Monolithic Stirrer Reactors for the Sustainable Production of Dihydroxybenzenes over 3D Printed Fe/γ-Al2O3 Monoliths: Kinetic Modeling and CFD Simulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Performance
2.2. Kinetic Modeling
2.3. Reaction Mechanism
2.4. CFD Modeling and Simulation
2.4.1. Validation of the Laminar Flow
2.4.2. Velocity and Mass Transport Analysis
2.4.3. Catalytic Performance Simulation
3. Materials and Methods
3.1. Robocasted 3D Fe/Al2O3 Monoliths
3.2. Phenol Hydroxylation Reaction
3.3. Fenton Reaction
3.4. Kinetic Modeling
3.5. CFD Modeling
3.5.1. Geometry and Meshing
3.5.2. Governing Equations and Boundary Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Visscher, F.; Van der Schaaf, J.; Nijhuis, T.A.; Schouten, J.C. Rotating reactors—A review. Chem. Eng. Res. Des. 2013, 91, 1923–1940. [Google Scholar] [CrossRef]
- Stankiewicz, A.I.; Moulijn, J.A. Process Intensification: Transforming Chemical Engineering. Chem. Eng. Prog. 2000, 96, 22–34. [Google Scholar]
- Edvinsson-Albers, R.K.; Houterman, M.J.J.; Vergunst, T.; Grolman, E.; Moulijn, J.A. Novel monolithic stirred reactor. AIChE J. 1998, 44, 2459–2464. [Google Scholar] [CrossRef]
- Nijhuis, T.A.; Dautzenberg, F.M.; Moulijn, J.A. Modeling of monolithic and trickle-bed reactors for the hydrogenation of styrene. Chem. Eng. Sci. 2003, 58, 1113–1124. [Google Scholar] [CrossRef]
- Hoek, I.; Nijhuis, T.A.; Stankiewicz, A.I.; Moulijn, J.A. Performance of the monolithic stirrer reactor: Applicability in multi-phase processes. Chem. Eng. Sci. 2004, 59, 4975–4981. [Google Scholar] [CrossRef] [Green Version]
- Boger, T.; Zieverink, M.M.P.; Kreutzer, M.T.; Kapteijn, F.; Moulijn, J.A.; Addiego, W.P. Monolithic catalysts as an alternative to slurry systems: hydrogenation of edible oil. Ind. Eng. Chem. Res. 2004, 43, 2337–2344. [Google Scholar] [CrossRef]
- Lathouder, K.M.; Fló, T.M.; Kapteijn, F.; Moulijn, J.A. A novel structured bioreactor: Development of a monolithic stirrer reactor with immobilized lipase. Catal. Today 2005, 105, 443–447. [Google Scholar] [CrossRef]
- Kapteijn, F.; Nijhuis, T.A.; Heiszwolf, J.J.; Moulijn, J.A. New non-traditional multiphase catalytic reactors based on monolithic structures. Catal. Today 2001, 66, 133–144. [Google Scholar] [CrossRef]
- Boldrini, D.E.; Sánchez, M.J.F.; Tonetto, G.M.; Damiani, D.E. Monolithic stirrer reactor: Performance in the partial hydrogenation of sunflower oil. Ind. Eng. Chem. Res. 2012, 51, 12222–12232. [Google Scholar] [CrossRef]
- Salazar-Aguilar, A.D.; Quintanilla, A.; Vega-Díaz, S.M.; Casas, J.A.; Miranzo, P.; Osendi, M.I.; Belmonte, M. Iron-based metal-organic frameworks integrated into 3D printed ceramic architectures. Open Ceram. 2021, 5, 100047. [Google Scholar] [CrossRef]
- Regenhardta, S.A.; Meyera, C.I.; Sanzb, O.; Sebastianc, V.; Ivanovad, S.; Centenod, M.A.; Odriozolad, J.A.; Montesb, M.; Marchia, A.J.; Garettoa, T.F. Monolithic stirrer reactor: The selective lactose oxidation in liquid phase over Au/Al2O3 nanostructured catalysts. Mol. Catal. 2020, 481, 110219. [Google Scholar] [CrossRef]
