The Role of Sulfated Materials for Biodiesel Production from Cheap Raw Materials
Abstract
:1. Introduction
2. Solid Acid Nanomaterials
2.1. Types of Solid Acids
2.2. Production of Solid Acid Nanomaterials
2.3. Acidic Nanocatalyst Development
2.3.1. Fe Oxide
2.3.2. Ti Oxide
2.3.3. Zn Oxide
2.3.4. Zr Oxide
2.3.5. Silica-Supported Nanocatalysts
2.3.6. Functionalised Carbon Nanocatalysts
3. Challenges and Opportunities
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature:
A:O | Alcohol to Oil ratio |
APTES | (3-Aminopropyl)-triethoxysilane |
COK | Centrum voor Oppervlaktechemie en Katalyse (Centre for Research Chemistry and Catalysis) |
COP26 | 2021 United Nations Climate Change Conference |
DRIFTS | Diffuse Reflectance FTIR Spectroscopy |
FAME | Fatty Acid Methyl Ester |
FFA | Free Fatty Acid |
FSM | Folded Sheets Mesoporous Material |
FTIR | Fourier Transform Infrared Spectroscopy |
GHG | Green House Gases |
HMM | Hiroshima Mesoporous Material |
HPA | Hetero Poly Acid |
HZSM | H+ Zeolite Socony Mobil |
KCC | KAUST Catalyst Centre |
KIT | Korea advanced Institute of science and Technology |
MCM | Mobil Composition of Matter |
MSNP | Mesoporous Silica NanoParticles |
MMO | Mixed Metal Oxide |
PFAD | Palm Fatty Acid Distillate |
SBA | Santa Barbara Amorphous |
TMS | Tri Methyl Silane |
TOF | Turn Over Frequency |
TON | Turn Over Number |
TPD | Temperature Programmed Desorption |
TUD | Technische Universiteit Delft (Delft Technical University) |
WCO | Waste Cooking Oil |
References
- COP26. 2021. Available online: https://ukcop26.org/ (accessed on 24 January 2022).
- DoT. Zero Emission Vehicles Transition Council: 2022 Action Plan; Department of Transport: London, UK, 2021. [Google Scholar]
- Sharma, A.; Shapps, G. Government Takes Historic Step towards Net-Zero with End of Sale of New Petrol and Diesel Cars by 2030. 2020. Available online: https://www.gov.uk/government/news/government-takes-historic-step-towards-net-zero-with-end-of-sale-of-new-petrol-and-diesel-cars-by-2030 (accessed on 30 June 2021).
- D6751—20a; Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2020.
- D7467—20a; Standard Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20). ASTM International: West Conshohocken, PA, USA, 2020.
- Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Shapouri, H. An Overview of Biodiesel and Petroleum Diesel Life Cycles; National Renewable Energy Laboratory: Golden, CO, USA, 1998. [Google Scholar]
- McLaughlin, D.W. Land, food, and biodiversity. Conserv. Biol. 2011, 25, 1117–1120. [Google Scholar] [CrossRef] [PubMed]
- Gui, M.M.; Lee, K.T.; Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33, 1646–1653. [Google Scholar]
- Rehan, M.; Gardy, J.; Demirbas, A.; Rashid, U.; Budzianowski, W.; Pant, D.; Nizami, A. Waste to biodiesel: A preliminary assessment for Saudi Arabia. Bioresour. Technol. 2018, 250, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, G.; Bautista, L.F.; Melero, J.A.; Iglesias, J.; Sánchez-Vázquez, R. Low-grade oils and fats: Effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts. Bioresour. Technol. 2011, 102, 9571–9578. [Google Scholar] [CrossRef]
- Park, Y.-M.; Lee, D.-W.; Kim, D.-K.; Lee, J.-S.; Lee, K.-Y. The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catal. Today 2008, 131, 238–243. [Google Scholar] [CrossRef]
- Aransiola, E.; Ojumu, T.; Oyekola, O.; Madzimbamuto, T.; Ikhu-Omoregbe, D. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy 2014, 61, 276–297. [Google Scholar] [CrossRef]
- Al-Qaysi, K.; Nayebzadeh, H.; Saghatoleslami, N.; Gardy, J. Effect of the loading of di-and tri-valent metal cations on the performance of sulfated silica-titania nano-catalyst in the esterification reaction. J. Nanostruct. 2021, 11, 221–235. [Google Scholar]
- Luque, R.; Lovett, J.C.; Datta, B.; Clancy, J.; Campelo, J.M.; Romero, A.A. Biodiesel as feasible petrol fuel replacement: A multidisciplinary overview. Energy Environ. Sci. 2010, 3, 1706–1721. [Google Scholar] [CrossRef]
- Samios, D.; Pedrotti, F.; Nicolau, A.; Reiznautt, Q.; Martini, D.; Dalcin, F. A transesterification double step process—TDSP for biodiesel preparation from fatty acids triglycerides. Fuel Process. Technol. 2009, 90, 599–605. [Google Scholar] [CrossRef]
- Ghadge, S.V.; Raheman, H. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy 2005, 28, 601–605. [Google Scholar] [CrossRef]
- Kawashima, A.; Matsubara, K.; Honda, K. Development of heterogeneous base catalysts for biodiesel production. Bioresour. Technol. 2008, 99, 3439–3443. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.-M.; Li, Y.-Y.; Lin, J.-H.; Kao, I.-H.; Lin, Y.-J.; Chen, C.-C. Applications of M2ZrO2 (M = Li, Na, K) composite as a catalyst for biodiesel production. Fuel 2021, 286, 119392. [Google Scholar] [CrossRef]
