Mono(imidazolin-2-iminato) Hafnium Complexes: Synthesis and Application in the Ring-Opening Polymerization of ε-Caprolactone and rac-Lactide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Hafnium Complexes
2.2. Ring-Opening Polymerization Studies
3. Experimental Section
3.1. General Considerations
3.2. Synthesis of (Imidazolin-2-iminato) Hafnium (IV) Complexes 1–4:
3.3. Synthesis of (2,6-diisopropylphenyl)imidazolin-2-imine Hafnium tris BnO [(ImDippNH)Hf(BnO)3], (Complex 5):
3.4. Synthesis of (2,6-diisopropylphenyl)imidazolin-2-imine Hafnium tris(iPrO) iPrOH [(ImDippNH)Hf(iPrO)3 (iPrOH)], (Complex 6):
3.5. Synthesis of Tetrakis Benzyloxy Hafnium, [(Hf(OBn)8(ROH)], (Complex 7):
3.6. Synthesis of Tetrakis Isopropoxy Hafnium, [(Hf(OiPr)8(iPrOH)2], (Complex 8):
3.7. ROP of ε-Caprolactone
3.8. ROP of rac-Lactide
3.9. PCL-b-PLA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Charles, E. Carraher, J. Introduction to Polymer Chemistry, 4th ed.; Taylor & Francis;CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Frech, C.B. Green Plastics: An Introduction to the New Science of Biodegradable Plastics (Stevens, E.S.). J. Chem. Educ. 2009, 79, 1072. [Google Scholar] [CrossRef] [Green Version]
- Jayaramudu, J.; Reddy, G.S.M.; Varaprasad, K.; Sadiku, E.R.; Sinha Ray, S.; Varada Rajulu, A. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Carbohydr. Polym. 2013, 93, 622–627. [Google Scholar] [CrossRef]
- Qiu, K.; Netravali, A.N. Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos. Sci. Technol. 2012, 72, 1588–1594. [Google Scholar] [CrossRef]
- Netravali, A.N.; Chabba, S. Composites get greener. Mater. Today 2003, 6, 22–29. [Google Scholar] [CrossRef]
- Zhu, Y.; Romain, C.; Williams, C. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B. Biodegradability and biodegradation of poly (lactide). Appl. Microbiol. Biotechnol 2006, 72, 244–251. [Google Scholar] [CrossRef]
- Torres, A.; Li, S.M.; Roussos, S.; Vert, M. Poly(lactic acid) degradation in soil or under controlled conditions. J. Appl. Polym. Sci. 1996, 62, 2295–2302. [Google Scholar] [CrossRef]
- Malwela, T.; Ray, S.S. Enzymatic degradation behavior of nanoclay reinforced biodegradable PLA/PBSA blend composites. Int. J. Biol. Macromol. 2015, 77, 131–142. [Google Scholar] [CrossRef]
- Jarerat, A.; Pranamuda, H.; Tokiwa, Y. Poly(L-lactide)-Degrading Activity in Various Actinomycetes. Macromol. Biosci. 2002, 2, 420–428. [Google Scholar] [CrossRef]
- Hayashi, T. Biodegradable polymers for biomedical uses. Prog. Polym. Sci. 1994, 19, 663–702. [Google Scholar] [CrossRef]
- Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018, 29, 863–893. [Google Scholar] [CrossRef]
- Sanghi, R.; Singh, V. Green Chemistry for Environmental Remediation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lewiński, J.; Horeglad, P.; Wójcik, K.; Justyniak, I. Chelation effect in polymerization of cyclic esters by metal alkoxides: Structure characterization of the intermediate formed by primary insertion of lactide into the Al-OR bond of an organometallic initiator. Organometallics 2005, 24, 4588–4593. [Google Scholar] [CrossRef]
- Lewiński, J.; Horeglad, P.; Tratkiewicz, E.; Grzenda, W.; Lipkowski, J.; Kolodziejczyk, E. Towards the nature of active sites in polymerization of cyclic esters initiated by aluminium alkoxides: First structurally authenticated aluminium-ε-caprolactone complex. Macromol. Rapid Commun. 2004, 25, 1939–1942. [Google Scholar] [CrossRef]
- Fischer, M.; Schaper, R.; Jaugstetter, M.; Schmidtmann, M.; Beckhaus, R. Electrophilic d0 Cations of Group 4 Metals (M = Ti, Zr, Hf) Derived from Monopentafulvene Complexes: Direct Formation of Tridentate Cp, O, P -Ligands. Organometallics 2018, 37, 1192–1205. [Google Scholar] [CrossRef]
- Munzeiwa, W.A.; Nyamori, V.O.; Omondi, B. Zn(II) and Cu(II) unsymmetrical formamidine complexes as effective initiators for ring-opening polymerization of cyclic esters. Appl. Organomet. Chem. 2018, 32, e4247. [Google Scholar] [CrossRef]
- Akpan, E.D.; Omondi, A.B.; B, S.O.O. Ring-Opening Polymerization Reactions of e -Caprolactone and Lactides Initiated by (Benzimidazolylmethyl) amino Magnesium (II) Alkoxides. Aust. J. Chem. 2018, 71, 341–347. [Google Scholar] [CrossRef]
- Harinath, A.; Bhattacharjee, J.; Sarkar, A.; Nayek, H.P.; Panda, T.K. Ring Opening Polymerization and Copolymerization of Cyclic Esters Catalyzed by Group 2 Metal Complexes Supported by Functionalized P-N Ligands. Inorg. Chem. 2018, 57, 2503–2516. [Google Scholar] [CrossRef]
