Engineered Leghemoglobin as a High-Performance Biocatalyst for Carbene N–H Insertion: Active-Site Remodeling Unlocks Catalytic Proficiency
Abstract
1. Introduction
2. Results and Discussion
2.1. LegH Key Residue Mutations Enhance Carbene N–H Insertion Yields
2.2. Efficient Carbene N–H Insertion Catalyzed by LegH
2.3. Plausible Mechanism of LegH-Catalyzed Carbene N–H Insertion Reaction
3. Materials and Methods
3.1. Materials and Instruments
3.2. Experimental Procedures for the Heterologous Expression of Soybean Hemoglobin
3.2.1. Construction of the LegH Expression Vector
3.2.2. Transformation of the LegH Plasmid
3.2.3. Colony PCR Confirmation of Positive Clones
3.2.4. Sequencing Confirmation
3.2.5. Induction of LegH Expression
3.2.6. Purification of LegH
Cell Harvest and Lysis
Ni-NTA Affinity Chromatography
Desalting and Concentration
3.2.7. SDS-PAGE Analysis
3.2.8. Protein Concentration Determination
3.2.9. UV-Vis Spectroscopy and RZ Value
3.2.10. Optimisation of Expression Conditions
Induction Temperature
IPTG-Induced Concentration
5-ALA Concentration
3.3. Experimental Procedure for the LegH-Catalyzed Carbene N-H Insertion Reaction
3.3.1. Experimental Method
3.3.2. Reaction Condition Optimization
Reaction Time
Reaction Temperature
Catalyst Loading
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durán, R.; Herrera, B. Theoretical Study of the Mechanism of Catalytic Enanteoselective N-H and O-H Insertion Reactions. J. Phys. Chem. A 2019, 124, 2–11. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y.; Song, Q.; Li, L.; Zanoni, G.; Liu, S.; Xiang, M.; Anderson, E.A.; Bi, X. Chemoselective carbene insertion into the N−H bonds of NH3·H2O. Nat. Commun. 2022, 13, 7649–7662. [Google Scholar] [CrossRef]
- Sharma, A.; Vaid, H.; Kotwal, R.; Mughal, Z.N.; Gurubrahamam, R. Ramani Gurubrahamam. Rhodium (II)-Catalyzed Alkynyl Carbene Insertion into N–H Bonds. Org. Lett. 2024, 26, 4887–4892. [Google Scholar] [CrossRef]
- Kumar, D.; Rao Kuram, M. Copper-Catalyzed Chemoselective Divergent Carbene Insertion into the N−H bonds of Tryptamines. Adv. Synth. Catal. 2023, 356, 3935–3941. [Google Scholar] [CrossRef]
- Tang, M.; Jiao, X.; He, D.; Zhao, J.-X.; Liu, P.; Li, C.-T. Rh(II)/Pd(0) Dual Catalysis: Carbenoid N-H Insertion/Allylation Cascade Reaction to Construct Highly Functionalized and Polysubstituted Pyrrolidines. Molecules 2024, 29, 5880–5889. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, T.; Van Hecke, K.; Cazin, C.S.; Nolan, S.P. [Cu(NHC)(OR)] (R = C(CF3)3) complexes for N–H and S–H bond activation and as pre-catalysts in the Chan–Evans–Lam reaction. Dalton Trans. 2025, 4, 1329–1333. [Google Scholar] [CrossRef]
- Burtoloso, A.C.B.; Santiago, J.V.; Bernardim, B.; Talero, A.G. Advances in the Enantioselective Metal-catalyzed N-H and O-H Insertion Reactions with Diazocarbonyl Compounds. Curr. Org. Synth. 2015, 12, 650–659. [Google Scholar] [CrossRef]
- So, S.S.; Mattson, A.E. Urea Activation of α-Nitrodiazoesters: An Organocatalytic Approach to N–H Insertion Reactions. J. Am. Chem. Soc. 2022, 134, 8798–8801. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.Y.; Zhu, S.F.; Zhou, Q.L. Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Org. Biomol. Chem. 2018, 16, 3087–3094. [Google Scholar] [CrossRef]
- Jintao, H.; Noor, N.D.M.; Kamarudin, N.H.A.; Ali, M.S.M. Review of enzyme catalysis in sustainable biofuel production: A comparative study of waste oils and alternative feedstocks. Int. J. Green. Energy 2025, 10, 1080–1088. [Google Scholar] [CrossRef]
