Direct One-Step Seedless Hydrothermal Growth of ZnO Nanostructures on Zinc: Primary Study for Photocatalytic Roof Development for Rainwater Purification
Abstract
1. Introduction
2. Results
2.1. Characterization of ZnO Nanostructures Grown on Zn Surface
2.2. Photocatalytic Activity Evaluation
2.2.1. Methylene Blue Photodegradation under UV-Light
2.2.2. Photodegradation of Methylene Blue under Natural Solar Light
2.2.3. Photodegradation of Acid Red 14 in Rainwater under Natural Solar Light
2.2.4. Photodegration of Polluted Runoff Waters on ZnO/Zn Sheets under Solar Light
3. Discussion
3.1. ZnO Nanostructures Growth on Zinc Substrate
3.2. ZnO/Zn Photocatalytic Activity
4. Materials and Methods
4.1. ZnO Nanostructures Based Zinc Roof Synthesis and Characterization
4.1.1. ZnO/Zn Wires Production
4.1.2. ZnO/Zn Sheets Production
4.2. ZnO/Zn Photocatalytic Activity Evaluation
4.2.1. Photodegradation under UV-Light
4.2.2. Photodegradation under Natural Solar Light
4.2.3. Polluted Runoff Water Photodegradation onto ZnO/Zn Sheets under Solar Light
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khayan, K.; Husodo, A.H.; Astuti, I.; Sudarmadji, S.; Djohan, T.S. Rainwater as a source of drinking water: Health impacts and rainwater treatment. J. Environ. Public Health 2019, 2019, 1760950. [Google Scholar] [CrossRef] [PubMed]
- Fernando, L.T.D.; Ray, S.; Simpson, C.M.; Gommans, L.; Morrison, S. Remediation of fouling on painted steel roofing via solar energy assisted photocatalytic self-cleaning technology: Recent developments and future perspectives. Adv. Eng. Mater. 2022, 24, 2101486. [Google Scholar] [CrossRef]
- Motamedi, M.; Yerushalmi, L.; Haghighat, F.; Chen, Z. Recent developments in photocatalysis of industrial effluents: A review and example of phenolic compounds degradation. Chemosphere 2022, 296, 133688. [Google Scholar] [CrossRef] [PubMed]
- Marien, C.B.D.; Le Pivert, M.; Azaïs, A.; M’Bra, I.C.; Drogui, P.; Diarany, A.; Robert, D. Kinectics and mechanism of Paraquat’s degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams. J. Hazard. Mater. 2019, 370, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Ughetta, L.; Shannon, S.K.; Houzé de L’aulnoit, S.; Hen, S.; Gould, R.A.T.; Russel, M.L.; Zhang, J.; Ban-Weiss, G.; Everman, R.L.A.; et al. De-pollution efficacy of photocatalytic roofing granules. Build. Environ. 2019, 160, 106058. [Google Scholar] [CrossRef]
- Singh, V.P.; Sandeep, K.; Kushwaha, H.S.; Powar, S.; Vaish, R. Photocatalytic, hydrophobic and antimicrobial characteristics of ZnO nano needle embedded cement composites. Construct. Build. Mater. 2018, 185, 285–294. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Harvey, J.T.; Liang, X.; Xie, N.; Jia, M. Purification effect on runoff pollution porous concrete with nano-TiO2 photocatalytic coating. Transport. Res. Part D 2021, 101, 103101. [Google Scholar] [CrossRef]
- Cerro-Prada, E.; Garcia-Salgado, S.; Quijano, M.A.; Varela, F. Controlled synthesis and microstructural properties of sol-gel TiO2 nanoparticles for photocatalytic cement composites. Nanomaterials 2018, 9, 26. [Google Scholar] [CrossRef]
