Heterogenization of a Tungstosilicic Acid Catalyst for Esterification of Bio-Oil Model Compound
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.1.1. Structural and W Species Characterization
2.1.2. Chemical State of W Characterization
2.1.3. Textural Characterization
2.1.4. Acidity Characterization
2.2. Catalytic Activity
2.3. Esterification of Bio-Oil Model Compound
2.4. Reusability of the Catalyst
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalyst Characterization
3.3.1. X-ray Diffraction
3.3.2. X-ray Photoelectron Spectroscopy
3.3.3. Brunauer–Emmett–Teller and Barrett–Joyner–Halenda Analyses
3.3.4. Temperature-Programmed Desorption of Ammonia Analysis
3.3.5. Inductively Coupled Plasma Analysis
3.4. Activity Evaluation of the Catalysts
3.5. Experiment of Model Bio-Oil Upgrading by Catalytic Esterification
3.6. Evaluation of Catalyst Reusability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsultan, A.G.; Asikin-Mijan, N.; Ibrahim, Z.; Yunus, R.; Razali, S.Z.; Mansir, N.; Islam, A.; Seenivasagam, S.; Taufiq-Yap, Y.H. A Short Review on Catalyst, Feedstock, Modernised Process, Current State and Challenges on Biodiesel Production. Catalysts 2021, 11, 1261. [Google Scholar] [CrossRef]
- Phromphithak, S.; Tippayawong, N.; Onsree, T.; Lauterbach, J. Pretreatment of corncob with green deep eutectic solvent to enhance cellulose accessibility for energy and fuel applications. Energy Rep. 2022, 8, 579–585. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Y.; Liu, Y.; He, C.; Ruan, R.; Yu, Z.; Jiang, L.; Zeng, Z.; Wu, Q. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass. Sci. Total Environ. 2020, 749, 142386. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, R.; Yellezuome, D.; Peng, W.; Tabatabaei, M. Upgrading of biomass-derived bio-oil via catalytic hydrogenation with Rh and Pd catalysts. Renew. Energy 2022, 184, 487–497. [Google Scholar] [CrossRef]
- Jaroenkhasemmeesuk, C.; Tippayawong, N. Technical and economic analysis of a biomass pyrolysis plant. Energy Procedia 2015, 79, 950–955. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Li, K.; Ding, H.; Zhu, X. Studying on properties of bio-oil by adding blended additive during aging. Fuel 2018, 211, 704–711. [Google Scholar] [CrossRef]
- Khuenkaeo, N.; MacQueen, B.; Onsree, T.; Daiya, S.; Tippayawong, N.; Lauterbach, J. Bio-oils from vacuum ablative pyrolysis of torrefied tobacco residues. RSC Adv. 2020, 10, 34986–34995. [Google Scholar] [CrossRef]
- Xiu, S.; Shahbazi, A. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 2012, 16, 4406–4414. [Google Scholar] [CrossRef]
- Yang, Z.; Kumar, A.; Huhnke, R.L. Review of recent developments to improve storage and transportation stability of bio-oil. Renew. Sustain. Energy Rev. 2015, 50, 859–870. [Google Scholar] [CrossRef]
- Prasertpong, P.; Jaroenkhasemmeesuk, C.; Tippayawong, N.; Thanmongkhon, Y. Characterization of bio-oils from jatropha residues and mixtures of model compounds. Chiang Mai Univ. J. Nat. Sci. 2017, 16, 135–144. [Google Scholar] [CrossRef]
- Maree, D.C.; Heydenrych, M. Development of a Mesoporous Silica-Supported Layered Double Hydroxide Catalyst for the Reduction of Oxygenated Compounds in E. grandis Fast Pyrolysis Oils. Catalysts 2021, 11, 1527. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, R.; Yin, R.; Mei, Y. Upgrading of bio-oil from biomass fast pyrolysis in China: A review. Renew. Sustain. Energy Rev. 2013, 24, 66–72. [Google Scholar] [CrossRef]
