Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Graphene Oxide (GO)
3.2. Synthesis of rGO-ZrO2 Nanocomposite
3.3. Synthesis of rGO-Y2O3 Nanocomposite
3.4. Photodegradation Activity
3.5. Physical Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vassilenko, E.; Watkins, M.; Chastain, S.; Mertens, J.; Posacka, A.M.; Patankar, S.; Ross, P.S. Domestic laundry and microfiber pollution: Exploring fiber shedding from consumer apparel textiles. PLoS ONE 2021, 16, e0250346. [Google Scholar] [CrossRef]
- Roscam, A.M. Plastic Soup: An Atlas of Ocean Pollution; Island Press: Washington, DC, USA; Covelo, CA, USA; London, OH, USA, 2019; ISBN 10: 1642830089. [Google Scholar]
- Waring, R.H.; Harrisa, R.M.; Mitchell, S.C. Plastic contamination of the food chain: A threat to human health? Maturitas 2018, 115, 64–68. [Google Scholar] [CrossRef]
- Black, O.; Smith, S.C.; Roper, C. Advances and limitations in the determination and assessment of gunshot residue in the environment. Ecotoxicol. Environ. Saf. 2021, 208, 111689. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Nemr, A.E. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Hansen, É.; Monteiro de Aquim, P.; Hansen, A.W.; Cardoso, J.K.; Ziulkoski, A.L.; Gutterres, M. Impact of post-tanning chemicals on the pollution load of tannery wastewater. J. Environ. Manag. 2020, 269, 110787. [Google Scholar] [CrossRef]
- Vasseghian, Y.; Khataee, A.; Dragoi, E.-N.; Moradi, M.; Nabavifard, S.; Conti, G.O.; Khaneghah, A.M. Pollutants degradation and power generation by photocatalytic fuel cells: A comprehensive review. Arab. J. Chem. 2020, 13, 8458–8480. [Google Scholar] [CrossRef]
- Eom, S.-Y.; Choi, J.; Bae, S.; Lim, J.-A.; Kim, G.-B.; Yu, S.-D.; Kim, Y.; Lim, H.-S.; Son, B.-S.; Paek, D.; et al. Health effects of environmental pollution in population living near industrial complex areas in Korea. Environ. Health Toxicol. 2018, 33, e2018004. [Google Scholar] [CrossRef]
- Gupta, A.K. Thermal Destruction of Solid Wastes. ASME J. Energy Resour. Technol. 1996, 118, 187–192. [Google Scholar] [CrossRef]
- Tornevi, A.; Bergstedt, O.; Forsberg, B. Precipitation Effects on Microbial Pollution in a River: Lag Structures and Seasonal Effect Modification. PLoS ONE 2014, 9, e98546. [Google Scholar] [CrossRef]
- Dharupaneedi, S.P.; Nataraj, S.K.; Nadagouda, M.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 2019, 210, 850–866. [Google Scholar] [CrossRef] [PubMed]
- Hussain, C.M.; Paulraj, M.S.; Nuzhat, S. Chapter 2 Source reduction, waste minimization, and cleaner technologies. In Source Reduction and Waste Minimization; Elsevier: Amsterdam, The Netherlands, 2022; pp. 23–59. ISBN 9780128243206. [Google Scholar]
- Moosavi, S.; Lai, C.W.; Gan, S.; Zamiri, G.; Pivehzhani, O.A.; Johan, M.R. Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega 2020, 5, 20684–20697. [Google Scholar] [CrossRef]
- Majid, Z.; Razak, A.A.; Noori, W.A.H. Modification of Zeolite by Magnetic Nanoparticles for Organic Dye Removal. Arab. J. Sci. Eng. 2019, 44, 5457–5474. [Google Scholar] [CrossRef]
- Watwe, V.S.; Kulkarni, S.D.; Kulkarni, P.S. Cr (VI)-Mediated Homogeneous Fenton Oxidation for Decolorization of Methylene Blue Dye: Sludge Free and Pertinent to a Wide pH Range. ACS Omega 2021, 6, 27288–27296. [Google Scholar] [CrossRef]