- Wu, D.; Guo, Y.; Geng, S.; Xia, Y. Synthesis of propylene carbonate from urea and 1,2-propylene glycol in a monolithic stirrer reactor. Ind. Eng. Chem. Res. 2013, 52, 1216–1223. [Google Scholar] [CrossRef]
- Boldrini, D.E. Monolithic stirrer reactor for vegetable oil hydrogenation: A technical and economic assessment. Chem. Eng. Process. 2018, 132, 229–240. [Google Scholar] [CrossRef]
- Moulijn, J.A.; Kreutzer, M.T.; Nijhuis, T.A.; Kapteijn, F. Monolithic Catalysts and Reactors: High Precision with Low Energy Consumption. In Advances in Catalysis; Gates, B.C., Knözinger, H., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 54, pp. 249–327. [Google Scholar]
- Gokhare, V.G.; Raut, D.N.; Shinde, D.K. A Review paper on 3D-Printing aspects and various processes used in the 3D-Printing. Int. J. Eng. Res. 2017, 6, 953–958. [Google Scholar]
- Urhal, P.; Weightman, A.; Diver, C.; Bartolo, P. Robot assisted additive manufacturing: A review. Robot. Comput. Integr. Manuf. 2019, 59, 335–345. [Google Scholar] [CrossRef]
- Symes, M.D.; Kitson, P.J.; Yan, J.; Richmond, C.J.; Cooper, G.J.T.; Bowman, R.W.; Vilbrandt, T.; Cronin, L. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 2012, 4, 349–354. [Google Scholar] [CrossRef]
- Parra-Cabrera, C.; Achille, C.; Kuhn, S.; Ameloot, R. 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 2018, 47, 209–230. [Google Scholar] [CrossRef]
- Zentel, K.M.; Fassbender, M.; Power, W.; Luintra, Q.A. 3D Printing as Chemical Reaction Engineering Booster. In Advances in Polymer Reaction Engineering; Moscatelli, D., Sponchioni, M., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 56, pp. 97–137. [Google Scholar]
- Alimi, O.A.; Meijboom, R. Current and future trends of additive manufacturing for chemistry applications: A review. J. Mater. Sci. 2021, 56, 16824–16850. [Google Scholar] [CrossRef]
- Lawson, S.; Li, X.; Thakkar, H.; Rownaghi, A.A.; Rezaei, F. Recent advances in 3D Printing of structured materials for adsorption and catalysis applications. Chem. Rev. 2021, 121, 6246–6291. [Google Scholar] [CrossRef]
- Bogdan, E.; Michorczyk, P. 3D Printing in heterogeneous catalysis-The state of the art. Materials 2020, 13, 4534. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla, A.; Casas, J.A.; Miranzo, P.; Osendi, M.I.; Belmonte, M. 3D-Printed Fe-Doped silicon carbide monolithic catalysts for wet peroxide oxidation processes. Appl. Catal. B Environ. 2018, 235, 246. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Li, L. Fabrication of 3D Photocatalytic α-Fe2O3 Structure using direct ink writing method. Mod. Phys. Lett. B 2014, 28, 1450051. [Google Scholar] [CrossRef]
- Middelkoop, V.; Slater, T.; Florea, M.; Neatu, F.; Danaci, S.; Onyenkeadi, V.; Boonen, K.; Saha, B.; Baragau, I.A.; Kellici, S. Next frontiers in cleaner synthesis: 3D-printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 Utilization and direct propylene carbonate production. J. Clean. Prod. 2019, 214, 606–614. [Google Scholar] [CrossRef]