- Li, X.; Gunawan, R.; Wang, Y.; Chaiwat, W.; Hu, X.; Gholizadeh, M.; Mourant, D.; Bromly, J.; Li, C.Z. Upgrading of bio-oil into advanced biofuels and chemicals. Part III. Changes in aromatic structure and coke forming propensity during the catalytic hydrotreatment of a fast pyrolysis bio-oil with Pd/C catalyst. Fuel 2014, 116, 642–649. [Google Scholar] [CrossRef]
- Chong, Y.Y.; Thangalazhy-Gopakumar, S.; Gan, S.; Lee, L.Y.; Ng, H.K. Esterification and neutralization of bio-oil from palm empty fruit bunch fibre with calcium oxide. Bioresour. Technol. Rep. 2020, 12, 100560. [Google Scholar] [CrossRef]
- Osatiashtiani, A.; Zhang, J.; Stefanidis, S.D.; Zhang, X.; Bridgwater, A.V. The mechanism for catalytic fast pyrolysis of levoglucosan, furfural and furan over HZSM-5: An experimental and theoretical investigation. Fuel 2022, 328, 125279. [Google Scholar] [CrossRef]
- Lian, X.; Xue, Y.; Zhao, Z.; Xu, G.; Han, S.; Yu, H. Progress on upgrading methods of bio-oil: A review. Int. J. Energy Res. 2017, 41, 1798–1816. [Google Scholar] [CrossRef]
- Demirbas, M.F.; Balat, M. Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energy Convers. Manag. 2006, 47, 2371–2381. [Google Scholar] [CrossRef]
- Song, M.; Zhong, Z.; Dai, J. Different solid acid catalysts influence on properties and chemical composition change of upgrading bio-oil. J. Anal. Appl. Pyrolysis 2010, 89, 166–170. [Google Scholar] [CrossRef]
- Weerachanchai, P.; Tangsathitkulchai, C.; Tangsathitkulchai, M. Effect of reaction conditions on the catalytic esterification of bio-oil. Korean J. Chem. Eng. 2012, 29, 182–189. [Google Scholar] [CrossRef]
- Hu, X.; Gunawan, R.; Mourant, D.; Lievens, C.; Li, X.; Zhang, S.; Chaiwat, W.; Li, C.Z. Acid-catalysed reactions between methanol and the bio-oil from the fast pyrolysis of mallee bark. Fuel 2012, 97, 512–522. [Google Scholar] [CrossRef]
- Hu, X.; Mourant, D.; Wang, Y.; Wu, L.; Chaiwat, W.; Gunawan, R.; Gholizadeh, M.; Lievens, C.; Garcia-Perez, M.; Li, C.Z. Acid-catalysed treatment of the mallee leaf bio-oil with methanol: Effects of molecular structure of carboxylic acids and esters on their conversion. Fuel Process. Technol. 2013, 106, 569–576. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, X.; Hu, X.; Dearn, K.D.; Xu, H. Effect of catalytic esterification on the friction and wear performance of bio-oil. Wear 2014, 311, 93–100. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Wang, T.; Li, B.; Xu, Y.; Ma, L. Efficient upgrading process for production of low quality fuel from bio-oil. Fuel 2016, 179, 312–321. [Google Scholar] [CrossRef]
- Diebold, J.P. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. In Fast Pyrolysis of Biomass: A Handbook; Bridgwater, A.V., Ed.; CPL Press: Newbury, UK, 2002; pp. 243–292. [Google Scholar]
- Zhang, Q.; Xu, Y.; Li, Y.; Wang, T.; Zhang, Q.; Ma, L.; He, M.; Li, K. Investigation on the esterification by using supercritical ethanol for bio-oil upgrading. Appl. Energy 2015, 160, 633–640. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Leahy, J.J.; Kwapinski, W. Catalytically upgrading bio-oil via esterification. Energy Fuels 2015, 29, 3691–3698. [Google Scholar] [CrossRef]
- Morin, P.; Hamad, B.; Sapaly, G.; Rocha, M.C.; de Oliveira, P.P.; Gonzalez, W.A.; Sales, E.A.; Essayem, N. Transesterification of rapeseed oil with ethanol: I. Catalysis with homogeneous Keggin heteropolyacids. Appl. Catal. A Gen. 2007, 330, 69–76. [Google Scholar] [CrossRef]
