Morphology and Photocatalytic Activity of Zinc Oxide Reinforced Polymer Composites: A Mini Review
Abstract
:1. Introduction
2. The Mechanism of Photocatalytic Activity
3. The History and Origins of Photocatalysis with Regard to TiO2, ZnO, and Ag
4. Photocatalytic Activity of ZnO Reinforced Polymer Matrices
4.1. ZnO Reinforced Polymer Composites: Preparation, Morphology, and Photocatalytic Activity
4.2. Synergistic Effect of the ZnO with Other Nanoparticles Reinforced Polymer Composites
5. Conclusions and Future Recommendations
Funding
Conflicts of Interest
References
- Manisalidis, I.; Stavropoulou, E.; Bezirtzoglou, E. Environmental and health impacts of air pollution. A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, J.; Liu, M.; Ma, Z.; Fang, W.; Bi, J. Quality matters: Pollution exacerbates water scarcity and sectoral output risks China. Water Res. 2022, 224, 119059. [Google Scholar]
- Wang, L.; Zhang, J.; Wei, J.; Zong, J.; Lu, C.; Du, Y.; Wang, Q. Association of ambient air pollution exposure and its variability with subjective sleep quality in China: A multilevel modeling analysis. Environ. Pollut. 2022, 312, 120020. [Google Scholar] [CrossRef] [PubMed]
- Hossain, E.; Faruque, H.M.R.; Sunny, M.d.S.H.; Mohammad, N.; Nawar, N. A comprehensive review on energy storage systems: Types, comparison, current scenario, applications barriers, and potential solutions policies, and future prospects. Energy 2020, 13, 3651. [Google Scholar] [CrossRef]
- Gössling, S.; Meyer-Habighorst, C.; Humpe, A. A global review of marine air pollution policies, their scope and effectiveness. Ocean Coast. Manag. 2021, 212, 105824. [Google Scholar] [CrossRef]
- Jadoun, S.; Yáñez, J.; Mansilla, H.D.; Riaz, U.; Chauhan, N.P.S. Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: A review. Environ. Chem. Lett. 2022, 20, 2063–2083. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.U.; Saeed, M.; Khan, S.G.; Ibrahim, M. Photocatalytic applications of titanium dioxide (TiO2). In Titanium Dioxide-Advances and Applications; Ali, H.M., Ed.; Intech Open: London, UK, 2021. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. 2018, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Shabangu, K.P.; Bakare, B.F.; Bwapwa, J.K. The treatment of chemical coagulation process in South African brewery wastewater: Comparison of polyamine and aluminium-chlorohydrate coagulants. Water 2022, 14, 2495. [Google Scholar] [CrossRef]
- Rubi, H.; Fall, C.; Ortega, R.E. Pollutant removal from oily wastewater discharged from car washes through sedimentation-coagulation. Water Sci. Technol. 2009, 59, 2359–2369. [Google Scholar] [CrossRef]
- El-Baz, A.A.; Hendy, I.A.; Dohdoh, A.M.; Srour, M.I. Adsorption technique for pollutants removal; current new trends and future challenges-a review. Egypt. J. Eng. Sci. Technol. 2020, 32, 1–24. [Google Scholar] [CrossRef]
- Muruganandam, L.; Kumar, M.P.S.; Jena, A.; Gulla, S.; Godhwani, B. Treatment of water by coagulation and flocculation using biomaterials. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032006. [Google Scholar] [CrossRef]
- Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent advances of photocatalytic application in water treatment: A review. Nanomaterials 2021, 11, 1804. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Nur, H.; Misnon, I.I.; Wei, L.K. Stannic oxide-titanium dioxide coupled semiconductor photocatalyst loaded with polyaniline for enhanced photocatalytic oxidation of 1-octene. Int. J. Photoenergy 2007, 2007, 098548. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.d.T.; Hoque, M.d.E.; Bhoumick, M.C. Facile one-pot synthesis of heterostructure SnO2/ZnO photocatalyst for enhanced photocatalytic degradation of organic dye. RSC Adv. 2020, 10, 23554–23565. [Google Scholar] [CrossRef]
- Lin, Z.; Du, C.; Yan, B.; Yang, G. Amorphous Fe2O3 for photocatalytic hydrogen evolution. Catal. Sci. Technol. 2019, 9, 5582–5592. [Google Scholar]