- Bica, B.O.; Staub, J.V. Concrete blocks nano-modified with zinc oxide (ZnO) for photocatalytic paving: Performance comparison with tintanium dioxide (TiO2). Construct. Build. Mater. 2020, 252, 119120. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, Z.H.; Shafiq, I.; Zapien, J.A.; Bello, I.; Zhang, W.J.; Lee, S.T. Synthesis, characterization, and photocatalytic application of different ZnO nanostructures in array configurations. Cryst. Growth Des. 2009, 9, 3222–3227. [Google Scholar] [CrossRef]
- Asadi, S.; Hassan, M.M.; Kevern, J.T.; Rupnow, T.D. Development of photocatalytic pervious concrete pavement for air and storm water improvements. J. Transport. Res. Board 2012, 2290, 161–167. [Google Scholar] [CrossRef]
- Guo, M.Z.; Ling, T.C.; Poon, C.S. Photocatalytic NOx degradation of concrete surface layers intermixed and spray-coated with nano-TiO2: Influence of experimental factors. Cem. Concr. Compos. 2017, 83, 279–289. [Google Scholar] [CrossRef]
- Le Pivert, M.; Martin, N.; Leprince-Wang, Y. Hydrothermally grown ZnO nanostructures for water purification by photocatalysis. Crystals 2022, 12, 308. [Google Scholar] [CrossRef]
- Le Pivert, M.; Zerelli, B.; Martin, N.; Capochihi-Gnambodoe, M.; Leprince-Wang, Y. Smart ZnO decorated optimized engineering materials for water purification under natural sunlight. Const. Build. Mater. 2020, 257, 119592. [Google Scholar] [CrossRef]
- Baruah, S.; Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2009, 10, 013001. [Google Scholar] [CrossRef]
- Demes, T.; Ternon, C.; Riassetto, D.; Stambouli, V.; Langlet, M. Comprehensive study of hydrothermally grown ZnO nanowires. J. Mater. Sci. 2016, 51, 10652–10661. [Google Scholar] [CrossRef]
- Yu, Z.; Moussa, H.; Chouchene, B.; Schneider, R.; Wang, W.; Moliere, M.; Liao, H. Tunable morphologies of ZnO films via the solution precursor plasma spray process for improved photocatalytic degradation performance. App. Surf. Sci. 2018, 455, 970–979. [Google Scholar] [CrossRef]
- Joshi, S.; Jones, L.A.; Sabri, Y.M.; Bhargava, S.K.; Sunkara, M.V.; Ippolito, S.J. Facile conversion of zinc hydroxide carbonate to Cao-ZnO for selective CO2 detection. J. Colloid Interface Sci. 2020, 558, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Prakash, J.; Singh, J.P.; Chae, K.H.; Swart, C.; Ntwaeaborwa, O.M.; Swart, H.C.; Dutta, V. Role of silver doping on the defects related photoluminescence and antibacterial behaviour of zinc oxide nanoparticles. Colloids Surf. B Biointerfaces 2017, 159, 191–199. [Google Scholar] [CrossRef]
- Chevalier-César, C.; Capochichi-Gnambodoe, M.; Lin, F.; Yu, D.; Leprince-Wang, Y. Effect of growth time and annealing on the structural defect concentration of hydrothermally grown ZnO nanowires. AINS Mater. Sci. 2016, 3, 562–572. [Google Scholar] [CrossRef]
- Sun, Y.; Fuge, G.M.; Fox, N.A.; Riley, D.J.; Ashfold, M.N.R. Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si wafer coated with a thin ZnO film. Adv. Mater. 2005, 85, 2477–2481. [Google Scholar] [CrossRef]
- Sun, Y.; Ndifor-Angwafor, G.N.; Riley, D.J.; Ashfold, M.N.R. Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chem. Phys. Lett. 2006, 431, 352–357. [Google Scholar] [CrossRef]
- Sheng, Y.; Jiang, Y.; Lan, X.; Wang, C.; Li, S.; Liu, X.; Zhong, H. Mechanism and growth of flexible ZnO nanostructure arrays in a facile controlled way. J. Nanomater. 2011, 2011, 473629. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, H.C. Fabrication of ZnO “dandelions” via a modified kirkendall process. J. AM. Chem. Soc. 2004, 126, 16744–16746. [Google Scholar] [CrossRef]