- Zhang, L.; Xian, M.; He, Y.; Li, L.; Yang, J.; Yu, S.; Xu, X. A Brønsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols. Bioresour. Technol. 2009, 100, 4368–4373. [Google Scholar] [CrossRef]
- Okuhara, T.; Mizuno, N.; Misono, M. Catalytic chemistry of heteropoly compounds. Adv. Catal. 1996, 41, 113–252. [Google Scholar]
- Öztürk, G.; Gümgüm, B.; Akba, O. Synthesis of esters under microwave irradiation using heteropoly acids as catalysts. Catal. Lett. 2002, 82, 233–235. [Google Scholar] [CrossRef]
- Timofeeva, M.N. Acid catalysis by heteropoly acids. Appl. Catal. A: Gen. 2003, 256, 19–35. [Google Scholar] [CrossRef]
- Cardoso, A.L.; Augusti, R.; Da Silva, M.J. Investigation on the esterification of fatty acids catalyzed by the H3PW12O40 heteropolyacid. J. Am. Oil Chem. Soc. 2008, 85, 555–560. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, B.; Korstad, J. Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod. Biorefining 2011, 5, 69–92. [Google Scholar] [CrossRef]
- Fernandes, S.A.; Cardoso, A.L.; da Silva, M.J. A novel kinetic study of H3PW12O40-catalyzed oleic acid esterification with methanol via 1H NMR spectroscopy. Fuel Process. Technol. 2012, 96, 98–103. [Google Scholar] [CrossRef]
- Talebian-Kiakalaieh, A.; Amin, N.A.S.; Zarei, A.; Noshadi, I. Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model. Appl. Energy 2013, 102, 283–292. [Google Scholar] [CrossRef]
- Patel, A.; Brahmkhatri, V. Kinetic study of oleic acid esterification over 12-tungstophosphoric acid catalyst anchored to different mesoporous silica supports. Fuel Process. Technol. 2013, 113, 141–149. [Google Scholar] [CrossRef]
- Lu, X.; Yin, H.; Shen, L.; Feng, Y.; Wang, A.; Shen, Y.; Hang, H.; Mao, D. Reaction kinetics of the esterification reaction between ethanol and acetic acid catalyzed by Keggin heteropolyacids. React. Kinet. Mech. Catal. 2014, 111, 15–27. [Google Scholar] [CrossRef]
- Nowakowski, D.J.; Baronetti, G.; Bridgwater, T.; Romanelli, G.; Vázquez, P. Esterification of fast pyrolysis bio-oil using heteropoly-acid catalyst with Wells–Dawson structure. In Proceedings of the 19th International Symposium on Analytical and Applied Pyrolysis, Linz, Austria, 21–25 May 2012. [Google Scholar]
- Prasertpong, P.; Tippayawong, N. Upgrading of biomass pyrolysis oil model compound via esterification: Kinetic study using heteropoly acid. Energy Procedia 2019, 160, 253–259. [Google Scholar] [CrossRef]
- Prasertpong, P.; Jaroenkhasemmeesuk, C.; Regalbuto, J.R.; Lipp, J.; Tippayawong, N. Optimization of process variables for esterification of bio-oil model compounds by a heteropolyacid catalyst. Energy Rep. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Kozhevnikov, I.V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev. 1998, 98, 171–198. [Google Scholar] [CrossRef]
- Ma’arof, N.A.N.B.; Hindryawati, N.; Khazaai, S.N.M.; Bhuyar, P.; Rahim, M.H.A.; Maniam, G.P. Exploitation of cost-effective renewable heterogeneous base catalyst from banana (Musa paradisiaca) peel for effective methyl ester production from soybean oil. Appl. Nanosci. 2021. [Google Scholar] [CrossRef]
- Mitran, G.; Yuzhakova, T.; Popescu, I.; Marcu, I.C. Study of the esterification reaction of acetic acid with n-butanol over supported WO3 catalysts. J. Mol. Catal. A: Chem. 2015, 396, 275–281. [Google Scholar] [CrossRef]
- Embong, N.H.; Hindryawati, N.; Bhuyar, P.; Govindan, N.; Rahim, M.H.A.; Maniam, G.P. Enhanced biodiesel production via esterification of palm fatty acid distillate (PFAD) using rice husk ash (NiSO4)/SiO2 catalyst. Appl. Nanosci. 2021. [Google Scholar] [CrossRef]