- Minhas, P.S.; Saha, J.K.; Dotaniya, M.L.; Sarkar, A.; Saha, M. Wastewater irrigation in India: Current status, impacts and response options. Sci. Total Environ. 2022, 808, 152001. [Google Scholar] [CrossRef]
- Xu, L.; Hu, Y.-L.; Pelligra, C.; Chen, C.-H.; Jin, L.; Huang, H.; Sithambaram, S.; Aindow, M.; Joesten, R.; Suib, S.L. ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater. 2009, 21, 2875–2885. [Google Scholar] [CrossRef]
- Nadzim, U.K.H.M.; Hairom, N.H.H.; Hamdan, M.A.H.; Ahmad, M.K.; Jalil, A.A.; Jusoh, N.W.C.; Hamzah, S. Effects of different zinc oxide morphologies on photocatalytic desulfurization of thiophene. J. Alloys Compd. 2022, 913, 165145. [Google Scholar] [CrossRef]
- Furka, D.; Furka, S.; Naftaly, M.; Rakovský, E.; Čaplovičová, M.; Janek, M. ZnO nanoparticles as photodegradation agent controlled by morphology and boron doping. Catal. Sci. Technol. 2021, 11, 2167–2185. [Google Scholar] [CrossRef]
- Prabakaran, E.; Pillay, K. Synthesis of N-doped nanoparticles with cabbage morphology as a catalyst for the efficient photocatalytic degradation of methylene blue under UV and visible light. RSC Adv. 2019, 9, 7509–7535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasumov, A.M.; Korotkov, K.A.; Karavaeva, V.M.; Zahornyi, M.M.; Dmitriev, A.I.; Levtushenko, A.I. Photocatalysis with the use of ZnO nanostructures as a method for the purification of aquatic environments from dyes. J. Water Chem. Technol. 2021, 43, 281–288. [Google Scholar] [CrossRef]
- Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. A brief history of colour, the environmental impact of synthetic dyes and removal by using. Molecules 2021, 26, 3813. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xu, X.; Liu, Q.; Bai, L.; Hang, K.; Wang, D. Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. Sci. Total Environ. 2022, 806, 150691. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G.; Zhi, H.; Dong, J.; Hao, J.; Zhang, X.; Wang, J.; Li, D.; Liu, B. Synthesis of the porous ZnO nanosheets and TiO2/ZnO/FTO composite films by a low-temperature hydrothermal method and their applications in photocatalysis and electrochromism. Coatings 2022, 12, 695. [Google Scholar] [CrossRef]
- Serpone, N.; Emeline, A.V.; Horikoshi, S.; Kuznetsov, V.N.; Ryabchuk, V.K. On the genesis of heterogenous photocatalysis: A brief historical perspective in the period 1910 to the mid-1980s. Photochem. Photobiol. Sci. 2012, 11, 1121–1150. [Google Scholar] [CrossRef]
- Teichner, S.J. The origins of photocatalysis. J. Porous Mater. 2008, 15, 311–314. [Google Scholar] [CrossRef]
- Keidel, E. The fading of aniline dyes in the presence of titanium white. Farben-Ztg. 1929, 34, 1242–1243. [Google Scholar]
- Goodeve, C.F.; Kitchener, J.A. The mechanism of photosensitization by solids. Trans. Faraday Soc. 1938, 34, 902–912. [Google Scholar] [CrossRef]
- Kato, S.; Mashio, F. Book of Abstracts of the 9th Annual Meeting of the Chemical Society of Japan; American Association for the Advancement of Science: Kyoto, Japan, 1956; p. 223. [Google Scholar]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Masuo, F. Liquid-phase oxidation of tetralin using titanium oxide as a photocatalyst. Kogyo Kagaku Zasshi 1964, 67, 1136–1140. [Google Scholar] [CrossRef]
- Bakbolai, B.; Daulbayev, C.; Sultanov, F.; Beissenov, R.; Umirzakov, A.; Mereke, A.; Bekbaev, A.; Chuprakov, I. Recent development of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: A review. Nanomaterials 2020, 10, 1790. [Google Scholar] [CrossRef]
- Ng, K.H. Adoption of TiO2-photocatalysis for palm oil mill effluent (POME) treatment.: Strengths, weaknesses, opportunities, threats (SWOT) and its practicality against traditional treatment in Malaysia. Chemosphere 2021, 270, 129378. [Google Scholar] [CrossRef] [PubMed]