- Sarkar, S.; Ponce, N.T.; Banerjee, A.; Bandopadhyay, R.; Rajendran, S.; Lichtfouse, E. Green polymeric nanomaterials for the photocatalytic degradation of dyes: A review. Environ. Chem. Lett. 2020, 18, 1569–1580. [Google Scholar] [CrossRef]
- Casimiro, F.M.; Costa, C.A.E.; Botelho, C.M.; Barreiro, M.F.; Rodrigue, A.E. Kinetics of Oxidative Degradation of Lignin-Based Phenolic Compounds in Batch Reactor. Ind. Eng. Chem. Res. 2019, 58, 16442–16449. [Google Scholar] [CrossRef]
- Murugadoss, G.; Thiruppathi, K.; Venkatesh, N.; Hazra, S.; Mohankumar, A.; Thiruppathi, G.; Kumar, M.R.; Sundararaj, P.; Rajabathar, J.R.; Sakthivel, P. Construction of novel quaternary nanocomposite and its synergistic effect towards superior photocatalytic and antibacterial application. J. Environ. Chem. Eng. 2022, 10, 106961. [Google Scholar] [CrossRef]
- Padmanaban, A.; Murugadoss, G.; Venkatesh, N.; Hazra, S.; Kumar, M.R.; Tamilselvi, R.; Sakthivel, P. Electrochemical determination of harmful catechol and rapid decolorization of textile dyes using ceria and tin doped ZnO nanoparticles. J. Environ. Chem. Eng. 2021, 9, 105976. [Google Scholar] [CrossRef]
- Murugadoss, G.; Kumar, D.D.; Kumar, M.R.; Venkatesh, N.; Sakthivel, P. Silver Decorated CeO2 Nanoparticles for Rapid Photocatalytic Degradation of Textile Rose Bengal Dye. Sci. Rep. 2021, 11, 1080. [Google Scholar] [CrossRef]
- Khattab, E.-S.R. Band Structure Engineering and Optical Properties of Pristine and Doped Monoclinic Zirconia (m-ZrO2): Density Functional Theory Theoretical Prospective. ACS Omega 2021, 6, 30061–30068. [Google Scholar] [CrossRef]
- Polisetti, S.; Deshpande, P.A.; Madras, G. Photocatalytic Activity of Combustion Synthesized ZrO2 and ZrO2–TiO2 Mixed Oxides. Ind. Eng. Chem. Res. 2011, 50, 12915–12924. [Google Scholar] [CrossRef]
- Basahel, S.N.; Ali, T.T.; Mokhtar, M.; Narasimharao, K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. 2015, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, M.; Takami, S.; Adschiri, T.; Nakane, T.; Satoa, K.; Naka, T. Simple and rapid synthesis of ZrO2 nanoparticles from Zr(OEt)4 and Zr(OH)4 using a hydrothermal method. CrystEngComm 2012, 14, 2117–2123. [Google Scholar] [CrossRef]
- Dwivedi, R.; Maurya, A.; Verma, A.; Prasad, R.; Bartwal, K.S. Microwave assisted sol–gel synthesis of tetragonal zirconia nanoparticles. J. Alloys Compds. 2011, 509, 6848–6851. [Google Scholar] [CrossRef]
- Cesano, F.; Boffa, V.; Coelho, F.E.B.; Magnacca, G. Chapter 24-Graphene and graphene-oxide for enhancing the photocatalytic properties of materials. In Materials Science in Photocatalysis; Elsevier: Amsterdam, The Netherlands, 2021; pp. 385–396. ISBN 9780128218594. [Google Scholar]
- Wang, W.C.; Badylevich, M.; Afanas’ev, V.V.; Stesmans, A.; Adelmann, C.; Elshocht, S.V.; Kittl, J.A.; Lukosius, M.; Walczyk, C.; Wenger, C. Band alignment and electron traps in Y2O3 layers on (100)Si. Appl. Phys. Lett. 2009, 95, 132903. [Google Scholar] [CrossRef]
- Zhao, J.; Yao, B.; He, Q.; Zhang, T. Preparation and properties of visible light responsive Y3+ doped Bi5Nb3O15 photocatalysts for Ornidazole decomposition. J. Hazard Mater. 2012, 229–230, 151–158. [Google Scholar] [CrossRef]