- Mondal, D.; Snodgrass, H.M.; Gomez, C.A.; Lewis, J.C. Non-Native Site-Selective Enzyme Catalysis. Chem. Rev. 2025, 123, 10381–10431. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhai, S.; Zhan, X.; Siu, S.W. Data-driven revolution of enzyme catalysis from the perspective of reactions, pathways, and enzymes. Cell Rep. Phys. Sci. 2025, 6, 102466–102476. [Google Scholar] [CrossRef]
- Yang, Y.; Arnold, F.H. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer. Acc. Chem. Res. 2021, 54, 1209–1225. [Google Scholar] [CrossRef]
- Sreenilayam, G.; Moore, E.J.; Steck, V.; Fasan, R. Metal Substitution Modulates the Reactivity and Extends the Reaction Scope of Myoglobin Carbene Transfer Catalysts. Adv. Synth. Catal. 2021, 359, 2076–2089. [Google Scholar] [CrossRef]
- Razavi, B.S.; Blagodatskaya, E.; Kuzyakov, Y. Temperature selects for static soil enzyme systems to maintain high catalytic efficiency. Soil. Biol. Biochem. 2016, 97, 15–22. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, Z.; Xie, W.; Yu, Y.; Ning, C.; Yuan, M.; Mou, H. Improving catalytic efficiency and maximum activity at low pH of Aspergillus neoniger phytase using rational design. Int. J. Biol. Macromol. 2019, 131, 1117–1124. [Google Scholar] [CrossRef]
- Zeynizadeh, B.; Mohammad Aminzadeh, F.; Mousavi, H. Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water. Res. Chem. Intermed. 2021, 47, 3289–3312. [Google Scholar] [CrossRef]
- Ferlin, F.; Cappelletti, M.; Vivani, R.; Pica, M.; Piermatti, O.; Vaccaro, L. Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and switchable reduction of nitroarenes. Green. Chem. 2019, 21, 614–626. [Google Scholar] [CrossRef]
- Antony, R.; Marimuthu, R.; Murugavel, R. Bimetallic Nanoparticles Anchored on Core-Shell Support as an Easily Recoverable and Reusable Catalytic System for Efficient Nitroarene Reduction. ACS Omega 2019, 4, 9241–9250. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, W.; Fu, X.; Chen, G.; Meng, S.; Chen, S. Ultra-low content of Pt modified CdS nanorods: Preparation, characterization, and application for photocatalytic selective oxidation of aromatic alcohols and reduction of nitroarenes in one reaction system. J. Hazard. Mater. 2019, 360, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Xie, L.; You, K.; Chen, W. High-level secretory production of leghemoglobin and myoglobin in Escherichia coli through inserting signal peptides. Food Biosci. 2023, 56, 103356–103367. [Google Scholar] [CrossRef]
- Shao, Y.; Xue, C.; Liu, W.; Zuo, S.; Wei, P.; Huang, L.; Lian, J.; Xu, Z. High-level secretory production of leghemoglobin in Pichia pastoris through enhanced globin expression and heme biosynthesis. Bioresour. Technol. 2022, 363, 127884–127894. [Google Scholar] [CrossRef]
- Sun, L.J.; Wang, H.; Xu, J.K.; Gao, S.Q.; Wen, G.B.; Lin, Y.W. Exploiting and Engineering Neuroglobin for Catalyzing Carbene N–H Insertions and the Formation of Quinoxalinones. Inorg. Chem. 2023, 62, 16294–16298. [Google Scholar] [CrossRef]
- Stenner, R.; Anderson, J.L.R. Chemoselective N-H insertion catalyzed by a de novo carbene transferase. Biotechnol. Appl. Biochem. 2023, 67, 527–535. [Google Scholar] [CrossRef]
- Li, F.; Xu, Y.; Xu, Y.; Xie, H.; Wu, J.; Wang, C.; Li, Z.; Wang, Z.; Wang, L. Engineering of Dual-Function Vitreoscilla Hemoglobin: A One-Pot Strategy for the Synthesis of Unnatural α-Amino Acids. Org. Lett. 2023, 25, 7115–7119. [Google Scholar] [CrossRef]
- Balhara, R.; Chatterjee, R.; Jindal, G. Mechanism and stereoselectivity in metal and enzyme catalyzed carbene insertion into X–H and C(sp2)–H bonds. Chem. Soc. Rev. 2024, 53, 11004–11044. [Google Scholar] [CrossRef] [PubMed]