- Arcanjo, G.S.; Mounteer, A.H.; Bellato, C.R.; Da Silva, L.M.M.; Dias, S.H.B.; Da Silva, P.R. Heterogenous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV-visible irradiation for color and toxicity reduction in secondary textile mill effluent. J. Environ. Mange. 2018, 211, 154–163. [Google Scholar] [CrossRef]
- Guo, C.; Wang, K.; Hou, S.; Wan, L.; Lv, J.; Zhang, Y.; Qu, X.; Chen, S.; Xu, J. H2O2 and TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. J. Hazard. Mater. 2017, 323, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Okuno, T.; Kawamura, G.; Muto, H.; Matsunda, A. Fabrication of shape-controlled Au nanoparticles in a TiO2-containing mesoporous template using UV irradiation and their shape-dependent photocatalysis. J. Mater. Sci. Technol. 2014, 30, 8–12. [Google Scholar] [CrossRef]
- Bendjabeur, S.; Zoughi, R.; Zouchoune, B.; Sehili, T. DFT and TD-DFT insights, photolysis and photocatalysis investigation of three dyes with similar structure under UV irradiation with and without TiO2 as a catalyst: Effect of adsorption, pH and light intensity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 190, 494–505. [Google Scholar] [CrossRef]
- Nur, A.S.M.; Sultana, M.; Mondal, A.; Islam, S.; Robel, F.N.; Islam, A.; Sumi, M.S.A. A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV-vis irradiation. J. Water Process. Eng. 2022, 47, 102728. [Google Scholar] [CrossRef]
- Sharma, P.; Hasan, M.R.; Mehto, N.K.; Deepak; Bishoyi, A.; Narang, J. 92 years of zinc oxide: Has been studied by the scientific community since the 1930s-an overview. Sens. Int. 2022, 3, 100182. [Google Scholar] [CrossRef]
- Lea, M.C. On allotropic forms of silver. Am. J. Sci. 1889, 37, 476–491. [Google Scholar] [CrossRef]
- Paal, C. Über colloidales Silber. Dtsch. Z. Chir. 1921, 163, 62–84. [Google Scholar]
- Moudry, Z.V. Process of Producing Oligodynamic Metal Biocides. United States Patent 2, 927,052, 20 March 1953. [Google Scholar]
- Qiu, R.; Zhang, D.; Mo, Y.; Song, L.; Brewer, E.; Huang, X.; Xiong, Y. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J. Hazard. Mater. 2008, 156, 80–85. [Google Scholar] [CrossRef]
- Kamalian, P.; Khorasani, S.N.; Abdolmaleki, A.; Karevan, M.; Khalili, S.; Shirani, M.; Neisiany, R.E. Toward the development of polyethylene photocatalytic degradation. Toward the development of polyethylene photocatalytic degradation. J. Polym. Eng. 2020, 40, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Prasert, A.; Sontikaew, S.; Sriprapai, D.; Chuangchote, S. Polypropylene/ZnO nanocomposites: Mechanical properties, photocatalytic dye degradation, and antibacterial property. Materials 2020, 13, 914. [Google Scholar] [CrossRef] [Green Version]
- Asgari, E.; Esrafili, A.; Jafari, A.J.; Kalantary, R.R.; Noumoradi, H.; Farzadkia, M. The comparison of ZnO/polyaniline nanocomposite under UV and visible radiations for decomposition of metronidazole: Degradation rate, mechanism and mineralization. Process Saf. Environ. Prot. 2019, 128, 65–76. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Kuna, E.; Jakubiak, S.; Michalski, J.; Kurzydłowski, K. Polypropylene nonwoven filter with nanosized ZnO rods: Promising hybrid photocatalyst for water purification. Appl. Catal. B 2015, 170–171, 273–282. [Google Scholar] [CrossRef]
- Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ. Chem. Lett. 2019, 17, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Özbay, B.; Genç, N.; Bağhaki, B.; Zor, S. Photocatalytic activities of polyaniline-modified TiO2 and ZnO under visible light: An experimental and modeling study. Clean Technol. Environ. Policy. 2016, 18, 2591–2601. [Google Scholar] [CrossRef]
- Eskizeybek, V.; Sari, F.; Gülce, H.; Gülce, A.; Avci, A. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B 2012, 119–120, 197–206. [Google Scholar] [CrossRef]
