers constructed from Ag (I) thiocyanate and nitrogen donor ligands. Polyhedron 2009, 28, 1001–1009. [Google Scholar] [CrossRef]
- Wong, W.-Y.; Ho, C.-L. Heavy metal organometallic electrophosphors derived from multi-component chromophores. Coord. Chem. Rev. 2009, 253, 1709–1758. [Google Scholar] [CrossRef]
- Kharat, A.N.; Rahbari, Z.V. Antituberculosis, antifungal and photoluminescence studies on a Mn (II)–neocuproine complex. J. Chem. Res. 2012, 36, 34–37. [Google Scholar] [CrossRef]
- Witte, J.F.; Wasternack, J.; Wei, S.; Schalley, C.A.; Paulus, B. The Interplay of Weakly Coordinating Anions and the Mechanical Bond: A Systematic Study of the Explicit Influence of Counterions on the Properties of (Pseudo)rotaxanes. Molecules 2023, 28, 3077. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, L.; Zheng, M.; Zhou, P.; Li, Y.; Wei, Z. Silver(I)-Catalyzed Synthesis of 5-Substituted 1H-Tetrazoles in Water Using Sodium Fluoride as an Additive. Chem. Commun. 2017, 53, 13035–13038. [Google Scholar]
- Kirillov, A.M.; Kirillova, M.V.; Pombeiro, A.J.L. Multicopper Catalysts for the Efficient Conversion of Nitriles and Oximes into Amides and Tetrazoles. Catal. Sci. Technol. 2014, 6, 1486–1494. [Google Scholar]
- Mukherjee, N.; Ahammed, S.; Bhadra, S.; Ranu, B.C. Silver(I) Oxide Nanoparticles as a Highly Efficient Catalyst for the Synthesis of 5-Substituted-1H-tetrazoles from Nitriles and Sodium Azide in Water under UV Irradiation. Green Chem. 2013, 15, 389–397. [Google Scholar] [CrossRef]
- Kirillov, A.M.; Kirillova, M.V.; Pombeiro, A.J.L. Homogeneous Multicopper Catalysts for the Oxidation of Benzylic Alcohols to Aldehydes and Ketones. Adv. Synth. Catal. 2012, 354, 2635–2643. [Google Scholar]
- Bodipati, N.; Komal, M.; Peddinti, R.K.; Nagaiah, K. Sodium Fluoride as an Efficient Catalyst for the Synthesis of 5-Substituted 1H-Tetrazoles via [3+2] Cycloaddition of Nitriles and Sodium Azide. Synth. Commun. 2010, 40, 3479–3485. [Google Scholar]
- Demko, Z.P.; Sharpless, K.B. Preparation of 5-Substituted 1H-Tetrazoles from Nitriles in Water. J. Org. Chem. 2001, 66, 7945–7950. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Zhang, R.; Li, S.-L.; Yu, S.-H.; Gao, L.; Yan, W.-F.; Jin, J.; Luo, Y.-N. A new silver-organic coordination polymer: Synthesis, crystal structure, fluorescence and antibacterial activity. Inorg. Chem. Commun. 2020, 116, 107897. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, K.; Gao, S.; Wang, C.; Wang, C.; Wang, H.; Zhou, B. Assembly of two-fold interpenetrated silver supramolecular coordination polymer using Keggin phosphotungstate template. Inorg. Chem. Commun. 2014, 44, 91–95. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, S.-L.; Tao, D.-D.; Li, Z.; Jiang, Y.-B. Ag(I)-thiolate coordination polymers: Synthesis, structures and applications as emerging sensory ensembles. Coord. Chem. Rev. 2021, 432, 213717. [Google Scholar] [CrossRef]