- Oliveira, C.F.; Dezaneti, L.M.; Garcia, F.A.; de Macedo, J.L.; Dias, J.A.; Dias, S.C.; Alvim, K.S. Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia. Appl. Catal. A: Gen. 2010, 372, 153–161. [Google Scholar] [CrossRef]
- Gurav, H.; Bokade, V.V. Synthesis of ethyl acetate by esterification of acetic acid with ethanol over a heteropolyacid on montmorillonite K10. J. Nat. Gas Chem. 2010, 19, 161–164. [Google Scholar] [CrossRef]
- Ramanathan, A.; Maheswari, R.; Grady, B.P.; Moore, D.S.; Barich, D.H.; Subramaniam, B. Tungsten-incorporated cage-type mesoporous silicate: W-KIT-5. Microporous Mesoporous Mater. 2013, 175, 43–49. [Google Scholar] [CrossRef]
- Hu, J.C.; Wang, Y.D.; Chen, L.F.; Richards, R.; Yang, W.M.; Liu, Z.C.; Xu, W. Synthesis and characterization of tungsten-substituted SBA-15: An enhanced catalyst for 1-butene metathesis. Microporous Mesoporous Mater. 2006, 93, 158–163. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Dong, M.; Wu, Y.; Zheng, G.; Huang, J.; Guan, X.; Zheng, X. MCM-41 immobilized 12-silicotungstic acid mesoporous materials: Structural and catalytic properties for esterification of levulinic acid and oleic acid. J. Taiwan Inst. Chem. Eng. 2016, 61, 147–155. [Google Scholar] [CrossRef]
- Kleitz, F.; Liu, D.; Anilkumar, G.M.; Park, I.S.; Solovyov, L.A.; Shmakov, A.N.; Ryoo, R. Large cage face-centered-cubic Fm 3 m mesoporous silica: Synthesis and structure. J. Phys. Chem. B 2003, 107, 14296–14300. [Google Scholar] [CrossRef]
- Prasertpong, P.; Lipp, J.; Ramanathan, A.; Tippayawong, N.; Regalbuto, J.R. Tungsten/silica materials for bio-oil upgrading. In Proceedings of the 2019 North American Catalysis Society Meeting, Chicago, IL, USA, 25 June 2019. [Google Scholar]
- Gerand, B.; Nowogrocki, G.; Guenot, J.; Figlarz, M. Structural study of a new hexagonal form of tungsten trioxide. J. Solid State Chem. 1979, 29, 429–434. [Google Scholar] [CrossRef]
- Adam, F.; Iqbal, A. The liquid phase oxidation of styrene with tungsten modified silica as a catalyst. Chem. Eng. J. 2011, 171, 1379–1386. [Google Scholar] [CrossRef]
- Moulder, J.F. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Chastain, J., Ed.; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Sohn, J.R.; Park, M.Y. Preparation and characterization of tungsten oxide-zirconia catalyst. J. Ind. Eng. Chem. 1998, 4, 84–93. [Google Scholar]
- Jiménez-Morales, I.; Santamaría-González, J.; Maireles-Torres, P.; Jiménez-López, A. Zirconium doped MCM-41 supported WO3 solid acid catalysts for the esterification of oleic acid with methanol. Appl. Catal. A Gen. 2010, 379, 61–68. [Google Scholar] [CrossRef]
- Yang, X.; Wong, C.W. Stimulated Raman amplification and lasing in silicon photonic band gap nanocavities. Sens. Actuators A Phys. 2007, 133, 278–282. [Google Scholar] [CrossRef]
- Yang, X.L.; Dai, W.L.; Chen, H.; Xu, J.H.; Cao, Y.; Li, H.; Fan, K. Novel tungsten-containing mesoporous HMS material: Its synthesis, characterization and catalytic application in the selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. Appl. Catal. A Gen. 2005, 283, 1–8. [Google Scholar] [CrossRef]
- Ramanathan, A.; Subramaniam, B.; Badloe, D.; Hanefeld, U.; Maheswari, R. Direct incorporation of tungsten into ultra-large-pore three-dimensional mesoporous silicate framework: W-KIT-6. J. Porous Mater. 2012, 19, 961–968. [Google Scholar] [CrossRef]