- Su, T.-M.; Liu, Z.-L.; Liang, Y.; Qin, Z.-Z.; Liu, J.; Huang, Y.-Q. Preparation of PbYO composite photocatalysts for degradation of methyl orange under visible-light irradiation. Catal. Commun. 2012, 18, 93–97. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; Ye, C.; Zhang, P. Preparation and characterization of doped sol–gel zirconia films. Ceram. Int. 2002, 28, 349–354. [Google Scholar] [CrossRef]
- Jiang, X. Preparation of hollow yttrium-doped TiO2 microspheres with enhanced visible-light photocatalytic activity. Mater. Res. Express 2019, 6, 065510. [Google Scholar] [CrossRef]
- Jirícková, A.; Jankovsky, O.; Sofer, Z.; Sedmidubský, D. Synthesis and Applications of Graphene Oxide. Materials 2022, 15, 920. [Google Scholar] [CrossRef]
- Gad, S.E. Picric Acid. In Encyclopedia of Toxicology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 438–440. ISBN 9780123694003. [Google Scholar]
- Ruano, D.; Pabón, B.M.; Azenha, C.; Mateos-Pedrero, C.; Mendes, A.; Pérez-Dieste, V.; Concepción, P. Influence of the ZrO2 Crystalline Phases on the Nature of Active Sites in PdCu/ZrO2 Catalysts for the Methanol Steam Reforming Reaction-An In Situ Spectroscopic Study. Catalysts 2020, 10, 1005. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Marques-Hueso, J.; Yan, X. Improving Optical Temperature Sensing Performance of Er3+ Doped Y2O3 Microtubes via Co-doping and Controlling Excitation Power. Sci. Rep. 2017, 7, 758. [Google Scholar] [CrossRef] [PubMed]
- Vadivel, S.; Bappi Paul, D.; Maruthamani, D.; Kumaravel, M.; Vijayaraghavan, T.; Hariganesh, S.; Pothu, R. Synthesis of yttrium doped BiOF/RGO composite for visible light: Photocatalytic applications. Mater. Sci. Energy Technol. 2019, 2, 112–116. [Google Scholar] [CrossRef]
- Li, J.; Wu, Q.; Wang, X.; Chai, Z.; Shi, W.; Hou, J.; Hayat, T.; Alsaedi, A.; Wang, X. Heteroaggregation behavior of graphene oxide on Zr-based metal–organic frameworks in aqueous solutions: A combined experimental and theoretical study. J. Mater. Chem. A 2017, 5, 20398–20406. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Grigoriev, S.; Peretyagin, P.; Smirnov, A.; Solis, W.; Diaz, L.A.; Fernandez, A.; Torrecillas, R. Effect of graphene addition on the mechanical and electrical properties of Al2O3-SiCw ceramics. J. Eur. Ceram. Soc. 2017, 37, 2473–2479. [Google Scholar] [CrossRef]
- Jafarnejad, G.; Rabbani, M. Fabrication of ZrO2/ceramic nanocomposite for water purification. In Proceedings of the 4th International Electronic Conference on Water Sciences, Online, 13–29 November 2019; MDPI: Basel, Switzerland, 2019. [Google Scholar]
- Huang, X.; Zhou, H.; Yue, X.; Ran, S.; Zhu, J. Novel Magnetic Fe3O4/α-FeOOH Nanocomposites and Their Enhanced Mechanism for Tetracycline Hydrochloride Removal in the Visible Photo-Fenton Process. ACS Omega 2021, 6, 9095–9103. [Google Scholar] [CrossRef]
- Lama, G.; Meijide, J.; Sanromán, A.; Pazos, M. Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment. Catalysts 2022, 12, 344. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Ding, L.; Yang, Y.; Zhang, T. MIL-88/PVB Nanofiber as Recyclable Heterogeneous Catalyst for Photocatalytic and Fenton Process under Visible Light Irradiation. Chem. Phys. Lett. 2020, 749, 137431. [Google Scholar]