- Wurche, F.; Klärner, F. High Pressure Chemistry: Synthetic, Mechanistic, and Supercritical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 41–96. [Google Scholar]
- Ball, D.; Key, J. Introductory Chemistry, 1st ed.; BCcampus: Victoria, BC, Canada, 2014. [Google Scholar]
- Grant, D.J.W.; Higuchi, T. Solubility Behavior of Organic Compounds; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Dhaka, K.; Kumar, R.; Deep, A.; Kurade, M.B.; Ji, S.-W.; Jeon, B.-H. Metal–Organic Frameworks (MOFs) for the Removal of Emerging Contaminants from Aquatic Environments. Coord. Chem. Rev. 2019, 380, 330–352. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.; Bourhis, L.; Gildea, R.; Howard, J.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Ghodsinia, S.S.E.; Akhlaghinia, B. A rapid metal free synthesis of 5-substituted-1H-tetrazoles using cuttlebone as a natural high effective and low cost heterogeneous catalyst. RSC Adv. 2015, 5, 49849. [Google Scholar] [CrossRef]
- Babu, A.; Sinha, A. Catalytic Tetrazole Synthesis via [3+2] Cycloaddition of NaN3 to Organonitriles Promoted by Co(II)-complex: Isolation and Characterization of a Co(II)-diazido Intermediate. ACS Omega 2024, 9, 21626–21636. [Google Scholar] [CrossRef]
Catalyst | Reagent | Condition | Reference |
---|---|---|---|
Homogeneous | I2, DMF | Reflux, 6–18 h | [17] |
Et3N.HCl, PhNO2 | MW, 100 °C | [18] | |
AlCl3, ZnCl2 | 200 °C, 3–10 min | [19] | |
TMSCl, NMP | MW, 220 °C, 15–25 min | [20] | |
Et3N.HCl, DMF | MW, 130 °C, 2 h | [21] | |
BiCl3 | 1 h at 120–160 °C | [22] | |
Heterogeneous | Fe3O4@SiO2-LY-C-D-Pd | PEG-400, 100 °C, 0.5–2 h | [23] |
AMWCNTs-O-Cu(II) | DMF, 70 °C | [24] | |
Ag-TiO2 and Ag-SiO2 nanostructures | DMF, 120 °C | [25] |
Empirical Formula | C30H24Ag4N4O11 |
---|---|
Formula weight | 1047.97 |
Temperature/K | 293 (2) |
Crystal system | orthorhombic |
Space group | Cmce |
a/Å | 14.269 (2) |
b/Å | 22.673 (5) |
c/Å | 17.088 (3) |
α/° | 90 |
β/° | 90 |
γ/° | 90 |
Volume/Å3 | 5528.3 (17) |
Z | 8 |
ρcalcg/cm3 | 1.829 |
μ/mm−1 | 1.480 |
F(000) | 3048.0 |
Crystal size/mm3 | 0.223 × 0.18 × 0.1 |
Radiation | MoKα (λ = 0.7107) |
2Θ range for data collection/° | 5.84 to 54.988 |
Index ranges | −18 ≤ h ≤ 18, −29 ≤ k ≤ 29, −12 ≤ l ≤ 22 |
Reflections collected | 22,145 |
Independent reflections | 3304 [Rint = 0.0648, Rsigma = 0.0403] |
Data/restraints/parameters | 3304/40/248 |
Goodness-of-fit on F2 | 1.017 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0380, wR2 = 0.0855 |
Final R indexes [all data] | R1 = 0.0813, wR2 = 0.1040 |
Largest diff. peak/hole/e Å−3 | 0.69/−0.43 |
Bond | Å d | Bond | Deg, ° |
---|---|---|---|
Ag1–N1 | 2.123(4) | N1–Ag1–N2 i | 180.0 |
Ag1–N2 i | 2.132(3) | N3–Ag2–N4 ii | 174.24 (12) |
Ag2–N3 | 2.122(4) | Ag1–N2–C9 | 119.24 (3) |
Ag2–N4 ii | 2.140(4) | Ag2–N3–C14 | 122.31 (10) |
O2–C1 | 1.256(3) | Ag2–N3–C10 | 119.86 (3) |
C1–O1 | 1.245(4) | Ag1–N1–C4 | 120.50 (3) |
Ag1–Ag1 i | 3.635 | Ag2–N4–C19 | 117.41 (7) |
Ag2–N4–C18 | 127.37 (7) |
Compound | ν(H2O) | ν(CH) (Arom.) | ν(C=N) and ν(C=C) (Aromatic) | νasy.(COO−) νsym.(COO−) δ(COO−) | Skeletal and C-C Vibrs. of L | δCH of L | γCH of L |
