Titanium Dioxide–Reduced Graphene Oxide Composites for Photocatalytic Degradation of Dyes in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of Graphene Oxide Addition on the Degradation of Methyl Orange Solution
2.2. Characterization of TiO2-RGO
2.3. The Effect of pH Value on the Degradation Effect of TiO2-6%RGO
2.4. Degradation Effect of TiO2-6%RGO on Different Kinds of Dyes
2.5. Recycling Performance of TiO2-6%RGO
3. Materials and Methods
3.1. Materials
3.2. Preparation of Titanium Dioxide–Reduced Graphene Oxide Composites
3.3. Characterization
3.4. Photocatalytic Degradation Experiments of Dyes by TiO2-RGO
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.H.; Liang, W.B.; Guo, X.; Liu, L. Inactivation of Scrippsiella trochoidea cysts by different physical and chemical methods: Application to the treatment of ballast water. Mar. Pollut. Bull. 2018, 126, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Al-Kaabi, M.A.; Zouari, N.; Dana, D.A.; Al-Ghouti, M.A. Adsorptive batch and biological treatments of produced water: Recent progresses, challenges, and potentials. J. Environ. Manag. 2021, 290, 112527. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, F.; Sarrafzadeh, M.H.; Ebrahimi, S.; Oh, H.M. Nitrate removal from drinking water with a focus on biological methods: A review. Environ. Sci. Pollut. Res. 2019, 26, 1124–1141. [Google Scholar] [CrossRef] [PubMed]
- Camarillo, M.K.; Stringfellow, W.T. Biological treatment of oil and gas produced water: A review and meta-analysis. Clean Technol. Environ. Policy 2018, 20, 1127–1146. [Google Scholar] [CrossRef] [Green Version]
- Qiu, N. The method of general heat treatment of waste water from metal manufacture based on photocatalysis. Int. J. Environ. Pollut. 2019, 66, 117–126. [Google Scholar] [CrossRef]
- Pelosato, R.; Bolognino, I.; Fontana, F.; Sora, I.N. Applications of Heterogeneous Photocatalysis to the Degradation of Oxytetracycline in Water: A Review. Molecules 2022, 27, 2743. [Google Scholar] [CrossRef]
- Du, C.Y.; Zhang, Z.; Yu, G.L.; Wu, H.P.; Chen, H.; Zhou, L.; Zhang, Y.; Su, Y.H.; Tan, S.Y.; Yang, L.; et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere 2021, 272, 129501. [Google Scholar] [CrossRef]
- Yang, B.; Guan, B. Synergistic catalysis of ozonation and photooxidation by sandwich structured MnO2-NH2/GO/p-C3N4 on cephalexin degradation. J. Hazard. Mater. 2022, 439, 129540. [Google Scholar] [CrossRef]
- Ebrahimbabaie, P.; Yousefi, K.; Pichtel, J. Photocatalytic and biological technologies for elimination of microplastics in water: Current status. Sci. Total Environ. 2022, 806, 150603. [Google Scholar] [CrossRef]
- Fukugaichi, S. Fixation of Titanium Dioxide Nanoparticles on Glass Fiber Cloths for Photocatalytic Degradation of Organic Dyes. ACS Omega 2019, 4, 15175–15180. [Google Scholar] [CrossRef]
- Huang, S.Y.; Chen, C.C.; Tsai, H.Y.; Shaya, J.; Lu, C.S. Photocatalytic degradation of thiobencarb by a visible light-driven MoS2 photocatalyst. Sep. Purif. Technol. 2018, 197, 147–155. [Google Scholar] [CrossRef]
