Research Progress on Sulfur Deactivation and Regeneration over Cu-CHA Zeolite Catalyst
Abstract
:1. Introduction
2. Research on Copper’s Active Sites and NH3-SCR Reaction over Cu-CHA
2.1. NH3-SCR Reaction Mechanism over the Cu-CHA Reaction
2.2. HTA Resistance over Cu-CHA
3. Sulfur Poisoning and Regeneration over Cu/CHA
3.1. SO2 Poisoning over Cu/CHA
3.2. SO3 Poisoning over Cu/CHA
3.3. Sulfur Regeneration over Cu-CHA
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, K.J.; Kumar, P.A.; Maqbool, M.S.; Rao, K.N.; Song, K.H.; Ha, H.P. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3-SCR: Physical-chemical properties and catalytic activity. Appl. Catal. B Environ. 2013, 142–143, 705–717. [Google Scholar] [CrossRef]
- Zhao, H.W.; Zhao, Y.N.; Liu, M.K.; Li, X.H.; Ma, Y.H.; Yong, X.; Chen, H.; Li, Y.D. Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NOx with NH3. Appl. Catal. B Environ. 2019, 252, 230–239. [Google Scholar] [CrossRef]
- Ryu, T.; Kim, H.; Hong, S.B. Nature of active sites in Cu-LTA NH3-SCR catalysts: A comparative study with Cu-SSZ-13. Appl. Catal. B Environ. 2019, 245, 513–521. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Li, Z.Q.; Wang, Y.; Fan, R.R.; Zhang, C.; Wang, Y.; Guo, X.; Wang, R.; Zhang, S.L. Ce and Zr Modified WO3-TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3. Catalysts 2018, 8, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.L.; Du, J.P.; Zhang, Y.; Shan, W.P.; Shi, X.Y.; Yu, Y.B.; Zhang, R.D.; Meng, X.J.; Xiao, F.S.; He, H. Selective catalytic reduction of NOx with NH3: Opportunities and challenges of Cu-based small-pore zeolites. NSR 2021, 8, nwab010. [Google Scholar] [CrossRef] [PubMed]
- Yahiro, H.; Iwamoto, M. Copper ion-exchanged zeolite catalysts in de-NOx reaction. Appl. Catal. A Gen. 2001, 222, 163–181. [Google Scholar] [CrossRef]
- Zones, S.I. Zeolite SSZ-13 and Its Method of Preparation. US Patent 4,544,538, 1985. [Google Scholar]
- Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R.W.; Fu, L.; Li, J. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust. Chem. Eng. J. 2013, 225, 323–330. [Google Scholar] [CrossRef]
- Wang, J.C.; Peng, Z.L.; Chen, Y. In-situ hydrothermal synthesis of Cu-SSZ-13/cordierite for the catalytic removal of NOx from diesel vehicles by NH3. Chem. Eng. J. 2015, 263, 9–19. [Google Scholar] [CrossRef]
- Xue, J.J.; Wang, X.Q.; Qi, G.S.; Wang, J.; Shen, M.Q.; Li, W. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature. J. Catal. 2013, 297, 56–64. [Google Scholar] [CrossRef]
- Metkar, P.S.; Harold, M.P.; Balakotaiah, V. Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts. Chem. Eng. Sci. 2013, 87, 51–66. [Google Scholar] [CrossRef]
- Cejka, J.; Avelino, C.; Stacey, Z. Zeolites and Catalysis: Synthesis, Reactions and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wang, J.C.; Peng, Z.L.; Qiao, H.; Han, L.; Bao, W.R.; Chang, L.; Gang, F.; Liu, W. Influence of aging on in situ hydrothermally synthesized Cu-SSZ-13 catalyst for NH3-SCR reaction. R. Soc. Chem. 2014, 4, 42403–42411. [Google Scholar] [CrossRef]
- Ciardelli, C.; Nova, I.; Tronconi, E. Reactivity of NO/NO2-NH3 SCR system for diesel exhaust aftertreatment: Identification of the reaction network as a function of temperature and NO2 feed content. Appl. Catal. B Environ. 2007, 70, 80–90. [Google Scholar] [CrossRef]
- Gao, F.; Kwak, J.H.; Szanyi, J.; Peden, C.H.F. Current understanding of Cu-exchanged Chabazite molecular sieves for use as commercial diesel engine DeNOx catalysts. Top. Catal. 2013, 56, 1441–1459. [Google Scholar] [CrossRef]