- Olad, A.; Nosrati, R. Use of response surface methodology for optimization of the photocatalytic degradation of ampicillin by ZnO/polyaniline nanocomposite. Res. Chem. Intermed. 2015, 41, 1351–1363. [Google Scholar] [CrossRef]
- Saravanan, R.; Sacari, E.; Gracia, F.; Khan, M.M.; Mosquera, E.; Gupta, V.K. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 2016, 221, 1029–1033. [Google Scholar] [CrossRef]
- Di Mauro, A.; Farrugia, C.; Abela, S.; Refalo, P.; Grech, M.; Falqui, L.; Privitera, V.; Impellizzeri, G. Synthesis of ZnO/PMMA nanocomposite by low-temperature atomic layer deposition for possible photocatalysis applications. Mater. Sci. Semicond. Process. 2020, 118, 105214. [Google Scholar] [CrossRef]
- Naji, H.K.; Oda, A.M.; Abdulaljeleel, W.; Abdilkadhim, H.; Hefdhi, R. ZnO-Ag/PS and ZnO/PS films for photocatalytic degradation of methylene blue. Indones. J. Chem. 2020, 20, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Saidu, U.; Adam, F.; Sreekantan, S.; Yahaya, N.; Ahmad, M.N.; Ramalingam, R.J.; Wilson, L.D. Floating ZnO QDs-modified TiO2/LLDPE hybrid polymer film for the effective photodegradation of tetracycline under fluorescent light irradiation: Synthesis and characterization. Molecules 2021, 26, 2509. [Google Scholar] [CrossRef]
- Ashar, A.; Bhatti, I.A.; Jilani, A.; Mohsin, M.; Rasul, S.; Iqbal, J.; Shakoor, M.B.; Al-Sehemi, A.G.; Wageh, S.; Al-Ghamdi, A.A. Enhanced solar photocatalytic reduction of Cr(VI) using a (ZnO/CuO) nanocomposite grafted onto a polyester membrane for wastewater treatment. Polymers 2021, 13, 4047. [Google Scholar] [CrossRef]
- Lam, S.-M.; Sin, J.-C.; Zeng, H.; Lin, H.; Li, H.; Li, H.; Chai, Y.-Y.; Choong, M.-K.; Mohamed, A.R. Green synthesis of Fe-ZnO nanoparticles with improved sunlight photocatalytic performance for polyethylene film deterioration and bacterial inactivation. Mater. Sci. Semicond. 2021, 123, 105574. [Google Scholar] [CrossRef]
- Wu, H.; Lin, S.; Chen, C.; Liang, W.; Liu, X.; Yang, H. A new ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Mater. Res. Bull. 2016, 83, 434–441. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Meng, G.; Guo, X.; Liu, C.; Liu, Z. One-step synthesis of novel PANI–Fe3O4@ZnO core–shell microspheres: An efficient photocatalyst under visible light irradiation. Appl. Surf. Sci. 2016, 366, 486–493. [Google Scholar] [CrossRef]
- Zare, N.; Kojoori, R.K.; Abdolmohammadi, S.; Sadegh-Samiei, S. Ultrasonic-assisted synthesis of highly effective visible light Fe3O4/ZnO/PANI nanocomposite: Thoroughly kinetics and thermodynamic investigations on the Congo red dye decomposition. J. Mol. Struct. 2022, 1250, 131903. [Google Scholar] [CrossRef]
- Di Mauro, A.; Farrugia, C.; Abela, S.; Refalo, P.; Grech, M.; Falqui, L.; Nicotra, G.; Sfuncia, G.; Mio, A.; Buccheri, M.A.; et al. Ag/ZnO/PMMA nanocomposites for efficient water reuse. ACS Appl. Bio Mater. 2020, 3, 4417–4426. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mochane, M.J.; Motloung, M.T.; Mokhena, T.C.; Mofokeng, T.G. Morphology and Photocatalytic Activity of Zinc Oxide Reinforced Polymer Composites: A Mini Review. Catalysts 2022, 12, 1439. https://doi.org/10.3390/catal12111439
Mochane MJ, Motloung MT, Mokhena TC, Mofokeng TG. Morphology and Photocatalytic Activity of Zinc Oxide Reinforced Polymer Composites: A Mini Review. Catalysts. 2022; 12(11):1439. https://doi.org/10.3390/catal12111439
Chicago/Turabian StyleMochane, Mokgaotsa Jonas, Mary Tholwana Motloung, Teboho Clement Mokhena, and Tladi Gideon Mofokeng. 2022. "Morphology and Photocatalytic Activity of Zinc Oxide Reinforced Polymer Composites: A Mini Review" Catalysts 12, no. 11: 1439. https://doi.org/10.3390/catal12111439
APA StyleMochane, M. J., Motloung, M. T., Mokhena, T. C., & Mofokeng, T. G. (2022). Morphology and Photocatalytic Activity of Zinc Oxide Reinforced Polymer Composites: A Mini Review. Catalysts, 12(11), 1439. https://doi.org/10.3390/catal12111439