- Bhuiyan, T.I.; Arudra, P.; Akhtar, M.N.; Aitani, A.M.; Abudawoud, R.H.; Al-Yami, M.A.; Al-Khattaf, S.S. Metathesis of 2-butene to propylene over W-mesoporous molecular sieves: A comparative study between tungsten containing MCM-41 and SBA-15. Appl. Catal. A: Gen. 2013, 467, 224–234. [Google Scholar] [CrossRef]
- Klaewkla, R.; Arend, M.; Hoelderich, W.F. A review of mass transfer controlling the reaction rate in heterogeneous catalytic systems. In Mass Transfer-Advanced Aspects; Nakajima, H., Ed.; Intech Open Publisher: London, UK, 2011; Volume 5, pp. 667–684. [Google Scholar]
- Trejda, M.; Nurwita, A.; Kryszak, D. Synthesis of solid acid catalysts for esterification with the assistance of elevated pressure. Microporous Mesoporous Mater. 2019, 278, 115–120. [Google Scholar] [CrossRef]
- Hoo, P.Y.; Abdullah, A.Z. Direct synthesis of mesoporous 12-tungstophosphoric acid SBA-15 catalyst for selective esterification of glycerol and lauric acid to monolaurate. Chem. Eng. J. 2014, 250, 274–287. [Google Scholar] [CrossRef]
- Gagea, B.C.; Lorgouilloux, Y.; Altintas, Y.; Jacobs, P.A.; Martens, J.A. Bifunctional conversion of n-decane over HPW heteropoly acid incorporated into SBA-15 during synthesis. J. Catal. 2009, 265, 99–108. [Google Scholar] [CrossRef]
- Li, Z.; Wnetrzak, R.; Kwapinski, W.; Leahy, J.J. Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid. ACS Appl. Mater. Interfaces 2012, 4, 4499–4505. [Google Scholar] [CrossRef]
- Li, L.; Yan, B.; Li, H.; Yu, S.; Ge, X. Decreasing the acid value of pyrolysis oil via esterification using ZrO2/SBA-15 as a solid acid catalyst. Renew. Energy 2020, 146, 643–650. [Google Scholar] [CrossRef]
- Ye, J.; Liu, C.; Fu, Y.; Peng, S.; Chang, J. Upgrading bio-oil: Simultaneous catalytic esterification of acetic acid and alkylation of acetaldehyde. Energy Fuels 2014, 28, 4267–4272. [Google Scholar] [CrossRef]
Catalyst (wt% of W) | Calculated W/Si (Atomic Ratio) | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) | Total Acidity (mmol NH3/g) |
---|---|---|---|---|---|
A150 | - | 153 | 1.21 | 31.6 | 0.6 |
W/A150 (5%) | 0.004 | 129 | 1.01 | 31.4 | 1.4 |
W/A150 (10%) | 0.011 | 140 | 1.08 | 30.9 | 2.4 |
W/A150 (15%) | 0.022 | 113 | 0.79 | 28.1 | 2.4 |
KIT-5 | - | 673 | 0.40 | 2.4 | 10.5 |
W-KIT-5 (4.9%) | 0.004 | 795 | 0.55 | 2.7 | 11.6 |
W-KIT-5 (10.7%) | 0.009 | 743 | 0.52 | 2.8 | 16.5 |
W-KIT-5 (15.8%) | 0.019 | 702 | 0.54 | 3.1 | 16.0 |
Catalyst (wt% of W) | Reaction Rate (mol/gW/h) |
---|---|
Tungstosilicic acid | 0.50 |
W/A150 (5%) | 0.06 |
W/A150 (10%) | 0.05 |
W/A150 (15%) | 0.07 |
W-KIT-5 (4.9%) | 0.08 |
W-KIT-5 (10.7%) | 0.07 |
W-KIT-5 (15.8%) | 0.10 |
Catalyst (wt% of W) | Acid Conversion (%) |
---|---|
Without catalyst | 8 |
Tungstosilicic acid | 87 |
W/A150 (5%) | 59 |
W/A150 (10%) | 52 |
W/A150 (15%) | 50 |
W-KIT-5 (4.9%) | 76 |
W-KIT-5 (10.7%) | 81 |
W-KIT-5 (15.8%) | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasertpong, P.; Lipp, J.; Dong, A.; Tippayawong, N.; Regalbuto, J.R. Heterogenization of a Tungstosilicic Acid Catalyst for Esterification of Bio-Oil Model Compound. Catalysts 2023, 13, 38. https://doi.org/10.3390/catal13010038
Prasertpong P, Lipp J, Dong A, Tippayawong N, Regalbuto JR. Heterogenization of a Tungstosilicic Acid Catalyst for Esterification of Bio-Oil Model Compound. Catalysts. 2023; 13(1):38. https://doi.org/10.3390/catal13010038
Chicago/Turabian StylePrasertpong, Prapaporn, Jeremiah Lipp, Anhua Dong, Nakorn Tippayawong, and John R. Regalbuto. 2023. "Heterogenization of a Tungstosilicic Acid Catalyst for Esterification of Bio-Oil Model Compound" Catalysts 13, no. 1: 38. https://doi.org/10.3390/catal13010038