---|---|---|---|---|---|---|---|
4,4′-bipy | - | 3075 w | 1604 s | 1590 s 1406 s 674 m | 1236 w–1155 m 1097 w–1039 m | 1484 w | 783 m 674 w |
SCP 1 | 3395 br | 3037 w | 1568 s 1458 m | 1568 s 1395 s 621 m | 1218 w–1134 m 1076 w–1000 m | 1478 w | 741 m 663 w |
λabs (nm) | λem (nm) | |||||
---|---|---|---|---|---|---|
BTC | 4,4′-bpy | 1 | Assignment | 4,4′-bpy | 1 | Assignment |
- | 219 | 210 | 1La ← 1A | 378 b | 435–457 b | Close lying π-π* transition |
260 | 268 | 240 310–335 b | 1Lb ← 1A MLCT | 486 | Intra-ligand emission π-π* | |
- | 315 | n-π* | 532 | MLCT or (MC) transitions |
Entry | Catalyst | Additives | Classical Condition (Reflux) | Q-Tube High-Pressure Reactor | ||
---|---|---|---|---|---|---|
Time | Yield | Time | Yield | |||
1 | No catalyst | - | 24 h | 10% | 4 h | 17% |
2 | bipy | - | 24 h | 10% | 4 h | 17% |
3 | AgNO3 | - | 6 h | 39% | 90 min | 67% |
4 | AgNO3/bipy | - | 3 h | 61% | 60 min | 78% |
5 | AgNO3/bipy | NaF | 2 h | 70% | 60 min | 84% |
6 | AgNO3/bipy | KBF4 | 2 h | 70% | 60 min | 84% |
7 | SCP1 | - | 1 h | 80% | 15 min | 93% |
8 | SCP1 | NaF | 1 h | 85% | 15 min | 99% |
9 | SCP1 | KBF4 | 1 h | 85% | 15 min | 99% |
Entry | Catalyst (mol %) * | Solvent | Time (min) | Yield |
---|---|---|---|---|
1 | 0.5 | Acetonitrile (AcN.) | 30 | 91% |
2 | 1 | AcN. | 15 | 99% |
3 | 1.5 | AcN. | 15 | 99% |
4 | 1 | AcN./water (1:1) | 15 | 99% |
5 | 1 | water | 45 | 84% |
6 | 1 | EtOH | 30 | 90% |
7 | 1 | Cyclopentylmethyl ether | 60 | 23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-bendary, M.M.; Akhdhar, A.; Davaasuren, B.; Al-Bogami, A.S.; Saleh, T.S. Unveiling Silver Catalysis to Access 5-Substituted Tetrazole Through [3+2]Cycloaddition Reaction, Utilizing Novel Silver Supramolecular Coordination Polymer-Based Catalyst: A New Green Horizon. Catalysts 2025, 15, 969. https://doi.org/10.3390/catal15100969
El-bendary MM, Akhdhar A, Davaasuren B, Al-Bogami AS, Saleh TS. Unveiling Silver Catalysis to Access 5-Substituted Tetrazole Through [3+2]Cycloaddition Reaction, Utilizing Novel Silver Supramolecular Coordination Polymer-Based Catalyst: A New Green Horizon. Catalysts. 2025; 15(10):969. https://doi.org/10.3390/catal15100969
Chicago/Turabian StyleEl-bendary, Mohamed M., Abdullah Akhdhar, Bambar Davaasuren, Abdullah S. Al-Bogami, and Tamer S. Saleh. 2025. "Unveiling Silver Catalysis to Access 5-Substituted Tetrazole Through [3+2]Cycloaddition Reaction, Utilizing Novel Silver Supramolecular Coordination Polymer-Based Catalyst: A New Green Horizon" Catalysts 15, no. 10: 969. https://doi.org/10.3390/catal15100969
APA StyleEl-bendary, M. M., Akhdhar, A., Davaasuren, B., Al-Bogami, A. S., & Saleh, T. S. (2025). Unveiling Silver Catalysis to Access 5-Substituted Tetrazole Through [3+2]Cycloaddition Reaction, Utilizing Novel Silver Supramolecular Coordination Polymer-Based Catalyst: A New Green Horizon. Catalysts, 15(10), 969. https://doi.org/10.3390/catal15100969