- Sulaiman, N.F.; Abu Bakar, W.A.W.; Toemen, S.; Kamal, N.M.; Nadarajan, R. In depth investigation of bi-functional, Cu/Zn/γ-Al2O3 catalyst in biodiesel production from low-grade cooking oil: Optimization using response surface methodology. Renew. Energy 2019, 135, 408–416. [Google Scholar] [CrossRef]
- Watkins, R.S.; Lee, A.F.; Wilson, K. Li–CaO catalysed tri-glyceride transesterification for biodiesel applications. Green Chem. 2004, 6, 335–340. [Google Scholar] [CrossRef]
- Naderi, F.; Nayebzadeh, H. Performance and stability assessment of Mg-Al-Fe nanocatalyst in the transesterification of sunflower oil: Effect of Al/Fe molar ratio. Ind. Crop. Prod. 2019, 141, 111814. [Google Scholar] [CrossRef]
- Xue, B.-J.; Luo, J.; Zhang, F.; Fang, Z. Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4–Ca2Fe2O5-based catalyst. Energy 2014, 68, 584–591. [Google Scholar] [CrossRef]
- López, D.E.; Goodwin, J.G.; Bruce, D.A.; Furuta, S. Esterification and transesterification using modified-zirconia catalysts. Appl. Catal. A Gen. 2008, 339, 76–83. [Google Scholar] [CrossRef]
- Banković–Ilić, I.B.; Miladinović, M.R.; Stamenković, O.S.; Veljković, V.B. Application of nano CaO–based catalysts in biodiesel synthesis. Renew. Sustain. Energy Rev. 2017, 72, 746–760. [Google Scholar] [CrossRef]
- Rahimi, T.; Kahrizi, D.; Feyzi, M.; Ahmadvandi, H.R.; Mostafaei, M. Catalytic performance of MgO/Fe2O3-SiO2 core-shell magnetic nanocatalyst for biodiesel production of Camelina sativa seed oil: Optimization by RSM-CCD method. Ind. Crops Prod. 2021, 159, 113065. [Google Scholar] [CrossRef]
- You, Y.; Zheng, M.; Jiang, D.; Li, F.; Yuan, H.; Zhai, Z.; Ma, L.; Shen, W. Boosting supercapacitive performance of ultrathin mesoporous NiCo2O4 nanosheet arrays by surface sulfation. J. Mater. Chem. A 2018, 6, 8742–8749. [Google Scholar] [CrossRef]
- Cagno, V.; Gasbarri, M.; Medaglia, C.; Gomes, D.; Clement, S.; Stellacci, F.; Tapparel, C. Sulfonated nanomaterials with broad-spectrum antiviral activity extending beyond heparan sulfate-dependent viruses. Antimicrob. Agents Chemother. 2020, 64, 02001–02020. [Google Scholar] [CrossRef] [PubMed]
- Narasimharao, K.; Malik, M.A.; Mokhtar, M.M.; Basahel, S.N.; Al-Thabaiti, S.A. Iron oxide supported sulfated TiO2 nanotube catalysts for NO reduction with propane. Ceram. Int. 2014, 40, 4039–4053. [Google Scholar] [CrossRef]
- Sekewael, S.J.; Pratika, R.A.; Hauli, L.; Amin, A.K.; Utami, M.; Wijaya, K. Recent progress on sulfated nanozirconia as a solid acid catalyst in the hydrocracking reaction. Catalysts 2022, 12, 191. [Google Scholar] [CrossRef]
- Karatzos, S.; Van Dyk, J.S.; McMillan, J.; Saddler, J. Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I. Biofuels Bioprod. Biorefining 2017, 11, 344–362. [Google Scholar] [CrossRef]
- SkyNRG. Sustainable Aviation Fuel—Technology. 2022. Available online: https://skynrg.com/sustainable-aviation-fuel/technology/ (accessed on 11 February 2022).
- Kusdiana, D.; Saka, S. Methyl esterification of free fatty acids of rapeseed oil astreated in supercritical methanol. J. Chem. Eng. Jpn. 2001, 34, 383–387. [Google Scholar] [CrossRef]
- Kusdiana, D.; Saka, S. Two-step preparation for catalyst-free biodiesel fuel production: Hydrolysis and methyl esterification. Appl. Biochem. Biotechnol. Part A Enzyme Eng. Biotechnol. 2004, 115, 781–792. [Google Scholar] [CrossRef]
- Kusdiana, D.; Saka, S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour. Technol. 2004, 91, 289–295. [Google Scholar] [CrossRef]
- Warabi, Y.; Kusdiana, D.; Saka, S. Biodiesel fuel from vegetable oil by various supercritical alcohols. Appl. Biochem. Biotechnol. Part A Enzyme Eng. Biotechnol. 2004, 115, 793–802. [Google Scholar] [CrossRef]
- Warabi, Y.; Kusdiana, D.; Saka, S. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresour. Technol. 2004, 91, 283–287. [Google Scholar] [CrossRef]
- Boocock, D.G.; Konar, S.K.; Mao, V.; Sidi, H. Fast one-phase oil-rich processes for the preparation of vegetable oil methyl esters. Biomass Bioenergy 1996, 11, 43–50. [Google Scholar] [CrossRef]
- Gardy, J.; Osatiashtiani, A.; Céspedes, O.; Hassanpour, A.; Lai, X.; Lee, A.F.; Wilson, K.; Rehan, M. A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl. Catal. B Environ. 2018, 234, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Anuradha, S.; Raj, K.; Vijayaraghavan, V.R.; Viswanathan, B. Sulphated Fe2O3-TiO2 catalysed transesterification of soybean oil to biodiesel. Indian J. Chem. 2014, 53, 1493–1499. [Google Scholar]
- Ashok, A.; Ratnaji, T.; Kennedy, L.J.; Vijaya, J.J.; Pragash, R.G. Magnetically recoverable Mg substituted zinc ferrite nanocatalyst for biodiesel production: Process optimization, kinetic and thermodynamic analysis. Renew. Energy 2021, 163, 480–494. [Google Scholar] [CrossRef]