- Usharani, B.; Manivannan, V. Enhanced Photocatalytic Activity of Reduced Graphene Oxide-TiO2 Nanocomposite for Picric Acid Degradation. Inorg. Chem. Commun. 2022, 142, 109660. [Google Scholar] [CrossRef]
- Mahender Rao, A.; Suresh, D.; Sribalan, R.; Sandhya, G. Nano-CeO2-Loaded Chitosan-Bocglycine Zinc Complex for the Photocatalytic Degradation of Picric Acid by the Combination of Fenton’s Reagent. Appl. Phys. A Mater. Sci. Process. 2022, 128, 742. [Google Scholar] [CrossRef]
- Usharani, B.; Manivannan, V.; Shanmugasundaram, P. Efficient Degradation of Picric Acid Using RGO-MnO2 Hybrid Nanocomposite under Different Light Conditions. J. Phys. Conf. Ser. 2021, 2070, 012089. [Google Scholar] [CrossRef]
- Anusha, B.; Anbuchezhiyan, M.; Sribalan, R.; Srinivasan alias Arunsankar, N. Synergistic Effect of TiO2-RGO Nanocomposites with Fenton’s Reagent for the Enhanced Photocatalytic Degradation of Nitrophenols in Solar Light. Appl. Phys. A. 2022, 128, 411. [Google Scholar] [CrossRef]
- Anusha, B.; Anbuchezhiyan, M.; Sribalan, R. An Efficient Photocatalytic Degradation of Nitrophenols Using TiO2 as a Heterogeneous Photo-Fenton Catalyst. React. Kinet. Mech. Catal. 2021, 134, 501–515. [Google Scholar] [CrossRef]
S. No. | Catalysts | Pollutant Name | Source | Duration | Efficiency(%) | Ref. |
---|---|---|---|---|---|---|
1 | rGO-TiO2 | Picric acid | Uv-light | 24 min | 100% | [44] |
2 | rGO-TiO2 | Picric acid | Visible light | 18 min | 100% | [44] |
3 | rGO-TiO2 | Picric acid | Sun light | 18 min | 100% | [44] |
4 | CeO2 Nanocompisite | Picric acid | Uv-light | 45 min | 100% | [45] |
5 | CeO2 Nanocompisite | Picric acid | Visible light | 40 min | 100% | [45] |
6 | CeO2 Nanocompisite | Picric acid | Sun light | 35 min | 100% | [45] |
7 | rGO | Picric acid | Sun light | 60 min | 99% | [46] |
8 | MnO2 | Picric acid | Sun light | 40 min | 99% | [46] |
9 | rGO-MnO2 | Picric acid | Sunlight | 30 min | 100% | [46] |
10 | rGO-TiO2(5%) | Picric acid | Sunlight | 18 min | 100% | [47] |
11 | rGO-TiO2(10%) | Picric acid | Sunlight | 15 min | 100% | [47] |
12 | TiO2 | Picric acid | Visible light | 27 min | 100% | [48] |
13 | rGO-Y2O3 | Picric acid | UV light | 30 min | 100% | Present study |
14 | rGO-Y2O3 | Picric acid | Sunlight | 35 min | 100% | Present study |
15 | rGO-ZrO2 | Picric acid | UV light | 16 min | 100% | Present study |
16 | rGO-ZrO2 | Picric acid | Sunlight | 15 min | 100% | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usharani, B.; Murugadoss, G.; Rajesh Kumar, M.; Gouse Peera, S.; Manivannan, V. Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid. Catalysts 2022, 12, 1249. https://doi.org/10.3390/catal12101249
Usharani B, Murugadoss G, Rajesh Kumar M, Gouse Peera S, Manivannan V. Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid. Catalysts. 2022; 12(10):1249. https://doi.org/10.3390/catal12101249
Chicago/Turabian StyleUsharani, Balasubramanian, Govindhasamy Murugadoss, Manavalan Rajesh Kumar, Shaik Gouse Peera, and Varadharajan Manivannan. 2022. "Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid" Catalysts 12, no. 10: 1249. https://doi.org/10.3390/catal12101249
APA StyleUsharani, B., Murugadoss, G., Rajesh Kumar, M., Gouse Peera, S., & Manivannan, V. (2022). Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid. Catalysts, 12(10), 1249. https://doi.org/10.3390/catal12101249