Effects of Ca-Compounds on the Gases Formation Behavior during Molten Salts Thermal Treatment of Bio-Waste
Abstract
:1. Introduction
2. Results and Discussion
2.1. Releasing Characteristics of Gases with the Addition of Different Ca-Compounds
2.2. Effects of Ca-Compounds on Combustible Gases Release in Molten Salts
2.3. Application and Discussion
3. Materials and Methods
3.1. Materials
3.2. Experimental Methods
3.3. Analytical Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perumal, S.; Kishore, S.C.; Atchudan, R.; Sundramoorthy, A.K.; Alagan, M.; Lee, Y.R. Sustainable Synthesis of N/S-Doped Porous Carbon from Waste-Biomass as Electroactive Material for Energy Harvesting. Catalysts 2022, 12, 436. [Google Scholar] [CrossRef]
- Xu, T.; Xu, J.; Wu, Y. Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite. Catalysts 2022, 12, 131. [Google Scholar] [CrossRef]
- Feng, D.D.; Zhao, Y.J.; Zhang, Y.; Xu, H.H.; Zhang, L.Y.; Sun, S.Z. Catalytic mechanism of ion-exchanging alkali and alkaline earth metallic species on biochar reactivity during CO2/H2O gasification. Fuel 2018, 212, 523–532. [Google Scholar] [CrossRef]
- Knight, P.; Biewald, B.; Takahashi, K. The cost of energy efficiency programs: Estimates from utility-reported datasets. Energy 2022, 239, 122448. [Google Scholar] [CrossRef]
- Xu, T.; Zheng, X.R.; Xu, J.; Wu, Y.P. Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Nano-NiO/Al2O3 Catalyst. Catalysts 2022, 12, 256. [Google Scholar] [CrossRef]
- Wunn, H.N.; Motoda, S.; Morita, M. Fabrication and Characterization of a Marine Wet Solar Cell with Titanium Dioxide and Copper Oxides Electrodes. Catalysts 2022, 12, 99. [Google Scholar] [CrossRef]
- Zeng, K.; Li, J.; Xie, Y.P.; Yang, H.P.; Yang, X.Y.; Zhong, D.; Zhen, W.X.; Flamant, G.; Chen, H. Molten salt pyrolysis of biomass: The mechanism of volatile reforming and pyrolysis. Energy 2020, 213, 118801. [Google Scholar] [CrossRef]
- Shen, J.H.; Hu, H.Y.; Xu, M.; Liu, H.; Xu, K.; Zhang, X.J.; Yao, H.; Naruse, I. Interactions between molten salts and ash components during Zhundong coal gasification in eutectic carbonates. Fuel 2017, 207, 365–372. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B.; Lyczko, N.; Minh, D.P. The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review. Energy 2019, 170, 326–337. [Google Scholar] [CrossRef] [Green Version]
- Vassilev, S.V.; Vassileva, C.G.; Song, Y.-C.; Li, W.-Y.; Feng, J. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 2017, 208, 377–409. [Google Scholar] [CrossRef]
- Richard, W.B. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog. Energy Combust. 1996, 29, 120. [Google Scholar]
- Jiang, L.; Hu, S.; Wang, Y.; Su, S.; Sun, L.S.; Xu, B.Y.; He, L.; Xiang, J. Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass. Int. J. Hydrogen Energy 2015, 40, 15460–15469. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, W.L.; Chang, J.M. Study on the Product Characteristics of Pyrolysis Lignin with Calcium Salt Additives. Materials 2019, 12, 1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.Y.; Gui, X.Y.; Ji, W.C.; Zhou, C.H. Effect of calcium dihydrogen phosphate addition on carbon retention and stability of biochars derived from cellulose, hemicellulose, and lignin. Chemosphere 2020, 251, 126335. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.D.; Zhang, Y.; Zhao, Y.J.; Sun, S.Z. Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties. Energy 2018, 152, 166–177. [Google Scholar] [CrossRef]
- Stonor, M.R.; Ouassil, N.; Chen, J.G.; Park, A.-H.A. Investigation of the role of Ca(OH)2 in the catalytic Alkaline Thermal Treatment of cellulose to produce H2 with integrated carbon capture. J. Energy Chem. 2017, 26, 984–1000. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Hu, H.; Yang, F.; Tang, H.; Liu, H.; Yi, B.; Li, X.; Yao, H. Thermochemical conversion of lignocellulosic bio-waste via fast pyrolysis in molten salts. Fuel 2020, 278, 118228. [Google Scholar] [CrossRef]
- Tang, G.; Gu, J.; Huang, Z.; Yuan, H.; Chen, Y. Cellulose gasification with Ca–Fe oxygen carrier in chemical-looping process. Energy 2021, 239, 122204. [Google Scholar] [CrossRef]