- Middelkoop, V.; Vamvakeros, A.; De Wit, D.; Jacques, S.D.M.; Danaci, S.; Jacquot, C.; De Vos, Y.; Matras, D.; Price, S.W.T.; Beale, A.M. 3D-printed Ni/Al2O3 based catalysts for CO2 methanation-a comparative and operando XRD-CT Study. J. CO2 Util. 2019, 33, 478–487. [Google Scholar] [CrossRef]
- Li, X.; Rezaei, F.; Rownaghi, A. Methanol-to-olefin conversion on 3D-Printed ZSM-5 monolith catalysts: Effects of metal doping, mesoporosity and acid strength. Microporous Mesoporous Mater. 2019, 276, 1–12. [Google Scholar] [CrossRef]
- Li, X.; Alwakwak, A.A.; Rezaei, F.; Rownaghi, A.A. Synthesis of Cr, Cu, Ni, and Y-Doped 3D-Printed ZSM-5 Monoliths and Their Catalytic Performance for n-Hexane Cracking. ACS Appl. Energy Mater. 2018, 1, 2740–2748. [Google Scholar] [CrossRef]
- Vega, G.; Quintanilla, A.; Menendez, N.; Belmonte, M.; Casas, J.A. 3D-honeycomb monoliths with interconnected channels for the sustainable production of dihydroxybenzenes: Towards the intensification of selective oxidation processes. Chem. Eng. Process. 2021, 165, 108437. [Google Scholar] [CrossRef]
- Salazar-Aguilar, D.A.; Quintanilla, A.; López, P.; Martínez, C.; Vega-Díaz, S.M.; Casas, J.A.; Miranzo, P.; Osendi, M.I.; Belmonte, M. 3D printed Fe/γ-Al2O3 monoliths from MOF-based boehmite inks for the catalytic hydroxylation of phenol. ACS Appl. Mater. Interfaces 2022, 14, 920–932. [Google Scholar] [CrossRef]
- Warna, J.; Ronnholm, M.; Salmi, T.; Keikko, K. Application of CFD on a catalytic rotating basket reactor. Comput. Aided Chem. Eng. 2002, 10, 1009–1014. [Google Scholar]
- Magnico, P.; Fongarland, P. CFD simulations of two stirred tank reactors with stationary catalytic basket. Chem. Eng. Sci. 2006, 26, 1217–1236. [Google Scholar] [CrossRef]
- Santos-Moreau, V.; Brunet-Errard, L.; Rolland, M. Numerical CFD simulation of a batch stirred tank reactor with stationary catalytic basket. Chem. Eng. J. 2012, 207–208, 596–606. [Google Scholar] [CrossRef]
- Frey, M.; Dominique, L.V.; Fongarland, R.P. Experimental and CFD study of a new one-pot reactor for hybrid Catalysis. Chem. Eng. J. 2020, 383, 1229583. [Google Scholar] [CrossRef]
- Yang, L.; Li, R.; Hu, C. The preparation of Fe/wood-based activated carbon catalyst for phenol hydroxylation from Fe2+ and Fe3+ precursors. Catal. Sci. Technol. 2015, 5, 2486–2495. [Google Scholar] [CrossRef]
- Liang, X.; Yang, R.; Li, G.; Hu, C. Phenol hydroxylation over Fe-incorporated mesoporous materials prepared by coprecipitation. Microporous Mesoporous Mater. 2013, 182, 62–72. [Google Scholar] [CrossRef]
- Shi, F.; Luo, Y.; Li, Z.; Shan, C.; Zhang, L. Preparation of 5,10,15,20-(4-hydroxy)phenylporphyrin copper/γ-Al2O3 and its performance as catalyst in phenol hydroxylation. React. Kinet. Mech. Catal. 2017, 120, 555–565. [Google Scholar] [CrossRef]
- Brodkey, R.S.; Hershey, H.C. Agitation. In Transport Phenomena: A Unified Approach. Part II and III; McGraw-Hill Inc.: Columbus, OH, USA, 1988; Volume 2, pp. 359–399. [Google Scholar]