- Elango, G.; Roopan, S.M. Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B-Biol. 2016, 155, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Heidarpour, H.; Padervand, M.; Soltanieh, M.; Vossoughi, M. Enhanced decolorization of rhodamine B solution through simultaneous photocatalysis and persulfate activation over Fe/C3N4 photocatalyst. Chem. Eng. Res. Des. 2020, 153, 709–720. [Google Scholar] [CrossRef]
- Padervand, M.; Ghasemi, S.; Hajiahmadi, S.; Rhimi, B.; Nejad, Z.G.; Karima, S.; Shahsavari, Z.; Wang, C.Y. Multifunctional Ag/AgCl/ZnTiO3 structures as highly efficient photocatalysts for the removal of nitrophenols, CO2 photoreduction, biomedical waste treatment, and bacteria inactivation. Appl. Catal. A-Gen. 2022, 643, 118794. [Google Scholar] [CrossRef]
- Cheng, L.; Xiang, Q.J.; Liao, Y.L.; Zhang, H.W. CdS-Based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Wen, Y.; Cao, S.; Fei, X.; Wang, H.; Wu, Z. One-step synthesized SO42−-TiO2 with exposed (001) facets and its application in selective catalytic reduction of NO by NH3. Chin. J. Catal. 2018, 39, 771–778. [Google Scholar] [CrossRef]
- Thompson, W.A.; Perier, C.; Maroto-Valer, M.M. Systematic study of sol-gel parameters on TiO2 coating for CO2 photoreduction. Appl. Catal. B-Environ. 2018, 238, 136–146. [Google Scholar] [CrossRef]
- Shende, T.P.; Bhanvase, B.A.; Rathod, A.P.; Pinjari, D.V.; Sonawane, S.H. Sonochemical synthesis of Graphene-Ce-TiO2 and Graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye. Ultrason. Sonochem. 2018, 41, 582–589. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, M.; Mi, B.X. Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance. J. Membr. Sci. 2014, 455, 349–356. [Google Scholar] [CrossRef]
- Zabihi, F.; Ahmadian-Yazdi, M.R.; Eslamian, M. Photocatalytic Graphene-TiO2 Thin Films Fabricated by Low-Temperature Ultrasonic Vibration-Assisted Spin and Spray Coating in a Sol-Gel Process. Catalysts 2017, 7, 136. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Wang, T.; Gao, Y.; Xiao, H.; Xu, J.H. Two step method for preparing TiO2/Ag/rGO heterogeneous nanocomposites and its photocatalytic activity under visible light irradiation. J. Mater. Sci.-Mater. Electron. 2019, 30, 8471–8478. [Google Scholar] [CrossRef]
- Wang, G.H.; Dai, J.L.; Luo, Q.Y.; Deng, N.S. Photocatalytic degradation of bisphenol A by TiO2@aspartic acid-beta-cyclodextrin@reduced graphene oxide. Sep. Purif. Technol. 2021, 254, 117574. [Google Scholar] [CrossRef]
- Jing, L.; Yang, Z.Y.; Zhao, Y.F.; Zhang, Y.X.; Guo, X.; Yan, Y.M.; Sun, K.N. Ternary polyaniline-graphene-TiO2 hybrid with enhanced activity for visible-light photo-electrocatalytic water oxidation. J. Mater. Chem. A 2014, 2, 1068–1075. [Google Scholar] [CrossRef]
- Xu, W.L.; Chen, S.; Zhu, Y.N.; Xiang, X.X.; Bo, Y.Q.; Lin, Z.M.; Wu, H.; Liu, H. Preparation of hyperelastic graphene/carboxymethyl cellulose composite aerogels by ambient pressure drying and its adsorption applications. J. Mater. Sci. 2020, 55, 10543–10557. [Google Scholar] [CrossRef]
- ASham, Y.W.; Notley, S.M. Adsorption of organic dyes from aqueous solutions using surfactant exfoliated graphene. J. Environ. Chem. Eng. 2018, 6, 495–504. [Google Scholar]