- Wang, A.; Chen, Y.; Walter, E.D.; Washton, N.M.; Mei, D.; Varga, T.; Wang, Y.; Szanyi, J.; Wang, Y.; Peden, C.H.F.; et al. Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts. Nat. Commun. 2019, 10, 1137. [Google Scholar] [CrossRef] [Green Version]
- Sappok, A.G.; Wong, V.W. Physical Characterization of Ash Species in Diesel Exhaust Entering After Treatment Systems; SAE International 2007-01-0318; Massachusetts Institute of Technology, Sloan Automotive Laboratory: Cambridge, MA, USA, 2007. [Google Scholar]
- Korhonen, S.T.; Fickel, D.W.; Lobo, R.F.; Weckhuysen, B.M.; Beale, A.M. Isolated Cu2+ ions: Active sites for selective catalytic reduction of NO. Chem. Comm. 2011, 47, 800–802. [Google Scholar] [CrossRef] [PubMed]
- Fickel, D.W.; D’Addio, E.; Lauterbach, J.A. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B Environ. 2011, 102, 441–448. [Google Scholar] [CrossRef]
- Gao, F.; Walter, E.D.; Karp, E.M. Structure–activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPF studies. J. Catal. 2013, 300, 20–29. [Google Scholar] [CrossRef]
- Paolucci, C.; Khurana, I.; Parekh, A.A.; Li, S.; Shih, A.J.; Li, H.; Iorio, J.R.D.; Calallerg, A.; Yezerets, A.; Miller, J.T.; et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 2017, 357, 898–903. [Google Scholar] [CrossRef] [Green Version]
- Negri, C.; Selleri, T.; Borfecchia, E.; Martini, A.; Lomachenko, K.A.; Janssens, T.V.W.; Cutini, M.; Bordiga, S.; Berlier, G. Structure and reactivity of oxygenbridged diamino dicopper (II) complexes n Cu-CHA catalyst for NH3-SCR. J. Am. Chem. Soc. 2020, 142, 15884–15896. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Walter, E.D.; Kollar, M.; Wang, Y.; Szanyi, J.; Peden, C.H.F. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J. Catal. 2014, 319, 1–14. [Google Scholar] [CrossRef]
- Janssens, T.V.W.; Falsig, H.; Lundegaard, L.F.; Vennestrøm, P.N.R.; Rasmussen, S.B.; Moses, P.G.; Giordanino, F.; Borfecchia, E.; Lomachenko, K.A.; Lamberti, C.; et al. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia. ACS Catal. 2015, 5, 2832–2845. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Wang, Y.; Washton, N.M.; Kollar, M.; Szanyi, J.; Peden, C.F.F. Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR Catalysts. ACS Catal. 2015, 5, 6780–6791. [Google Scholar] [CrossRef]
- Song, J.; Wang, Y.; Walter, E.D.; Washton, N.M.; Mei, D.; Kovarik, L.; Engelhard, M.H.; Prodinger, S.; Wang, Y.; Peden, C.H.F. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability. ACS Catal. 2017, 7, 8214–8227. [Google Scholar] [CrossRef]
- Kwak, J.H.; Tonkyn, R.G.; Kim, D.H.; Szanyi, J.; Peden, C.H.F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 2010, 275, 187–190. [Google Scholar] [CrossRef]
- Dahlin, S.; Lantto, C.; Englund, J.; Bjrn, W.; Skoglundh, M.; Lars, J.P. Chemical aging of Cu-SSZ-13 SCR catalysts for heavy-duty vehicles-Influence of sulfur dioxide. Catal. Today 2019, 320, 72–83. [Google Scholar] [CrossRef]
- Wijayanti, K.; Leistner, K.; Chand, S.; Kumar, A.; Kamasamudram, K.; Currier, N.W.; Yezerets, A.; Olsson, L. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions. Catal. Sci. Technol. 2016, 6, 2565–2579. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Wang, J.; Yu, T.; Shen, M. The effect of sulfate species on the activity of NH3-SCR over Cu/SAPO-34. Appl. Catal. B Environ. 2017, 204, 239–249. [Google Scholar] [CrossRef]
- Su, W.; Li, Z.; Zhang, Y.; Meng, C.; Li, J. Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst. Catal. Sci. Technol. 2017, 7, 1523–1528. [Google Scholar] [CrossRef]