- Jamil, F.; Myint, M.T.Z.; Al-Hinai, M.; Al-Haj, L.; Baawain, M.; Al-Abri, M.; Kumar, G.; Atabani, A.E. Biodiesel production by valorizing waste Phoenix dactylifera L. Kernel oil in the presence of synthesized heterogeneous metallic oxide catalyst (Mn@MgO-ZrO2). Energy Convers. Manag. 2018, 155, 128–137. [Google Scholar] [CrossRef]
- Pesaresi, L.; Brown, D.; Lee, A.; Montero, J.; Williams, H.; Wilson, K. Cs-doped H4SiW12O40 catalysts for biodiesel applications. Appl. Catal. A Gen. 2009, 360, 50–58. [Google Scholar] [CrossRef]
- Liu, Y.; Mai, S.; Li, N.; Yiu, C.K.; Mao, J.; Pashley, D.H.; Tay, F.R. Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds. Acta Biomater. 2011, 7, 1742–1751. [Google Scholar] [CrossRef] [Green Version]
- Afsharizadeh, M.; Mohsennia, M. Catalytic synthesis of biodiesel from waste cooking oil and corn oil over zirconia-based metal oxide nanocatalysts. React. Kinet. Mech. Catal. 2019, 128, 443–459. [Google Scholar] [CrossRef]
- Wang, H.; Covarrubias, J.; Prock, H.; Wu, X.; Wang, D.; Bossmann, S.H. Acid-Functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J. Phys. Chem. C 2015, 119, 26020–26028. [Google Scholar] [CrossRef]
- Olah, G.A.; Laali, K.; Farooq, O. Chemistry in superacids. 6. Perfluoroalkanesulfonic acid-boron perfluoroalkanesulfonates: New superacid systems for generation of carbocations and catalysts for electrophilic transformations of hydrocarbons. J. Org. Chem. 1984, 49, 4591–4594. [Google Scholar] [CrossRef]
- Vassena, D.; Kogelbauer, A.; Prins, R. Potential routes for the nitration of toluene and nitrotoluene with solid acids. Catal. Today 2000, 60, 275–287. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, P.; Dong, Y.; Huang, M.; Liu, B. A high-surface-area mesoporous sulfated nano-titania solid superacid catalyst with exposed (101) facets for esterification: Facile preparation and catalytic performance. New J. Chem. 2014, 38, 4541–4548. [Google Scholar] [CrossRef]
- Gardy, J.; Hassanpour, A.; Lai, X.; Ahmed, M.H. Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl. Catal. A Gen. 2016, 527, 81–95. [Google Scholar] [CrossRef]
- Ropero-Vega, J.L.; Aldana-Pérez, A.; Gómez, R.; Niño-Gómez, M.E. Sulfated titania [TiO2/SO42−]: A very active solid acid catalyst for the esterification of free fatty acids with ethanol. Appl. Catal. A Gen. 2010, 379, 24–29. [Google Scholar] [CrossRef]
- Gardy, J.; Hassanpour, A.; Lai, X.; Ahmed, M.H.; Rehan, M. Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst. Appl. Catal. B Environ. 2017, 207, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Li, H.; Pan, H.; Zhang, H.; Xu, F.; Yu, Z.; Yang, S. Efficient and green production of biodiesel catalyzed by recyclable biomass-derived magnetic acids. Fuel Process. Technol. 2018, 181, 259–267. [Google Scholar] [CrossRef]
- Noda, L.K.; de Almeida, R.M.; Probst, L.F.D.; Goncalves, N. Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J. Mol. Catal. A Chem. 2005, 225, 39–46. [Google Scholar] [CrossRef]
- Noda, L.K.; de Almeida, R.M.; Goncalves, N.; Probst, L.F.D.; Sala, O. TiO2 with a high sulfate content—Thermogravimetric analysis, determination of acid sites by infrared spectroscopy and catalytic activity. Catal. Today 2003, 85, 69–74. [Google Scholar] [CrossRef]
- Soltani, S.; Rashid, U.; Al-Resayes, S.I.; Nehdi, I. Sulfonated mesoporous ZnO catalyst for methyl esters production. J. Clean. Prod. 2017, 144, 482–491. [Google Scholar] [CrossRef]
- Shu, Q.; Tang, G.; Liu, F.; Zou, W.; He, J.; Zhang, C.; Zou, L. Study on the preparation, characterization of a novel solid Lewis acid Al3+-SO42−/MWCNTs catalyst and its catalytic performance for the synthesis of biodiesel via esterification reaction of oleic acid and methanol. Fuel 2017, 209, 290–298. [Google Scholar] [CrossRef]
- Lotero, E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, A.D.A.; Goodwin, J.J.G. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 2005, 44, 5353–5363. [Google Scholar] [CrossRef]
- Melero, J.A.; van Grieken, R.; Morales, G. Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials. Chem. Rev. 2006, 106, 3790–3812. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.M.; Alvim-Ferraz, M.C.; Almeida, M.F.; Rivera-Utrilla, J.; Sanchez-Polo, M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manag. 2007, 85, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Melero, J.A.; Iglesias, J.; Morales, G. Heterogeneous acid catalysts for biodiesel production: Current status and future challenges. Green Chem. 2009, 11, 1285–1308. [Google Scholar] [CrossRef]
- Math, M.C.; Kumar, S.P.; Chetty, S.V. Technologies for biodiesel production from used cooking oil—A review. Energy Sustain. Dev. 2010, 14, 339–345. [Google Scholar] [CrossRef]
- Chouhan, A.P.S.; Sarma, A.K. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renew. Sustain. Energy Rev. 2011, 15, 4378–4399. [Google Scholar] [CrossRef]