- Chen, Y.Y.; Wang, L.H.; Sun, H.Y.; Zhang, D.D.; Zhao, Y.P.; Chen, L. Self-assembling TiO2 on aminated graphene based on adsorption and catalysis to treat organic dyes. Appl. Surf. Sci. 2021, 539, 147889. [Google Scholar] [CrossRef]
- Wang, D.T.; Li, X.; Chen, J.F.; Tao, X. Enhanced Visible-Light Photoelectrocatalytic Degradation of Organic Contaminants at Iodine-Doped Titanium Dioxide Film Electrode. Ind. Eng. Chem. Res. 2012, 51, 218–224. [Google Scholar] [CrossRef]
- Adamu, H.; Dubey, P.; Anderson, J.A. Probing the role of thermally reduced graphene oxide in enhancing performance of TiO2 in photocatalytic phenol removal from aqueous environments. Chem. Eng. J. 2016, 284, 380–388. [Google Scholar] [CrossRef]
- Liu, J.C.; Wang, L.; Tang, J.C.; Ma, J.L. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial. Chemosphere 2016, 149, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Peng, T.J.; Sun, H.J.; Huang, Q. Preparation and Humidity-Sensitive Properties of Graphene Oxide in Different Oxidation Degree. Chin. J. Inorg. Chem. 2012, 28, 915–921. [Google Scholar]
- YMin, L.; Zhang, K.; Zhao, W.; Zheng, F.C.; Chen, Y.C.; Zhang, Y.G. Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem. Eng. J. 2012, 193, 203–210. [Google Scholar]
- Chou, P.W.; Wang, Y.S.; Lin, C.C.; Chen, Y.J.; Cheng, C.L.; Wong, M.S. Effect of carbon and oxygen on phase transformation of titania films during annealing. Surf. Coat. Technol. 2009, 204, 834–839. [Google Scholar] [CrossRef]
- di Valentin, C.; Pacchioni, G.; Selloni, A. Theory of carbon doping of titanium dioxide. Chem. Mater. 2005, 17, 6656–6665. [Google Scholar] [CrossRef]
- Ren, W.J.; Ai, Z.H.; Jia, F.L.; Zhang, L.Z.; Fan, X.X.; Zou, Z.G. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B-Environ. 2007, 69, 138–144. [Google Scholar] [CrossRef]
- CGuo, S.; Ge, M.; Liu, L.; Gao, G.D.; Feng, Y.C.; Wang, Y.Q. Directed Synthesis of Mesoporous TiO2 Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environ. Sci. Technol. 2010, 44, 419–425. [Google Scholar]
- Zhang, Q.L.; Qin, Z.; Liu, Y.Z.; Ting, Y.T.; Zhang, J.W.; Zeng, G.P. Adsorption kinetics and photocatalytic activity of grapheneoxide-TiO2 composites for three dyes. Chem. Ind. Eng. Prog. 2019, 38, 2870–2879. [Google Scholar]
- Ali, I. New Generation Adsorbents for Water Treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [CrossRef]
- Kiwaan, H.A.; Atwee, T.M.; Azab, E.A.; El-Bindary, A.A. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. J. Mol. Struct. 2020, 1200, 127115. [Google Scholar] [CrossRef]
- Sadia, M.; Naz, R.; Khan, J.; Zahoor, M.; Ullah, R.; Khan, R.; Naz, S.; Almoallim, H.S.; Alharbi, S.A. Metal doped titania nanoparticles as efficient photocatalyst for dyes degradation. J. King Saud Univ. Sci. 2021, 33, 101312. [Google Scholar] [CrossRef]
- Inamuddin. Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. Int. J. Biol. Macromol. 2019, 121, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Jafri, N.N.M.; Jaafar, J.; Alias, N.H.; Samitsu, S.; Aziz, F.; Salleh, W.N.W.; Yusop, M.Z.M.; Othman, M.H.D.; Rahman, M.A.; Ismail, A.F.; et al. Synthesis and Characterization of Titanium Dioxide Hollow Nanofiber for Photocatalytic Degradation of Methylene Blue Dye. Membranes 2021, 11, 581. [Google Scholar] [CrossRef]