- Luo, J.; Gao, F.; Kamasamudram, K.; Currier, N.; Peden, C.H.F.; Yezerets, A. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH3 titration. J. Catal. 2017, 348, 291–310. [Google Scholar] [CrossRef] [Green Version]
- Jangjou, Y.; Do, Q.; Gu, Y.; Lim, L.G.; Sun, H.; Wang, D.; Kumar, A.; Li, J.; Grabow, L.C.; Epling, W. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure. ACS Catal. 2018, 8, 1325–1337. [Google Scholar] [CrossRef]
- Ren, L.; Zhu, L.F.; Yang, C.G.; Chen, Y.M.; Su, Q.; Zhang, H.Y.; Li, C.; Nawaz, F.; Meng, X.J.; Xiao, F.S. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chem. Commun. 2011, 47, 9789–9791. [Google Scholar] [CrossRef] [PubMed]
- Molokova, A.Y.; Borfecchia, E.; Martini, A.; Pankin, I.A.; Atzori, C.; Mathon, O.; Bordiga, S.; Wen, F.; Vennestrøm, P.N.R.; Berlier, G.; et al. SO2 Poisoning of Cu-CHA deNOx Catalyst: The Most Vulnerable Cu Species Identified by X-ray Absorption Spectroscopy. JACS Au 2022, 2, 787–792. [Google Scholar] [CrossRef]
- Kirill, A.L.; Borfecchia, E.; Chiara, N.; Gloria, B.; Carlo, L.; Pablo, B.; Hanne, F.; Silvia, B. The Cu-CHA deNOx catalyst in action: Temperature-dependent NH3-SCR monitored by operando X-ray absorption and emission spectroscopy. J. Am. Chem. Soc. 2016, 138, 12025–12028. [Google Scholar]
- Shen, M.; Zhang, Y.; Wang, J. Nature of SO3 poisoning on Cu/SAPO-34 SCR catalysts. J. Catal. 2018, 358, 277–286. [Google Scholar] [CrossRef]
- Wijayanti, K.; Xie, K.; Kumar, A.; Krishna, K.; Olsson, L. Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR. Appl. Catal. B Environ. 2017, 219, 142–154. [Google Scholar] [CrossRef]
- Ming, S.; Pang, L.; Chen, Z.; Guo, Y.; Li, T. Insight into SO2 poisoning over Cu-SAPO-18 used for NH3-SCR. Microporous Mesoporous Mater. 2020, 303, 110294. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, D.; Liu, Y.; Krishna. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst. Appl. Catal. B Environ. 2014, 156, 371–377. [Google Scholar] [CrossRef]
- Cheng, Y.; Lambert, C.; Kim, D.H.; Kwak, J.H.; Cho, S.J.; Peden, C.H.F. The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts. Catal. Today 2010, 151, 266–270. [Google Scholar] [CrossRef]
- Liu, X.J.; Li, Y.H.; Zhang, R.R. Ammonia selective catalytic reduction of NO over Ce-Fe/Cu-SSZ-13 catalysts. RSC Adv. 2015, 5, 85453–85459. [Google Scholar] [CrossRef]
- Kumar, A.; Smith, M.A.; Kamasamudram, K.; Currier, N.W.; An, H.; Yezerets, A. Impact of different forms of feed sulfur on small-pore Cu-zeolite SCR catalyst. Catal. Today 2014, 231, 75–82. [Google Scholar] [CrossRef]
- Hammershøi, P.S.; Godiksen, A.L.; Mossin, S.; Vennestrøm, P.N.R.; Jensen, A.D.; Janssens, T.V.W. Site selective adsorption and relocation of SOx in deactivation of Cu-CHA catalysts for NH3-SCR. React. Chem. Eng. 2019, 4, 1081–1089. [Google Scholar] [CrossRef]
- Olsson, L.; Wijayanti, K.; Leistner, K.; Kumar, A.; Joshi, S.Y.; Kamasamudram, K.; Currier, N.W.; Yezerets, A. A kinetic model for sulfur poisoning and regeneration of Cu/SSZ-13 used for NH3-SCR. Appl. Catal. B Environ. 2016, 183, 394–406. [Google Scholar] [CrossRef]
- Kumar, M.; Luo, H.; RomáN-Leshkov, Y.; Rimer, J.D. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J. Am. Chem. Soc. 2015, 137, 13007–13017. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Montreuil, C.; Cavataio, G.; Lambert, C. Sulfur Tolerance and DeSOx Studies on Diesel SCR Catalysts. SAE Int. J. Fuels Lubr. 2008, 1, 471–476. [Google Scholar] [CrossRef]
- Hammershøi, P.S.; Jangjou, Y.; Epling, W.S.; Jensen, A.D.; Janssens, T.V.W. Reversible and irreversible deactivation of Cu-CHA NH3-SCR catalysts by SO2 and SO3. Appl. Catal. B Environ. 2018, 226, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Yu, F.; Zhu, M.; Tang, C.; Dai, B.; Dong, L. Selective catalytic reduction De-NOx catalysts. Prog. Chem. 2016, 28, 1578–1590. [Google Scholar]