- Semwal, S.; Arora, A.K.; Badoni, R.P.; Tuli, D.K. Biodiesel production using heterogeneous catalysts. Bioresour. Technol. 2011, 102, 2151–2161. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, B.; Korstad, J. Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod. Biorefining 2011, 5, 69–92. [Google Scholar] [CrossRef]
- Borges, M.E.; Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sustain. Energy Rev. 2012, 16, 2839–2849. [Google Scholar] [CrossRef]
- Okoronkwo, M.; Galadima, A.; Leke, L. Advances in biodiesel synthesis: From past to present. Elixir Appl. Chem. 2012, 43, 6924–6945. [Google Scholar]
- Lee, A.F.; Bennett, J.A.; Manayil, J.C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev. 2014, 43, 7887–7916. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Guo, Y. Advancements in solid acid catalysts for biodiesel production. Green Chem. 2014, 16, 2934–2957. [Google Scholar] [CrossRef]
- Lee, A.F.; Wilson, K. Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catal. Today 2015, 242, 3–18. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhu, Z.; Dong, S. Carbon-based nanostructures for advanced catalysis. ChemCatChem 2015, 7, 2806–2815. [Google Scholar] [CrossRef]
- Hanif, M.A.; Nisar, S.; Rashid, U. Supported solid and heteropoly acid catalysts for production of biodiesel. Catal. Rev. 2017, 59, 165–188. [Google Scholar] [CrossRef]
- Nigatu Gebremariam, S.; Marchetti, J.M. Biodiesel production technologies: Review. AIMS Energy 2017, 5, 425–457. [Google Scholar] [CrossRef]
- Soltani, S.; Rashid, U.; Al-Resayes, S.I.; Nehdi, I.A. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review. Energy Convers. Manag. 2017, 141, 183–205. [Google Scholar] [CrossRef]
- Tran, D.-T.; Chang, J.-S.; Lee, D.-J. Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. Appl. Energy 2017, 185, 376–409. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, I.K.M.; Cao, L.; Tsang, D.C.; Zhang, S.; Ok, Y.S. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour. Technol. 2017, 246, 254–270. [Google Scholar] [CrossRef]
- Kumar, D.; Sharma, S.; Srivastava, N.; Shukla, S.; Gaurav, K. Advancement in the utilization of nanocatalyst for transesterification of triglycerides. J. Nanosci. Technol. 2018, 4, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Bahuguna, A.; Kumar, A.; Krishnan, V. Carbon-support-based heterogeneous nanocatalysts: Synthesis and applications in organic reactions. Asian J. Org. Chem. 2019, 8, 1263–1305. [Google Scholar] [CrossRef]
- Carlucci, C.; Degennaro, L.; Luisi, R. Titanium dioxide as a catalyst in biodiesel production. Catalysts 2019, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Gardy, J.; Rehan, M.; Hassanpour, A.; Lai, X.; Nizami, A.-S. Advances in nano-catalysts based biodiesel production from non-food feedstocks. J. Environ. Manag. 2019, 249, 109316. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.N.; Bhasin, C.P.; Nayak, M.G. A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renew. Energy 2019, 143, 1366–1387. [Google Scholar] [CrossRef]
- Quah, R.V.; Tan, Y.H.; Mubarak, N.; Khalid, M.; Abdullah, E.; Nolasco-Hipolito, C. An overview of biodiesel production using recyclable biomass and non-biomass derived magnetic catalysts. J. Environ. Chem. Eng. 2019, 7, 103219. [Google Scholar] [CrossRef]
- Thangaraj, B.; Solomon, P.R.; Muniyandi, B.; Ranganathan, S.; Lin, L. Catalysis in biodiesel production—A review. Clean Energy 2019, 3, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.Y.; Ng, J.-H.; Chong, C.T.; Lam, S.S.; Chong, W.T. Biodiesel process intensification through catalytic enhancement and emerging reactor designs: A critical review. Renew. Sustain. Energy Rev. 2019, 116, 109399. [Google Scholar] [CrossRef]
- Bano, S.; Ganie, A.S.; Sultana, S.; Sabir, S.; Khan, M.Z. Fabrication and optimization of nanocatalyst for biodiesel production: An overview. Front. Energy Res. 2020, 8, 350. [Google Scholar] [CrossRef]
- Vasić, K.; Podrepšek, G.H.; Željko, K.; Leitgeb, M. Biodiesel production using solid acid catalysts based on metal oxides. Catalysts 2020, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Lowe, B.; Ahmad, A.; Gardy, J.; Hassanpour, A. Nanomaterials used in biorefineries: Types, properties, and synthesis methods. In Nanotechnology for Biorefinery; Ingle, A.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Lowe, B.; Gardy, J.; Wu, K.; Hassanpour, A. Mixed metal oxide catalysts. In Biodiesel Production: Feedstocks, Catalysts and Technologies; Rokhum, L., Ed.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2022; Chapter 8; pp. 143–166. [Google Scholar]
- Nguyen, H.; Nguyen, M.-L.; Su, C.-H.; Ong, H.; Juan, H.-Y.; Wu, S.-J. Bio-derived catalysts: A current trend of catalysts used in biodiesel production. Catalysts 2021, 11, 812. [Google Scholar] [CrossRef]