- Siriboe, M.G.; Vargas, D.A.; Fasan, R. Dehaloperoxidase Catalyzed Stereoselective Synthesis of Cyclopropanol Esters. J. Org. Chem. 2023, 88, 7630–7640. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, L.; Su, H.; Liu, Y. Dioxygen Activation and Nδ,Nε-Dihydroxylation Mechanism Involved in the Formation of N-Nitrosourea Pharmacophore in Streptozotocin Catalyzed by Nonheme Diiron Enzyme SznF. Inorg. Chem. 2022, 61, 15721–15734. [Google Scholar] [CrossRef]
- Musiani, F.; Broll, V.; Evangelisti, E.; Ciurli, S. The model structure of the copper-dependent ammonia monooxygenase. J. Biol. Inorg. Chem. 2020, 25, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhou, T.-P.; Shen, Y.; HuJieyu, J.; Tang, Z.; Han, R.; Xu, G.; Schwaneberg, U.; Wang, B.; Ni, Y.; et al. Rational Engineering of Self-Sufficient P450s to Boost Catalytic Efficiency of Carbene-Mediated C–S Bond Formation. ACS Catal. 2020, 25, 995–1007. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Kamble, P.; Mundhe, P.; Jindal, M.; Thakur, P.; Bajaj, P. Multifaceted personality and roles of heme enzymes in industrial biotechnology. 3 Biotech 2023, 13, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.; Tinoco, A.; Shen, Z.; Adukure, R.D.; Sreenilayam, G.; Khare, S.D.; Fasan, R. Enantioselective Synthesis of α-Trifluoromethyl Amines via Biocatalytic N–H Bond Insertion with Acceptor-Acceptor Carbene Donors. J. Am. Chem. Soc. 2022, 144, 2590–2602. [Google Scholar] [CrossRef] [PubMed]
- Natoli, S.N.; Hartwig, J.F. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis. Acc. Chem. Res. 2019, 52, 326–335. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, G.; Shao, S.; Wang, M.; Lu, K.; Gao, S. Co-degradation of Coexisting Pollutants Methylparaben (Mediators) and Amlodipine in Enzyme-Mediator Systems: Insight into the Mediating Mechanism. J. Hazard. Mater. 2012, 423, 127112–127122. [Google Scholar] [CrossRef]
- Steck, V.; Carminati, D.M.; Johnson, N.R.; Fasan, R. Enantioselective Synthesis of Chiral Amines via Biocatalytic Carbene N–H Insertion. ACS Catal. 2020, 10, 10967–10977. [Google Scholar] [CrossRef]
- Lather, J.; George, J. Improving Enzyme Catalytic Efficiency by Co-operative Vibrational Strong Coupling of Water. J. Phys. Chem. Lett. 2020, 12, 379–384. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence (5′–3′) |
---|---|
LegH-F | GGATCCATGGGCGCGTTCACCGAAAAACA |
LegH-R | GCTCGAGTTAGTGGTGGTGATGGTGGTGCGGT |
Reagent | Volume (µL) |
---|---|
LegH-F (10 µM) | 1.25 |
LegH-R (10 µM) | 1.25 |
Q5 DNA Polymerase | 0.25 |
dNTPs (10 mM) | 0.5 |
5× Q5 Reaction Buffer | 5 |
ddH2O | to 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Gao, M.; Zhang, X.; Wang, Z. Engineered Leghemoglobin as a High-Performance Biocatalyst for Carbene N–H Insertion: Active-Site Remodeling Unlocks Catalytic Proficiency. Catalysts 2025, 15, 950. https://doi.org/10.3390/catal15100950
Zhang H, Gao M, Zhang X, Wang Z. Engineered Leghemoglobin as a High-Performance Biocatalyst for Carbene N–H Insertion: Active-Site Remodeling Unlocks Catalytic Proficiency. Catalysts. 2025; 15(10):950. https://doi.org/10.3390/catal15100950
Chicago/Turabian StyleZhang, Hong, Meijiao Gao, Xin Zhang, and Zhi Wang. 2025. "Engineered Leghemoglobin as a High-Performance Biocatalyst for Carbene N–H Insertion: Active-Site Remodeling Unlocks Catalytic Proficiency" Catalysts 15, no. 10: 950. https://doi.org/10.3390/catal15100950
APA StyleZhang, H., Gao, M., Zhang, X., & Wang, Z. (2025). Engineered Leghemoglobin as a High-Performance Biocatalyst for Carbene N–H Insertion: Active-Site Remodeling Unlocks Catalytic Proficiency. Catalysts, 15(10), 950. https://doi.org/10.3390/catal15100950