- Shan, Y.; Shi, X.; Yan, Z.D.; He, H. Deactivation of Cu-SSZ-13 in the presence of SO2 during hydrothermal aging. Catal. Today 2019, 320, 84–90. [Google Scholar] [CrossRef]
- Shan, Y.; Shan, W.; Shi, X.; Du, J.; He, H. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13. Appl Catal B 2020, 264, 118511–118520. [Google Scholar] [CrossRef]
- Wang, A.; Olsson, L. Insight into the SO2 poisoning mechanism for NOx removal by NH3 SCR over Cu/LTA and Cu/SSZ-13. Chem. Eng. J. 2020, 395, 125048–125059. [Google Scholar] [CrossRef]
- Jo, D.; Park, G.T.; Ryu, T.; Hong, S.B. Economical synthesis of high-silica LTA zeolites: A step forward in developing a new commercial NH3-SCR catalyst. Appl. Catal. B 2019, 243, 212–219. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Fan, R.; Guo, X.; Liu, W. Deactivation and Regeneration for the SO2-Poisoning of a Cu-SSZ-13 Catalyst in the NH3-SCR Reaction. Catalysts 2019, 9, 797. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Wang, Z.; Li, X.; Wang, J.; Wang, J.; Wang, C.; Wang, J. Effects of regeneration conditions on sulfated CuSSZ-13 catalyst for NH3-SCR. Korean J. Chem. Eng. 2019, 36, 1249–1257. [Google Scholar] [CrossRef]
- Ando, R.; Banno, Y.; Nagata, M. Detailed Mechanism of S Poisoning and De-Sulfation Treatment of Cu-SCR Catalyst; SAE Technical Paper Series; SAE: Warrendale, PA, USA, 2017. [Google Scholar]
- Kumar, A.; Smith, M.; Kamasamudram, K.; Curier, N.W.; Yezerets, A. Chemical deSOx: An effective way to recover Cu-zeolite SCR catalysts from sulfur poisoning. Catal. Today 2016, 267, 10–16. [Google Scholar] [CrossRef]
- Mesilov, V.V.; Dahlin, S.; Bergman, S.L.; Xi, S.; Han, J.; Olsson, L.; Pettersson, L.J.; Bernasek, S.L. Regeneration of sulfurpoisonedCu-SSZ-13 catalysts: Copper speciation and catalytic performance evaluation. Appl. Catal. B Environ. 2021, 299, 120626. [Google Scholar] [CrossRef]
- Borfecchia, E.; Negri, C.; Lomachenko, K.A.; Lamberti, C.; Janssens, T.V.W.; Berlier, G. Temperature-dependent dynamics of NH3-derived Cu species in the Cu-CHA SCR catalyst. React. Chem. Eng. 2019, 4, 1067–1080. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Safonova, O.V.; Palagin, D.; Newton, M.A.; van Bokhoven, J.A. Structure of copper sites in zeolites examined by Fourier and wavelet transform analysis of EXAFS. Chem. Sci. 2020, 11, 5299–5312. [Google Scholar] [CrossRef]
- Yu, R.; Zhao, Z.; Huang, S.; Zhang, W. Cu-SSZ-13 zeolite–metal oxide hybrid catalysts with enhanced SO2-tolerance in the NH3-SCR of NOx. Appl. Catal. B 2020, 269, 118825. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Chang, S.; Yu, F.; Lai, H.; Zhao, Y. Research Progress on Sulfur Deactivation and Regeneration over Cu-CHA Zeolite Catalyst. Catalysts 2022, 12, 1499. https://doi.org/10.3390/catal12121499
Ma J, Chang S, Yu F, Lai H, Zhao Y. Research Progress on Sulfur Deactivation and Regeneration over Cu-CHA Zeolite Catalyst. Catalysts. 2022; 12(12):1499. https://doi.org/10.3390/catal12121499
Chicago/Turabian StyleMa, Jiangli, Shiying Chang, Fei Yu, Huilong Lai, and Yunkun Zhao. 2022. "Research Progress on Sulfur Deactivation and Regeneration over Cu-CHA Zeolite Catalyst" Catalysts 12, no. 12: 1499. https://doi.org/10.3390/catal12121499
APA StyleMa, J., Chang, S., Yu, F., Lai, H., & Zhao, Y. (2022). Research Progress on Sulfur Deactivation and Regeneration over Cu-CHA Zeolite Catalyst. Catalysts, 12(12), 1499. https://doi.org/10.3390/catal12121499