- Testa, M.L.; la Parola, V. Sulfonic acid-functionalized inorganic materials as efficient catalysts in various applications: A minireview. Catalysts 2021, 11, 1143. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Huber, D.L. Synthesis, properties, and applications of iron nanoparticles. Small 2005, 1, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Gardy, J.; Nourafkan, E.; Osatiashtiani, A.; Lee, A.F.; Wilson, K.; Hassanpour, A.; Lai, X. A core-shell SO4/Mg-Al-Fe3O4 catalyst for biodiesel production. Appl. Catal. B Environ. 2019, 259, 118093. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Rashid, U.; Taufiq-Yap, Y.H.; Yaw, T.C.S.; Ismail, I. Synthesis of carbonaceous solid acid magnetic catalyst from empty fruit bunch for esterification of palm fatty acid distillate (PFAD). Energy Convers. Manag. 2019, 195, 480–491. [Google Scholar] [CrossRef]
- Scirè, S.; Fiorenza, R.; Bellardita, M.; Palmisano, L. 21—Catalytic applications of TiO2. In Titanium Dioxide (TiO₂) and Its Applications; Parrino, F., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 637–679. [Google Scholar]
- Bagheri, S.; Julkapli, N.M.; Hamid, S.B.A. Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci. World J. 2014, 2014, 727496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, X.D.; Sun, L.; Zhang, J.; Xu, H.P. Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst SO42−/ZrO2–TiO2/La3+. Appl. Energy 2010, 87, 156–159. [Google Scholar] [CrossRef]
- Gardy, J. Biodiesel Production from Used Cooking Oil Using Novel Solid Acid Catalysts. Ph.D. Thesis, University of Leeds, Leeds, UK, 2017. [Google Scholar]
- Fan, M.; Si, Z.; Sun, W.; Zhang, P. Sulfonated ZrO2-TiO2 nanorods as efficient solid acid catalysts for heterogeneous esterification of palmitic acid. Fuel 2019, 252, 254–261. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R.; Singh, R. Transition metals doped ZnO nanoparticles for 3D printing: A state of the art review and prospective applications. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Borysiewicz, M.A. ZnO as a functional material, a review. Crystals 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, P.S.; Baranov, A.N.; Dobrokhotov, Z.V.; Solozhenko, V.L. Synthesis and thermal stability of cubic ZnO in the salt nanocomposites. Russ. Chem. Bull. 2010, 59, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Karmee, S.K.; Chadha, A. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour. Technol. 2005, 96, 1425–1429. [Google Scholar] [CrossRef]
- Istadi, I.; Anggoro, D.D.; Buchori, L.; Rahmawati, D.A.; Intaningrum, D. Active acid catalyst of sulphated zinc oxide for transesterification of soybean oil with methanol to biodiesel. Procedia Environ. Sci. 2015, 23, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Soltani, S.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Biodiesel production in the presence of sulfonated mesoporous ZnAl2O4 catalyst via esterification of palm fatty acid distillate (PFAD). Fuel 2016, 178, 253–262. [Google Scholar] [CrossRef]
- Keiteb, A.S.; Saion, E.; Zakaria, A.; Soltani, N. Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis. J. Nanomater. 2016, 2016, 1913609. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ma, S.; Du, Y.; Yuan, L.; Wang, S.; Yang, J.; Deng, F.; Xiao, F.S. Solvent-free preparation of nanosized sulfated zirconia with Brønsted acidic sites from a simple calcination. J. Phys. Chem. B 2005, 109, 2567–2572. [Google Scholar] [CrossRef]
- Jitputti, J.; Kitiyanan, B.; Rangsunvigit, P.; Bunyakiat, K.; Attanatho, L.; Jenvanitpanjakul, P. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem. Eng. J. 2006, 116, 61–66. [Google Scholar] [CrossRef]
- Raia, R.Z.; Silva, L.; Marcucci, S.M.P.; Arroyo, P. Biodiesel production from Jatropha curcas L. oil by simultaneous esterification and transesterification using sulphated zirconia. Catal. Today 2017, 289, 105–114. [Google Scholar] [CrossRef]
- Jung, K.T.; Bell, A.T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia. J. Mol. Catal. A Chem. 2000, 163, 27–42. [Google Scholar] [CrossRef]
- Garcia, C.M.; Teixeira, S.; Marciniuk, L.L.; Schuchardt, U. Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresour. Technol. 2008, 99, 6608–6613. [Google Scholar] [CrossRef]
- Muthu, H.; Sathyaselvabala, V.; Varathachary, T.K.; Kirupha Selvaraj, D.; Nandagopal, J.; Subramanian, S. Synthesis of biodiesel from Neem oil using sulfated zirconia via tranesterification. Braz. J. Chem. Eng. 2010, 27, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Fan, M.; Wang, J.; Zhang, Y.; Liu, Q.; Jing, X. Synthesis and properties of magnetic solid superacid: SO42−/ZrO2–B2O3–Fe3O4. Mater. Chem. Phys. 2010, 122, 278–283. [Google Scholar] [CrossRef]
