Construction and Synthesis of MoS2/Biocarbon Composites for Efficient Visible Light-Driven Catalytic Degradation of Humic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Calcination Temperature
2.2. Micromorphology Analysis of Bio-Template Carbon
2.3. Micromorphology and Structure Analysis of Composites
2.4. X-ray Powder Diffraction Phase Analysis
2.5. Raman Spectra Analysis
2.6. X-ray Photoelectron Spectroscopy Analysis
2.7. Photocatalytic Degradation Experiment
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Synthesis Process
3.2.1. Pretreatment of Bio-Template
3.2.2. Synthesis of Composites by Direct-Impregnation-Calcination (DIC) Method
3.2.3. Synthesis of Composites by Impregnation–Hydrothermal–Calcination (IHC) Method
3.3. Characterization
3.4. Photocatalytic Degradation Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahman, A.; Jennings, J.R.; Tan, A.L.; Khan, M.M. Molybdenum Disulfide-Based Nanomaterials for Visible-Light-Induced Photocatalysis. ACS Omega 2022, 7, 22089–22110. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Han, H.; Liu, J.; Yang, Y.; Pan, L.; Zhang, S.; Meng, S.; Chen, S. Sulfur Vacancy-Mediated Electron–Hole Separation at MoS2/CdS Heterojunctions for Boosting Photocatalytic N2 Reduction. ACS App. Energy Mater. 2022, 5, 4475–4485. [Google Scholar] [CrossRef]
- Evans, J.M.; Lee, K.S.; Yan, E.X.; Thompson, A.C.; Morla, M.B.; Meier, M.C.; Ifkovits, Z.P.; Carim, A.I.; Lewis, N.S. Demonstration of a Sensitive and Stable Chemical Gas Sensor Based on Covalently Functionalized MoS2. ACS Mat. Lett. 2022, 4, 1475–1480. [Google Scholar] [CrossRef]
- Urbanos, F.J.; Gullace, S.; Samorì, P. MoS2 Defect Healing for High-Performance Chemical Sensing of Polycyclic Aromatic Hydrocarbons. ACS Nano 2022, 16, 11234–11243. [Google Scholar] [CrossRef]
- Nardekar, S.S.; Krishnamoorthy, K.; Manoharan, S.; Pazhamalai, P.; Kim, S.-J. Two Faces Under a Hood: Unravelling the Energy Harnessing and Storage Properties of 1T-MoS2 Quantum Sheets for Next-Generation Stand-Alone Energy Systems. ACS Nano 2022, 16, 3723–3734. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Q.; Dong, Z.; Wang, L.; Xie, X.; Jiang, Y.; Wei, Z.; Gao, Y.; Zhang, Y.; Huang, K. Interconnected MoS2 on 2D Graphdiyne for Reversible Sodium Storage. ACS App. Mat. Interfaces 2021, 13, 54974–54980. [Google Scholar] [CrossRef]
- Ri, C.-H.; Kim, Y.-S.; Ri, K.-C.; Jong, U.-G.; Yu, C.-J. Contrary Effect of B and N Doping into Graphene and Graphene Oxide Heterostructures with MoS2 on Interface Function and Hydrogen Evolution. J. Phys. Chem. C 2021, 125, 6611–6618. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [Green Version]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.-J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef]
- Ahn, C.; Lee, J.; Kim, H.-U.; Bark, H.; Jeon, M.; Ryu, G.H.; Lee, Z.; Yeom, G.Y.; Kim, K.; Jung, J.; et al. Low-Temperature Synthesis of Large-Scale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasma-Enhanced Chemical Vapor Deposition. Adv. Mater. 2015, 27, 5223–5229. [Google Scholar] [CrossRef]