- Ozgurluk, Y. Investigation of oxidation and hot corrosion behavior of molybdenum coatings produced by high-velocity oxy-fuel coating method. Surf. Coat. Technol. 2022, 444, 128641. [Google Scholar] [CrossRef]
- Odabas, O.; Ozgurluk, Y.; Ozkan, D.; Binal, G.; Calis, I.; Karaoglanli, A.C. Investigation of vermiculite infiltration effect on microstructural properties of thermal barrier coatings (TBCs) produced by electron beam physical vapor deposition method (EB-PVD). Surf. Coat. Technol. 2022, 443, 128645. [Google Scholar] [CrossRef]
- Yuan, R.; Yu, S.; Shen, Y. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues. Waste Manag. 2019, 87, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, K.; Chen, Z.; Xia, M.; Chen, Y.; Yang, H.; Chen, X.; Chen, H. A new insight into chemical reactions between biomass and alkaline additives during pyrolysis process. Proc. Combust. Inst. 2020, 38, 3881–3890. [Google Scholar] [CrossRef]
- Raymundo, L.M.; Mullen, C.A.; Boateng, A.A.; DeSisto, W.J.; Trierweiler, J.O. Production of Partially Deoxygenated Pyrolysis Oil from Switchgrass via Ca(OH)2, CaO, and Ca(COOH)2 Cofeeding. Energy Fuel. 2020, 34, 12616–12625. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Baxter, D. Trace element concentrations and associations in some biomass ashes. Fuel 2014, 129, 292–313. [Google Scholar] [CrossRef]
- Dutta, S.; Zhang, Q.; Cao, Y.; Wu, C.; Moustakas, K.; Zhang, S.; Wong, K.; Tsang, D.C. Catalytic valorisation of various paper wastes into levulinic acid, hydroxymethylfurfural, and furfural: Influence of feedstock properties and ferric chloride. Bioresour. Technol. 2022, 357, 127376. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Harada, M.; Suzuki, Y.; Hatano, H. Comparison of Pyrolysis Products between Coal, Coal/CaO, and Coal/Ca(OH)2 Materials. Energy Fuels 2003, 17, 602–607. [Google Scholar] [CrossRef]
- Müller-Hagedorn, M.; Bockhorn, H.; Krebs, L.; Müller, U. A comparative kinetic study on the pyrolysis of three different wood species. J. Anal. Appl. Pyrolysis 2003, 68–69, 231–249. [Google Scholar] [CrossRef]
- Patwardhan, P.R.; Satrio, J.A.; Brown, R.C.; Shanks, B.H. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour. Technol. 2010, 101, 4646–4655. [Google Scholar] [CrossRef]
- Hu, H.; Xie, K.; Chen, T.; Xu, S.; Yang, F.; Li, X.; Li, A.; Yao, H. Performance of calcium-added molten alkali carbonates for high-temperature desulfurization from pyrolysis gases. Renew. Energy 2019, 145, 2245–2252. [Google Scholar] [CrossRef]
- Sathe, C.; Pang, A.Y.; Li, C.-Z. Effects of Heating Rate and Ion-Exchangeable Cations on the Pyrolysis Yields from a Victorian Brown Coal. Energy Fuels 1999, 13, 748–755. [Google Scholar] [CrossRef]
- Zeng, K.; Yang, X.; Xie, Y.; Yang, H.; Li, J.; Zhong, D.; Zuo, H.; Nzihou, A.; Zhu, Y.; Chen, H. Molten salt pyrolysis of biomass: The evaluation of molten salt. Fuel 2021, 302, 121103. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, T.; Zou, C.; Xu, K.; Hu, H.; Gao, L.; Li, X.; Yao, H. Comparing the thermal conversion behavior of bio-wastes in three molten nitrates. Renew. Energy 2022, 196, 617–624. [Google Scholar] [CrossRef]
- Chen, D.Y.; Gao, A.J.; Cen, K.H.; Zhang, J.; Cao, X.B.; Ma, Z.Q. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Zhang, M.; Resende, F.L.; Moutsoglou, A.; Raynie, D.E. Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR. J. Anal. Appl. Pyrol. 2012, 98, 65–71. [Google Scholar] [CrossRef]
- Tian, X.; Wang, Y.; Zeng, Z.; Dai, L.; Peng, Y.; Jiang, L.; Yang, X.; Yue, L.; Liu, Y.; Ruan, R. Study on the mechanism of co-catalyzed pyrolysis of biomass by potassium and calcium. Bioresour. Technol. 2020, 320, 124415. [Google Scholar] [CrossRef] [PubMed]
- Ottah, V.E.; Ezugwu, A.L.; Ezike, T.C.; Chilaka, F.C. Comparative analysis of alkaline-extracted hemicelluloses from Beech, African rose and Agba woods using FTIR and HPLC. Heliyon 2022, 8, 09714. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Dhepe, P.L. Solid base catalyzed depolymerization of lignin into low molecular weight products. Green Chem. 2016, 19, 778–788. [Google Scholar] [CrossRef]
- Lee, H.S.; Volesky, B. Interaction of light metals and protons with seaweed biosorbent; Interaction of light metals and protons with seaweed biosorbent. Water Res 1997, 31, 3082–3088. [Google Scholar] [CrossRef]