- Alhassan, F.H.; Rashid, U.; Taufiq-Yap, Y.H. Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3MnOSO42−/ZrO2 nanoparticle solid catalyst. Fuel 2015, 142, 38–45. [Google Scholar] [CrossRef]
- Booramurthy, V.K.; Kasimani, R.; Pandian, S.; Ragunathan, B. Nano-sulfated zirconia catalyzed biodiesel production from tannery waste sheep fat. Environ. Sci. Pollut. Res. 2020, 27, 20598–20605. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Ma, W.H.; Bao, G.R.; Lv, G.Q.; Wan, X.H.; Li, Q.J. Effect of preparation parameters on the catalytic performance of solid acid catalyst SO42−/ZrO2-CeO2 in biodiesel production. Fuel Cells 2021, 21, 119–125. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Lu, R.; Wang, L. Study of preparation and properties on solid superacid sulfated titania–silica nanomaterials. Mater. Lett. 2003, 57, 1190–1196. [Google Scholar] [CrossRef]
- Mbaraka, I.K.; McGuire, K.J.; Shanks, B.H. Acidic mesoporous silica for the catalytic conversion of fatty acids in beef tallow. Ind. Eng. Chem. Res. 2006, 45, 3022–3028. [Google Scholar] [CrossRef] [Green Version]
- Dhainaut, J.; Dacquin, J.-P.; Lee, A.F.; Wilson, K. Hierarchical macroporous–mesoporous SBA-15 sulfonic acidcatalysts for biodiesel synthesis. Green Chem. 2010, 12, 296–303. [Google Scholar] [CrossRef]
- Melero, J.A.; Bautista, L.F.; Morales, G.; Iglesias, J.; Sánchez-Vázquez, R. Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts. Chem. Eng. J. 2010, 161, 323–331. [Google Scholar] [CrossRef]
- Dacquin, J.P.; Lee, A.F.; Pirez, C.; Wilson, K. Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis. Chem. Commun. 2012, 48, 212–214. [Google Scholar] [CrossRef]
- Valle-Vigón, P.; Sevilla, M.; Fuertes, A.B. Sulfonated mesoporous silica–carbon composites and their use as solid acid catalysts. Appl. Surf. Sci. 2012, 261, 574–583. [Google Scholar] [CrossRef]
- Shao, G.; Sheikh, R.; Hilonga, A.; Lee, J.E.; Park, Y.-H.; Kim, H.T. Biodiesel production by sulfated mesoporous titania–silica catalysts synthesized by the sol–gel process from less expensive precursors. Chem. Eng. J. 2013, 215–216, 600–607. [Google Scholar] [CrossRef]
- Vieira, S.S.; Magriotis, Z.; Santos, N.A.; Saczk, A.A.; Hori, C.; Arroyo, P. Biodiesel production by free fatty acid esterification using Lanthanum (La3+) and HZSM-5 based catalysts. Bioresour. Technol. 2013, 133, 248–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Q.; Zhang, J.; Zhang, X.; Feng, J.; Li, W. Synthesis of SO42−/Zr-SBA-15 catalyst for the transesterification of waste cooking oil as a bio-flotation agent in coal flotation. Fuel 2015, 143, 390–398. [Google Scholar] [CrossRef]
- Isaacs, M.A.; Parlett, C.M.A.; Robinson, N.; Durndell, L.J.; Manayil, J.C.; Beaumont, S.K.; Jiang, S.; Hondow, N.S.; Lamb, A.C.; Jampaiah, D.; et al. A spatially orthogonal hierarchically porous acid–base catalyst for cascade and antagonistic reactions. Nat. Catal. 2020, 3, 921–931. [Google Scholar] [CrossRef]
- Malani, R.S.; Choudhury, H.A.; Moholkar, V.S. Chapter 13—Waste biorefinery based on waste carbon sources: Case study of biodiesel production using carbon based catalysts and mixed feedstocks of nonedible and waste oils. In Waste Biorefinery; Bhaskar, T., Pandey, A., Rene, E.R., Tsang, D.C.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 337–378. [Google Scholar]
- Mahto, T.K.; Jain, R.; Chandra, S.; Roy, D.; Mahto, V.; Sahu, S.K. Single step synthesis of sulfonic group bearing graphene oxide: A promising carbo-nano material for biodiesel production. J. Environ. Chem. Eng. 2016, 4, 2933–2940. [Google Scholar] [CrossRef]
- Stellwagen, D.R.; van der Klis, F.; van Es, D.S.; de Jong, K.P.; Bitter, J.H. Functionalized carbon nanofibers as solid-acid catalysts for transesterification. ChemSusChem 2013, 6, 1668–1672. [Google Scholar] [CrossRef]
- Tamborini, L.; Casco, M.; Militello, M.; Silvestre-Albero, J.; Barbero, C.; Acevedo, D. Sulfonated porous carbon catalysts for biodiesel production: Clear effect of the carbon particle size on the catalyst synthesis and properties. Fuel Process. Technol. 2016, 149, 209–217. [Google Scholar] [CrossRef]
- Guan, Q.; Li, Y.; Chen, Y.; Shi, Y.; Gu, J.; Li, B.; Miao, R.; Chen, Q.; Ning, P. Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification. RSC Adv. 2017, 7, 7250–7258. [Google Scholar] [CrossRef] [Green Version]
- Nongbe, M.C.; Ekou, T.; Ekou, L.; Yao, K.B.; Le Grognec, E.; Felpin, F.-X. Biodiesel production from palm oil using sulfonated graphene catalyst. Renew. Energy 2017, 106, 135–141. [Google Scholar] [CrossRef]
- Gohain, M.; Laskar, K.; Paul, A.K.; Daimary, N.; Maharana, M.; Goswami, I.K.; Hazarika, A.; Bora, U.; Deka, D. Carica papaya stem: A source of versatile heterogeneous catalyst for biodiesel production and C–C bond formation. Renew. Energy 2020, 147, 541–555. [Google Scholar] [CrossRef]