- Dong, J.; Fang, W.; Yuan, H.; Xia, W.; Zeng, X.; Shangguan, W. Few-Layered MoS2/ZnCdS/ZnS Heterostructures with an Enhanced Photocatalytic Hydrogen Evolution. ACS App. Energy Mater 2022, 5, 4893–4902. [Google Scholar] [CrossRef]
- Pielić, B.; Novko, D.; Rakić, I.Š.; Cai, J.; Petrović, M.; Ohmann, R.; Vujičić, N.; Basletić, M.; Busse, C.; Kralj, M. Electronic Structure of Quasi-Freestanding WS2/MoS2 Heterostructures. ACS Appl. Mater. Interfaces 2021, 13, 50552–50563. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kwon, S.; Song, J.; Lim, J.; An, B.; Choi, S.H.; Kim, K.K.; Park, H.-H.; Kim, D.-W. Anomalous Light-Induced Charging in MoS2 Monolayers with Cracks. ACS Appl. Electron. Mater. 2021, 3, 5265–5271. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Z.; Li, M.; Guo, C.; Li, L. Nanosheet MoS2-Decorated MoO2 on Porous Carbon as Electrodes for Efficient Hydrogen Evolution. ACS Appl. Nano Mater. 2022, 5, 8175–8183. [Google Scholar] [CrossRef]
- Min, S.; Lu, G. Sites for High Efficient Photocatalytic Hydrogen Evolution on a Limited-Layered MoS2 Cocatalyst Confined on Graphene Sheets―The Role of Graphene. J. Phys. Chem. C 2012, 116, 25415–25424. [Google Scholar] [CrossRef]
- Wang, X.; Long, R. Rapid Charge Separation Boosts Solar Hydrogen Generation at the Graphene–MoS2 Junction: Time-Domain Ab Initio Analysis. J. of Phys. Chem. Lett. 2021, 12, 2763–2769. [Google Scholar] [CrossRef]
- Pan, Y.; Lin, Y.; Liu, Y.; Liu, C. A novel CoP/MoS2-CNTs hybrid catalyst with Pt-like activity for hydrogen evolution. Catal. Sci. Technol. 2016, 6, 1611–1615. [Google Scholar] [CrossRef]
- Guo, X.; Cao, G.-L.; Ding, F.; Li, X.; Zhen, S.; Xue, Y.-F.; Yan, Y.-M.; Liu, T.; Sun, K.-N. A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS2 nanoparticles on carbon nanofiber foam. J. Mater. Chem. A 2015, 3, 5041–5046. [Google Scholar] [CrossRef]
- Wu, S.; Deng, D.; Zhang, E.; Li, H.; Xu, L. CoN nanoparticles anchored on ultra-thin N-doped graphene as the oxygen reduction electrocatalyst for highly stable zinc-air batteries. Carbon 2022, 196, 347–353. [Google Scholar] [CrossRef]
- Lee, G.-J.; Hou, Y.-H.; Chen, C.-Y.; Tsay, C.-Y.; Chang, Y.-C.; Chen, J.-H.; Horng, T.-L.; Anandan, S.; Wu, J.J. Enhanced performance for photocatalytic hydrogen evolution using MoS2/graphene hybrids. Int. J. Hydrogen Energy 2021, 46, 5938–5948. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, N.; Yang, Y.; Wang, G.; Ng, D.H.L. High Efficiency Photocatalysis for Pollutant Degradation with MoS2/C3N4 Heterostructures. Langmuir 2014, 30, 8965–8972. [Google Scholar] [CrossRef]
- Alhaddad, M.; Shawky, A. Superior photooxidative desulfurization of thiophene by reduced graphene oxide-supported MoS2 nanoflakes under visible light. Fuel Process. Technol. 2020, 205, 106453. [Google Scholar] [CrossRef]
- Wang, X.; Hong, M.; Zhang, F.; Zhuang, Z.; Yu, Y. Recyclable Nanoscale Zero Valent Iron Doped g-C3N4/MoS2 for Efficient Photocatalysis of RhB and Cr(VI) Driven by Visible Light. ACS Sustain. Chem. Eng. 2016, 4, 4055–4063. [Google Scholar] [CrossRef]