- Hattori, M.; Shimaya, Y.; Saito, M. Solubility and Dissolved Cellulose in Aqueous Calcium- and Sodium-Thiocyanate Solution; Solubility and Dissolved Cellulose in Aqueous Calcium- and Sodium-Thiocyanate Solution. Polym. J. 1998, 30, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Cui, X.; Ji, G.; Zhou, H.; Vuppaladadiyam, A.K.; Zhao, X. Alkaline Thermal Treatment of Cellulosic Biomass for H2 Production Using Ca-Based Bifunctional Materials. ACS Sustain. Chem. Eng. 2018, 7, 1202–1209. [Google Scholar] [CrossRef]
- Su, S.; Li, W.; Bai, Z.; Xiang, H.; Bai, J. Effects of ionic catalysis on hydrogen production by the steam gasification of cellulose. Int. J. Hydrogen Energy 2010, 35, 4459–4465. [Google Scholar] [CrossRef]
- Yu, D.; Jin, G.; Pang, Y.; Chen, Y.; Guo, S.; Shen, S. Gas Characteristics of Pine Sawdust Catalyzed Pyrolysis by Additives. J. Therm. Sci. 2020, 30, 333–342. [Google Scholar] [CrossRef]
- Wang, W.; Lemaire, R.; Bensakhria, A.; Luart, D. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J. Anal. Appl. Pyrolysis 2022, 163, 105479. [Google Scholar] [CrossRef]
- Wang, J.; Ma, M.; Bai, Y.; Su, W.; Song, X.; Yu, G. Effect of CaO additive on co-pyrolysis behavior of bituminous coal and cow dung. Fuel 2019, 265, 116911. [Google Scholar] [CrossRef]
- Feng, D.; Zhao, Y.; Zhang, Y.; Sun, S.; Meng, S.; Guo, Y.; Huang, Y.D. Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H2O or CO2. Chem. Eng. J. 2016, 306, 422–432. [Google Scholar] [CrossRef]
- Lin, X.; Kong, L.; Cai, H.; Zhang, Q.; Bi, D.; Yi, W. Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS. Fuel Process. Technol. 2019, 191, 71–78. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xiang, J.; Li, P.; Huang, D.; Jiang, L.; Zhang, A.; Zhang, J. FTIR study of pyrolysis products evolving from typical agricultural residues. J. Anal. Appl. Pyrolysis 2010, 88, 117–123. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Zheng, Y.; Luo, Z.; Cen, K. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J. Anal. Appl. Pyrolysis 2008, 82, 170–177. [Google Scholar] [CrossRef]
- Wang, R.; Liu, S.; Li, Q.; Zhang, S.; Wang, L.; An, S. CO2 capture performance and mechanism of blended amine solvents regulated by N-methylcyclohexyamine. Energy 2020, 215, 119209. [Google Scholar] [CrossRef]
- Zanganeh, K.E.; Shafeen, A.; Salvador, C. CO2 Capture and Development of an Advanced Pilot-Scale Cryogenic Separation and Compression Unit. Energy Procedia 2009, 1, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, K.; Xia, M.; Chen, Y.; Yang, H.; Chen, Z.; Chen, X.; Chen, H. Influence of NH3 concentration on biomass nitrogen-enriched pyrolysis. Bioresour. Technol. 2018, 263, 350–357. [Google Scholar] [CrossRef] [PubMed]
Samples | Proximate Analysis (wt%) | Ultimate Analysis (wt%) | Cellulose | Hemicellulose | Lignin | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Vd | FCd | Ad | C | H | O a | N | S | ||||
Beech wood | 85.4 | 13.2 | 1.4 | 45.2 | 5.7 | 49.1 | - b | - | 47.3 | 15.2 | 28.4 |
Disposable chopsticks | 80.0 | 18.7 | 1.3 | 45.3 | 5.6 | 48.7 | 0.3 | 0.1 | 32.9 | 29.4 | 19.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zou, C.; Zhou, X.; Deng, Y.; Li, X.; Dong, L.; Hu, H. Effects of Ca-Compounds on the Gases Formation Behavior during Molten Salts Thermal Treatment of Bio-Waste. Catalysts 2022, 12, 1465. https://doi.org/10.3390/catal12111465
He J, Zou C, Zhou X, Deng Y, Li X, Dong L, Hu H. Effects of Ca-Compounds on the Gases Formation Behavior during Molten Salts Thermal Treatment of Bio-Waste. Catalysts. 2022; 12(11):1465. https://doi.org/10.3390/catal12111465
Chicago/Turabian StyleHe, Jing, Chan Zou, Xuanzhi Zhou, Yuting Deng, Xi Li, Lu Dong, and Hongyun Hu. 2022. "Effects of Ca-Compounds on the Gases Formation Behavior during Molten Salts Thermal Treatment of Bio-Waste" Catalysts 12, no. 11: 1465. https://doi.org/10.3390/catal12111465
APA StyleHe, J., Zou, C., Zhou, X., Deng, Y., Li, X., Dong, L., & Hu, H. (2022). Effects of Ca-Compounds on the Gases Formation Behavior during Molten Salts Thermal Treatment of Bio-Waste. Catalysts, 12(11), 1465. https://doi.org/10.3390/catal12111465