- Poonjarernsilp, C.; Sano, N.; Tamon, H. Hydrothermally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid. Appl. Catal. B Environ. 2014, 147, 726–732. [Google Scholar] [CrossRef]
- Boudart, M. Turnover rates in heterogeneous catalysis. Chem. Rev. 1995, 95, 661–666. [Google Scholar] [CrossRef]
- Johansson Seechurn, C.C.C.; DeAngelis, A.; Colacot, T.J. Chapter 1 Introduction to new trends in cross-coupling. In New Trends in Cross-Coupling: Theory and Applications; The Royal Society of Chemistry: London, UK, 2015; pp. 1–19. [Google Scholar]
- Spivey, J.J.; Roberts, G.W.; Goodwin, J.G., Jr.; Kim, S.; Rhodes, W.D. Turnover frequencies in metal catalysis: Meanings, functionalities and relationships. In Catalysis: Volume 17; Spivey, J.J., Roberts, G.W., Eds.; The Royal Society of Chemistry: London, UK, 2004; pp. 320–348. [Google Scholar]
- Schüth, F.; Ward, M.D.; Buriak, J.M. Common pitfalls of catalysis manuscripts submitted to chemistry of materials. Chem. Mater. 2018, 30, 3599–3600. [Google Scholar] [CrossRef]
- Mahin, J.; Torrente-Murciano, L. Continuous synthesis of monodisperse iron@iron oxide core@shell nanoparticles. Chem. Eng. J. 2020, 396, 125299. [Google Scholar] [CrossRef]
Catalyst | Feedstock | A:O Ratio | Catalyst Loading (wt%) | Time (min) | T (°C) | Yield Y Conversion C | Reusability (Runs) | Particle Size (nm) | Pore Size (nm) | Surface Area (m2/g) | Acidity (mmol/g) | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FCHC-SO3H | Oleic acid | 15:1 | 4 | 180 | 80 | 96.7–84.3% Y | 5 | 144 | 6.4 | 41.4 | 1.20 | 2018 | [52] |
SO4/Mg/Al/Fe3O4 | WCO | 9:1 | 4 | 300 | 95 | ~98.5% Y | 5 | core: 20–150 shell: 5–15 | 6.5 | 123 | 2.35 | 2019 | [93] |
AC-Fe-SO3Cl | PFAD | 16:1 | 4 | 180 | 100 | 98.6–~79% C | 6 | 45.21 | 8.8 | 20.4 | 29.5 | 2019 | [94] |
Catalyst | Feedstock | A:O Ratio | Catalyst Loading (wt%) | Time (min) | T (°C) | Yield Y Conversion C | Reusability (Runs) | Particle Size (nm) | Pore Size (nm) | Surface Area (m2/g) | Acidity (mmol/g) | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SO42−/ZrO2–TiO2/La3+ | Rapeseed oil fatty acids | 1 mL/g | 5 | 300 | 60 | 95–>90% C | 5 | - | - | - | - | 2010 | [97] |
TiO2/SO42−/(NH4)2SO4 | Oleic acid | 10:1 | 2 | 180 | 80 | 82.2% C | - | - | 4.2 | 178 | 1.1 | 2010 | [50] |
TiO2/SO42− | Acetic acid | 1.2 butanol | 1.8 g | 150 | 120 | 92.2–52.1% Y | 4 | 8–10 | 12.9 | 121 | 0.79 | 2014 | [48] |
Sulfated Fe2O3/TiO2 | Soybean oil | 20:1 | 15 | 120 | 100 | ~100–~80% C | 4 | 89–103 | - | 16 | - | 2014 | [39] |
Ti(SO4)O | WCO | 9:1 | 1.5 | 180 | 75 | 97.1–94.12% Y | 8 | 25 | 22.7 | 44.5 | - | 2016 | [49] |
TiO2/PrSO3H | WCO | 15:1 | 4.5 | 540 | 60 | 98.3–94.16% Y | 4 | 23.1 | 24.6 | 38.6 | - | 2017 | [51] |
SO4/Fe-Al-TiO2 | WCO | 10:1 | 3 | 150 | 90 | 96–>90% Y | 10 | <50 | 11.1 | 51 | 1.18 | 2017–2018 | [38,98] |
ZrO2-TiO2-SO3H | Palmitic acid | 20:1 | 5 | 240 | 100 | 93.1–85.1% Y | 5 | Length: 4000, Width: 100 | - | 32.5 | 1.9 | 2019 | [99] |
Catalyst | Feedstock | A:O Ratio | Catalyst Loading (wt%) | Time (min) | T (°C) | Yield Y Conversion C | Reusability (Runs) | Particle Size (nm) | Pore Size (nm) | Surface Area (m2/g) | Acidity (mmol/g) | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZnO | Pongamia oil | 10:1 | 11.5 | 90 | 60 | 92% C | - | - | - | - | - | 2005 | [103] |
SO42−/ZnO | Soybean oil | 6:1 | 4 | 240 | 65 | 80.2% Y | - | - | - | - | - | 2015 | [104] |
SO3H-ZnAl2O4 | PFAD | 9:1 | 1 | 60 | 120 | 94.65–67.29% Y | 8 | - | 3.10 | 352.39 | 1.95 | 2016 | [105] |
ZnO-SO3H | PFAD | 9:1 | 2 | 90 | 120 | 95.6–>80% Y | 6 | - | 3.16 | 305.62 | 1.72 | 2017 | [55] |
Catalyst | Feedstock | A:O Ratio | Catalyst Loading (wt%) | Time (min) | T (°C) | Yield Y Conversion C | Reusability (Runs) | Particle Size (nm) | Pore Size (nm) | Surface Area (m2/g) | Acidity (mmol/g) | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SO42−/ZrO2 | Palm kernel oil | 6:1 | 1 | 60 | 60 | 90.3% Y | 1 | - | - | - | - | 2006 | [108] |
Sulfated ZrO2 | Soybean oil | 20:1 | 5 | 60 | 120 | 98.6% Y | 1 | - | - | 126 | - | 2008 | [111] |
Sulfated ZrO2 | Neem oil | 9:1 | 1 | 120 | 65 | 94% C | - | 2–3 × 104 | - | - | - | 2010 | [112] |
SO42−/ZrO2–B2O3–Fe3O4 | Acetic acid | - | - | 240 | 100 | 98.2–96.7% Y | 5 | - | - | - | - | 2010 | [113] |
Fe2O3-MnO-SO42−/ZrO2 | WCO | 20:1 | 3 | 240 | 180 | ~96.5% Y | 6 | 11.5–21 | - | 1.39 × 10−6 | 4.32 A 1.52 B | 2015 | [114] |
Sulfated ZrO2 | Oleic acid | 10:1 | 10 | 240 | 150 | 81.3% Y | - | - | 5.9 | 65.8 | 0.414 | 2017 | [109] |
FeMn-Sulfated ZrO2 | Tannery waste sheep fat | 15:1 | 8 | 300 | 65 | 98.7–>90% Y | 5 | - | - | - | - | 2020 | [115] |
SO42–/ZrO2-CeO2 | Jatropha oil | 15.3:1 | 8 | 60 | 140 | 87.4–85.4% C | 5 | 10 | - | 83.4 | - | 2021 | [116] |