- Tak, Y.; Yong, K. Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 2005, 109, 19263–19269. [Google Scholar] [CrossRef]
- Jung, S.H.; Oh, E.; Lee, K.-H.; Park, W.; Jeong, S.H. A sonochemical method for fabrication aligned ZnO nanorods. Adv. Mater. 2007, 19, 749–753. [Google Scholar] [CrossRef]
- Le Pivert, M.; Kerivel, O.; Zerelli, B.; Leprince-Wang, Y. ZnO nanostructures based innovative photocatalytic road for air purification. J. Clean. Prod. 2021, 318, 128447. [Google Scholar] [CrossRef]
- Cho, S.; Kim, S.; Jang, J.W.; Jung, S.H.; Oh, E.; Lee, B.R.; Lee, K.H. Large-scale fabrication of sub-20-nm-diameter ZnO nanorod arrays at room temperature and their photocatalytic activity. J. Phys. Chem. 2009, 113, 10452–10458. [Google Scholar] [CrossRef]
- Bora, T.; Sathe, P.; Laxman, K.; Dobrestov, S.; Dutta, J. Defect engineered visible light active ZnO nanorods for photocatalytic treatment of water. Catal. Today 2017, 284, 11–18. [Google Scholar] [CrossRef]
- Khoa, N.T.; Kim, S.W.; Thuan, D.V.; Yoo, D.H.; Kim, E.J.; Han, S.H. Hydrothermally controlled ZnO nanosheet self-assembled hollow spheres/hierarchical aggreagates and their photocatalytic activities. CrystEngComm. 2014, 16, 1344–1350. [Google Scholar] [CrossRef]
- Akbal, F. Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: Effect of operational parameters. Environ. Prog. 2005, 24, 317–322. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Heidari-Asil, S.A.; Salavati-Niasari, M. Recyclable magnetic ZnC2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Intern. 2021, 47, 8959–8972. [Google Scholar] [CrossRef]
- Miao, J.; Lu, H.B.; Khiadani, D.; Kiadani, M.H.; Zhang, L.C. Photocatalytic degradatation of the Azo Dye Acid Red 14 in nanosized TiO2 suspension under simulated solar light. Clean Soil Air Water 2015, 43, 1037–1043. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Pivert, M.; Piebourg, A.; Bastide, S.; Duc, M.; Leprince-Wang, Y. Direct One-Step Seedless Hydrothermal Growth of ZnO Nanostructures on Zinc: Primary Study for Photocatalytic Roof Development for Rainwater Purification. Catalysts 2022, 12, 1231. https://doi.org/10.3390/catal12101231
Le Pivert M, Piebourg A, Bastide S, Duc M, Leprince-Wang Y. Direct One-Step Seedless Hydrothermal Growth of ZnO Nanostructures on Zinc: Primary Study for Photocatalytic Roof Development for Rainwater Purification. Catalysts. 2022; 12(10):1231. https://doi.org/10.3390/catal12101231
Chicago/Turabian StyleLe Pivert, Marie, Aurélie Piebourg, Stéphane Bastide, Myriam Duc, and Yamin Leprince-Wang. 2022. "Direct One-Step Seedless Hydrothermal Growth of ZnO Nanostructures on Zinc: Primary Study for Photocatalytic Roof Development for Rainwater Purification" Catalysts 12, no. 10: 1231. https://doi.org/10.3390/catal12101231
APA StyleLe Pivert, M., Piebourg, A., Bastide, S., Duc, M., & Leprince-Wang, Y. (2022). Direct One-Step Seedless Hydrothermal Growth of ZnO Nanostructures on Zinc: Primary Study for Photocatalytic Roof Development for Rainwater Purification. Catalysts, 12(10), 1231. https://doi.org/10.3390/catal12101231