- Idris, N.J.; Bakar, S.A.; Mohamed, A.; Muqoyyanah, M.; Othman, M.H.D.; Mamat, M.H.; Ahmad, M.K.; Birowosuto, M.D.; Soga, T. Photocatalytic performance improvement by utilizing GO_MWCNTs hybrid solution on sand/ZnO/TiO2-based photocatalysts to degrade methylene blue dye. Environ. Sci. Pollut. Res. 2021, 28, 6966–6979. [Google Scholar] [CrossRef] [PubMed]
- Kocijan, M.; Curkovic, L.; Bdikin, I.; Otero-Irurueta, G.; Hortigueela, M.J.; Goncalves, G.; Radosevic, T.; Vengust, D.; Podlogar, M. Immobilised rGO/TiO2 Nanocomposite for Multi-Cycle Removal of Methylene Blue Dye from an Aqueous Medium. Appl. Sci. 2022, 12, 385. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Qi, H.J.; Zhang, L.; Wang, Y.; Zhong, L.L.; Zheng, Y.G.; Wen, X.; Zhang, X.M.; Xue, J.Q. A RGO aerogel/TiO2/MoS2 composite photocatalyst for the removal of organic dyes by the cooperative action of adsorption and photocatalysis. Environ. Sci. Pollut. Res. 2022, 29, 8980–8995. [Google Scholar] [CrossRef] [PubMed]
TiO2-RGO | k/min−1 | R2 |
---|---|---|
TiO2-0%RGO | 0.0267 | 0.9967 |
TiO2-%RGO | 0.0364 | 0.9873 |
TiO2-6%RGO | 0.0401 | 0.9936 |
TiO2-9%RGO | 0.0333 | 0.9894 |
TiO2-12%RGO | 0.0311 | 0.9853 |
Samples | BET Surface Area (m²/g) | Pore Volume (cm³/g) |
---|---|---|
TiO2 | 35.68 | 0.0725 |
TiO2-6%RGO | 347.33 | 0.2898 |
pH Value | k/min−1 | R2 |
---|---|---|
pH = 2 | 0.0278 | 0.9984 |
pH = 4 | 0.0442 | 0.9997 |
pH = 7 | 0.0230 | 0.9976 |
pH = 9 | 0.0111 | 0.9953 |
pH = 11 | 0.0101 | 0.9958 |
Dyes | k/min−1 | R2 |
---|---|---|
MB | 0.0478 | 0.9900 |
RhB | 0.0655 | 0.9869 |
MO | 0.0401 | 0.9936 |
Photocatalyst | Degradation of Dyes | Degradation Rate (%) | Reference |
---|---|---|---|
Titanium dioxide | RhB | 93.8 | [40] |
Ni/TiO2 | MB | 95 | [41] |
Xanthan gum/titanium dioxide | MO | ~89 | [42] |
THNF | MB | 95.2 | [43] |
Sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs | MB | 92.6 | [44] |
rGO/TiO2 | MB | 92.7 | [45] |
RGO aerogel/TiO2/MoS2 composite | RhB | 95 | [46] |
TiO2-RGO | MO | 96.9 | This work |
RhB | 97.9 | ||
MB | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Xu, W.; Liu, H.; Bao, Y. Titanium Dioxide–Reduced Graphene Oxide Composites for Photocatalytic Degradation of Dyes in Water. Catalysts 2022, 12, 1340. https://doi.org/10.3390/catal12111340
Yu L, Xu W, Liu H, Bao Y. Titanium Dioxide–Reduced Graphene Oxide Composites for Photocatalytic Degradation of Dyes in Water. Catalysts. 2022; 12(11):1340. https://doi.org/10.3390/catal12111340
Chicago/Turabian StyleYu, Lei, Wenlong Xu, Huie Liu, and Yan Bao. 2022. "Titanium Dioxide–Reduced Graphene Oxide Composites for Photocatalytic Degradation of Dyes in Water" Catalysts 12, no. 11: 1340. https://doi.org/10.3390/catal12111340
APA StyleYu, L., Xu, W., Liu, H., & Bao, Y. (2022). Titanium Dioxide–Reduced Graphene Oxide Composites for Photocatalytic Degradation of Dyes in Water. Catalysts, 12(11), 1340. https://doi.org/10.3390/catal12111340