Catalyst | Feedstock | A:O Ratio | Catalyst Loading (wt%) | Time (min) | T (°C) | Yield Y Conversion C | Reusability (Runs) | Particle Size (nm) | Pore Size (nm) | Surface Area (m2/g) | Acidity (mmol/g) | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SO42−/TiO2/SiO2 | Acetic acid | - | - | - | 120 | 91.4% C | - | - | - | 550 | - | 2003 | [118] |
SBA-15-SO3H-Pr | Untreated beef tallow | 20:1 | 10 | 120 | 120 | 92–84% C | 2 | - | 4.8 | 920 | 0.91 | 2006 | [119] |
SBA-15-SO3H | Palmitic acid | 30:1 | 0.05 g | 360 | 60 | 50% Y | - | - | 3.9 | 938 | 0.22 | 2010 | [120] |
TMS Capped/arene-SO3H/SBA-15 | Palm oil | 20:1 | 6 | 240 | 140 | ~95% Y | 3 | - | 8.3 | 533 | 1.04 | 2010 | [121] |
SBA-15-SO3H | Palmitic acid | 30:1 | 0.05 g | 360 | 60 | 33.5% C | - | - | 13.8 | 531 | 0.19 | 2012 | [122] |
KIT-6/C-SO3H | Maleic anhydride | 6:1 | 0.2 g | 1800 | - | ~60% Y | 4 | - | 11 | 590 | 3.0 | 2012 | [123] |
SO42−/TiO2/SiO2 | WCO | 20:1 | 10 | 180 | 120 | 77–74.3% C | 2 | - | 2.85 | 457 | - | 2013 | [124] |
SO42−/La2O3/HZSM-5 | Oleic acid | 5:1 | 10 | 420 | 100 | ~100% C | 1 | 17–150 × 103 | 5.2–120 | 217 | - | 2013 | [125] |
Fe/Fe3O4/SiO2/APTES-NHSO2H | Glyceryl trioleate | 8:1 | 5 | 1200 | 100 | 100–>90% C | 5 | 60 | - | - | 0.48 | 2015 | [45] |
SO42−/Zr-SBA-15 | WCO | 40:1 | 3 | 180 | 160 | 98.5–~80% C | 6 | - | 3.27–5.47 | 271 | - | 2015 | [126] |
SZ/MgO/SBA-15 | Tributyrin | 60 cm3 meOH, 5 mmol TG | 34 | 180 | 60 | 40% C | - | - | 4–350 | 350 | 0.13 A 0.045 B | 2020 | [127] |
Catalyst | Feedstock | A:O Ratio | Catalyst Loading (wt%) | Time (min) | T (°C) | Yield Y Conversion C | Reusability (Runs) | Particle Size (nm) | Pore Size (nm) | Surface Area (m2/g) | Acidity (mmol/g) | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNF-Ar-SO3H | Triolein | 10:1 | 0.75 g | 240 | 120 | ~72% Y | 4 | - | - | - | 0.62 | 2013 | [130] |
SO3H-GO | Oleic acid | 0.1 mol/g | 5 | 240 | 100 | 97.6–74% C | 3 | - | 3.8 | 437 | - | 2016 | [129] |
PC-SO3H | Acetic acid | 10:1 | 10 | 600 | 75 | 94–80% C | 3 | 0.2–0.4 × 105 | 17 | 140 | 1.58 | 2016 | [131] |
S-MWCNTs | Trilaurin | 20:1 | 3.7 | 60 | 150 | 97.8–~85% Y | 2 | Length: 0.5–2 × 103 Width: 20–30 | 5–35 | 199 | - | 2017 | [132] |
Al3+/SO42−/MWCNT | Oleic acid | 12:1 | 0.9 | 420 | 65 | 95–81.1% C | 8 | Width: ~25 | - | - | - | 2017 | [56] |
Graphene-SO3H | Palm oil | 20:1 | 10 | 600 | 100 | ~98% Y | 4 | - | - | - | 1.75 | 2017 | [133] |
Catalyst | T (°C) | TOF (min−1) | Ea (kJ/mol) | K (min−1) | n | Year | Reference |
---|---|---|---|---|---|---|---|
SBA-15/sulfonic acid | 60 | 0.13–0.58 | - | - | - | 2010 | [120] |
KIT-6/C-SO3H | - | 0.57 | - | - | - | 2012 | [123] |
SBA-15/sulfonic acid | 60 | 0.20–2.00 | - | - | - | 2012 | [122] |
SO42−/La2O3/HZSM-5 | 100 | - | 44 | - | 1 | 2013 | [125] |
CNF-Ar-SO3H | 120 | 0.32 | - | - | - | 2013 | [130] |
SO3H-GO | 100 | - | 13 | 0.921 | 1 | 2016 | [129] |
S-MWCNTs | 150 | - | 72 | 0.0498 | 1 | 2017 | [132] |
Fe3O4-Chitosan-Hollow-Chitosan-SO3H | 80 | - | 38 | 0.0173 | 1 | 2018 | [52] |
Catalyst | A:O Ratio | Catalyst Loading (wt%) | Time (min) | T (°C) | Yield Y Conversion C | Reusability (Runs) | Particle Size (nm) | Pore Size (nm) | Surface Area (m2/g) | Acidity (mmol/g) | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SO42−/TiO2-SiO2 | 20:1 | 10 | 180 | 120 | 77% C | 1 | - | 2.85 | 457 | - | 2013 | [124] |
Fe2O3-MnO-SO42−/ZrO2 | 20:1 | 3 | 240 | 180 | ~96.5% Y | 6 | 11.5–21 | - | 1.39 × 10−6 | 4.32 A 1.52 B | 2015 | [114] |
SO42−/Zr-SBA-15 | 40:1 | 3 | 180 | 160 | 98.5–80% C | 6 | - | 3.27–5.47 | 271 | - | 2015 | [126] |
Ti(SO4)O | 9:1 | 1.5 | 180 | 75 | 97.1–94.12% Y | 8 | 25 | 22.7 | 44.5 | - | 2016 | [49] |
TiO2/PrSO3H | 15:1 | 4.5 | 540 | 60 | 98.3–94.16% Y | 4 | 8.2–42 | 24.6 | 38.6 | - | 2017 | [51] |
SO42−/Fe-Al-TiO2 | 10:1 | 3 | 150 | 90 | 96–>90% Y | 10 | <50 | 11.1 | 51 | 1.18 | 2017 2018 | [38,98] |
SO42−/Mg-Al-Fe3O4 | 9:1 | 4 | 300 | 95 | ~98.5% Y | 5 | 25–165 | 6.5 | 123 | 2.35 | 2019 | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lowe, B.; Gardy, J.; Hassanpour, A. The Role of Sulfated Materials for Biodiesel Production from Cheap Raw Materials. Catalysts 2022, 12, 223. https://doi.org/10.3390/catal12020223
Lowe B, Gardy J, Hassanpour A. The Role of Sulfated Materials for Biodiesel Production from Cheap Raw Materials. Catalysts. 2022; 12(2):223. https://doi.org/10.3390/catal12020223
Chicago/Turabian StyleLowe, Brandon, Jabbar Gardy, and Ali Hassanpour. 2022. "The Role of Sulfated Materials for Biodiesel Production from Cheap Raw Materials" Catalysts 12, no. 2: 223. https://doi.org/10.3390/catal12020223
APA StyleLowe, B., Gardy, J., & Hassanpour, A. (2022). The Role of Sulfated Materials for Biodiesel Production from Cheap Raw Materials. Catalysts, 12(2), 223. https://doi.org/10.3390/catal12020223