- Hayes, R.E.; Afacan, A.; Boulanger, B.; Tanguy, P.A. Experimental Study of Reactive Mixing in a Laminar Flow Batch Reactor. Chem. Eng. Res. Des. 1998, 76, 73–81. [Google Scholar] [CrossRef]
- Quintanilla, A.; Diaz de Tuesta, J.L.; Figueruelo, C.; Munoz, M.; Casas, J.A. Condensation By-Products in Wet Peroxide Oxidation: Fouling or Catalytic Promotion? Part I. Evidences of an Autocatalytic Process. Catalysts 2019, 9, 516. [Google Scholar] [CrossRef] [Green Version]
- Rueda Márquez, J.J.; Levchuk, I.; Sillanpää, M. Application of Catalytic Wet Peroxide Oxidation for Industrial and Urban Wastewater Treatment: A Review. Catalysts 2018, 8, 673. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Aguilar, A.D.; Vega, G.; Casas, J.A.; Vega-Díaz, S.M.; Tristan, F.; Meneses-Rodríguez, D.; Belmonte, M.; Quintanilla, A. Direct Hydroxylation of Phenol to Dihydroxybenzenes by H2O2 and Fe-based Metal-Organic Framework Catalyst at Room Temperature. Catalysts 2020, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Renaud, C.; Cros, J.; Feng, Z.; Yang, B. The Yeoh model applied to the modeling of large deformation contact/impact problems. Int. J. Impact Eng. 2009, 36, 659–666. [Google Scholar] [CrossRef] [Green Version]
Compound | Rate Equations * and Kinetic Parameter Values | ||
---|---|---|---|
T = 75 °C | T = 85 °C | T = 95 °C | |
H2O2 | |||
(mol min−1 gCAT−1) | 1.8·10−2 ± 3.8·10−3 | 2.8·10−2 ± 8.3·10−3 | 5.9·10−2 ± 2.5·10−3 |
PHENOL | |||
(L2 mol−1 min−1 gCAT−1) | 3.95 ± 1.51 | 3.40 ± 1.54 | 2.98 ± 0.98 |
(L mol−1) | 23.1 ± 6.4 | 13.9 ± 5.4 | 5.5 ± 2.2 |
CATECHOL | |||
(L2 mol−1 min−1 gCAT−1) | 2.06 ± 0.78 | 1.72 ± 0.81 | 1.75 ± 0.58 |
(L mol−1) | 23.1 ± 6.4 | 13.9 ± 5.4 | 5.5 ± 2.2 |
HYDROQUINONE | |||
(L2 mol−1 min−1 gCAT−1) | 1.16 ± 0.45 | 1.03 ± 0.49 | 1.04 ± 0.35 |
(L mol−1) | 23.1 ± 6.4 | 13.9 ± 5.4 | 5.5 ± 2.2 |
* Rates in mol gCAT−1 h−1 and concentration in mol L−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, P.; Quintanilla, A.; Salazar-Aguilar, A.D.; Vega-Díaz, S.M.; Díaz-Herrezuelo, I.; Belmonte, M.; Casas, J.A. Monolithic Stirrer Reactors for the Sustainable Production of Dihydroxybenzenes over 3D Printed Fe/γ-Al2O3 Monoliths: Kinetic Modeling and CFD Simulation. Catalysts 2022, 12, 112. https://doi.org/10.3390/catal12020112
López P, Quintanilla A, Salazar-Aguilar AD, Vega-Díaz SM, Díaz-Herrezuelo I, Belmonte M, Casas JA. Monolithic Stirrer Reactors for the Sustainable Production of Dihydroxybenzenes over 3D Printed Fe/γ-Al2O3 Monoliths: Kinetic Modeling and CFD Simulation. Catalysts. 2022; 12(2):112. https://doi.org/10.3390/catal12020112
Chicago/Turabian StyleLópez, Pablo, Asunción Quintanilla, Alma D. Salazar-Aguilar, Sofía M. Vega-Díaz, Irene Díaz-Herrezuelo, Manuel Belmonte, and Jose A. Casas. 2022. "Monolithic Stirrer Reactors for the Sustainable Production of Dihydroxybenzenes over 3D Printed Fe/γ-Al2O3 Monoliths: Kinetic Modeling and CFD Simulation" Catalysts 12, no. 2: 112. https://doi.org/10.3390/catal12020112