- Steelink, C. What is humic acid? J. Chem. Educ. 1963, 40, 379. [Google Scholar] [CrossRef]
- Liu, T.; Tsang, D.C.W.; Lo, I.M.C. Chromium(VI) Reduction Kinetics by Zero-Valent Iron in Moderately Hard Water with Humic Acid: Iron Dissolution and Humic Acid Adsorption. Environ. Sci. Technol. 2008, 42, 2092–2098. [Google Scholar] [CrossRef]
- Stevens, A.A.; Moore, L.A.; Slocum, C.J.; Smith, B.L.; Seeger, D.R.; Ireland, J.C. Chapter 38, Chlorinated Humic Acid Mixtures. In Aquatic Humic Substances Advances in Chemistry; Suffet, I.H., MacCarthy, P., Eds.; American Chemical Society: Washington, DC, USA, 1988; Volume 219, pp. 681–695. [Google Scholar]
- Mahmood, A.; Muhmood, T.; Ahmad, F. Carbon nanotubes heterojunction with graphene like carbon nitride for the enhancement of electrochemical and photocatalytic activity. Mater. Chem. Phys. 2022, 278, 125640. [Google Scholar] [CrossRef]
- Wang, C.; Chen, F.; Tang, Y.; Chen, X.; Qian, J.; Chen, Z. Advanced visible-light photocatalytic property of biologically structured carbon/ceria hybrid multilayer membranes prepared by bamboo leaves. Ceram. Int. 2018, 44, 5834–5841. [Google Scholar] [CrossRef]
- Muhmood, T.; Uddin, A. Fabrication of spherical-graphitic carbon nitride via hydrothermal method for enhanced photo-degradation ability towards antibiotic. Chem. Phys. Lett. 2020, 753, 137604. [Google Scholar] [CrossRef]
- Muhmood, T.; Xia, M.; Lei, W.; Wang, F.; Mahmood, A. Fe-ZrO2 imbedded graphene like carbon nitride for acarbose (ACB) photo-degradation intermediate study. Adv. Powder Technol. 2018, 29, 3233–3240. [Google Scholar] [CrossRef]
- Carraro, F.; Calvillo, L.; Cattelan, M.; Favaro, M.; Righetto, M.; Nappini, S.; Píš, I.; Celorrio, V.; Fermín, D.J.; Martucci, A.; et al. Fast One-Pot Synthesis of MoS2/Crumpled Graphene p–n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Production. ACS Appl. Mater. Interfaces 2015, 7, 25685–25692. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, N.; Ni, H.; Yao, C.; Qian, J.; Wei, J.; Chen, J.; Wu, Z. Construction and Synthesis of MoS2/Biocarbon Composites for Efficient Visible Light-Driven Catalytic Degradation of Humic Acid. Catalysts 2022, 12, 1423. https://doi.org/10.3390/catal12111423
Wang C, Wang N, Ni H, Yao C, Qian J, Wei J, Chen J, Wu Z. Construction and Synthesis of MoS2/Biocarbon Composites for Efficient Visible Light-Driven Catalytic Degradation of Humic Acid. Catalysts. 2022; 12(11):1423. https://doi.org/10.3390/catal12111423
Chicago/Turabian StyleWang, Chencheng, Ning Wang, Huicheng Ni, Congcong Yao, Junchao Qian, Jianqiang Wei, Jianping Chen, and Zhiren Wu. 2022. "Construction and Synthesis of MoS2/Biocarbon Composites for Efficient Visible Light-Driven Catalytic Degradation of Humic Acid" Catalysts 12, no. 11: 1423. https://doi.org/10.3390/catal12111423
APA StyleWang, C., Wang, N., Ni, H., Yao, C., Qian, J., Wei, J., Chen, J., & Wu, Z. (2022). Construction and Synthesis of MoS2/Biocarbon Composites for Efficient Visible Light-Driven Catalytic Degradation of Humic Acid. Catalysts, 12(11), 1423. https://doi.org/10.3390/catal12111423