- Pappuru, S.; Chokkapu, E.R.; Chakraborty, D.; Ramkumar, V. Group iv complexes containing the benzotriazole phenoxide ligand as catalysts for the ring-opening polymerization of lactides, epoxides and as precatalysts for the polymerization of ethylene. Dalt. Trans. 2013, 42, 16412–16427. [Google Scholar] [CrossRef]
- Wan, Y.; Bai, Y.; Xu, H.; He, J.; Zhang, Y. Highly Isoselective Ring-Opening Polymerization of rac-Lactide Using Chiral Binuclear Aluminum Catalyst. Macromol. Rapid Commun. 2021, 42, 3–7. [Google Scholar] [CrossRef]
- Rosen, T.; Goldberg, I.; Kol, M. Aluminum Complexes of Octahydrophenanthroline-Based Salophan Ligands: Coordination Chemistry and Activity in the Ring-Opening Polymerization of Lactide. Eur. J. Inorg. Chem. 2018, 2018, 5047–5052. [Google Scholar] [CrossRef]
- Sriyai, M.; Chaiwon, T.; Molloy, R.; Meepowpan, P.; Punyodom, W. Efficiency of liquid tin(ii): N -alkoxide initiators in the ring-opening polymerization of l-lactide: Kinetic studies by non-isothermal differential scanning calorimetry. RSC Adv. 2020, 10, 43566–43578. [Google Scholar] [CrossRef] [PubMed]
- Kaler, S.; McKeown, P.; Ward, B.D.; Jones, M.D. Aluminium(III) and zinc(II) complexes of azobenzene-containing ligands for ring-opening polymerisation of ϵ-caprolactone and: rac-lactide. Inorg. Chem. Front. 2021, 8, 711–719. [Google Scholar] [CrossRef]
- Liu, N.; Liu, D.; Liu, B.; Zhang, H.; Cui, D. Stereoselective polymerization of: rac-lactide catalyzed by zwitterionic calcium complexes. Polym. Chem. 2021, 12, 1518–1525. [Google Scholar] [CrossRef]
- Karmel, I.S.R.; Khononov, M.; Tamm, M.; Eisen, M.S. Uranium-mediated ring-opening polymerization of ε-caprolactone: A comparative study. Catal. Sci. Technol. 2015, 5, 5110–5119. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Glöckler, E.; Wölper, C.; Tjaberings, A.; Gröschel, A.H.; Schulz, S. Active Ga-catalysts for the ring opening homo- And copolymerization of cyclic esters, and copolymerization of epoxide and anhydrides. Dalt. Trans. 2020, 49, 13475–13486. [Google Scholar] [CrossRef]
- Xing, T.; Prior, T.J.; Elsegood, M.R.J.; Semikolenova, N.V.; Soshnikov, I.E.; Bryliakov, K.; Chen, K.; Redshaw, C. Vanadium complexes derived from oxacalix[6]arenes: Structural studies and use in the ring opening homo-/co-polymerization of ε-caprolactone/δ-valerolactone and ethylene polymerization. Catal. Sci. Technol. 2021, 11, 624–636. [Google Scholar] [CrossRef]
- Rosen, T.; Rajpurohit, J.; Lipstman, S.; Venditto, V.; Kol, M. Isoselective Polymerization of rac-Lactide by Highly Active Sequential {ONNN} Magnesium Complexes. Chem.-A Eur. J. 2020, 26, 17183–17189. [Google Scholar] [CrossRef]
- Dai, L.; Jie, S.; Bu, Z.; Li, B. Supramolecular thermoplastic elastomers via self-complementary quadruple hydrogen bonding between polybutadiene-based triblock copolymers. J. Appl. Polym. Sci. 2021, 138, 50085. [Google Scholar] [CrossRef]
- Hador, R.; Botta, A.; Venditto, V.; Lipstman, S.; Goldberg, I.; Kol, M. The Dual-Stereocontrol Mechanism: Heteroselective Polymerization of rac-Lactide and Syndioselective Polymerization of meso-Lactide by Chiral Aluminum Salan Catalysts. Angew. Chem.-Int. Ed. 2019, 58, 14679–14685. [Google Scholar] [CrossRef]
- Rosen, T.; Goldberg, I.; Navarra, W.; Venditto, V.; Kol, M. Block-Stereoblock Copolymers of Poly(ϵ-Caprolactone) and Poly(Lactic Acid). Angew. Chemie Int. Ed. 2018, 57, 7191–7195. [Google Scholar] [CrossRef]
- Polo, E.; Losio, S.; Sacchi, M.C.; Galimberti, M. New tethered ansa-bridged zirconium catalysts: Insights into the “self-immobilization” mechanism. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 1436–1447. [Google Scholar] [CrossRef]
- Liu, H.; Shi, X. Phosphasalalen Rare-Earth Complexes for the Polymerization of rac-Lactide and ra-β-Butyrolactone. Inorg. Chem. 2021, 60, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Al-Lami, H.; Al-Mayahi, B.; Haddad, A. Synthesis of some Nano Multi Arms Polylactide-Dipentaerythritol Organic Polymers. J. Mex. Chem. Soc. 2020, 64, 253–263. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, W.; Cao, F.; Solan, G.A.; Zhang, X.; Jiang, Y.; Hao, X.; Sun, W.-H. Potassium N-arylbenzimidates as readily accessible and benign (pre)catalysts for the ring opening polymerization of ε-CL and L-LA. Mol. Catal. 2020, 498, 111280. [Google Scholar] [CrossRef]
- Pilone, A.; De Maio, N.; Press, K.; Venditto, V.; Pappalardo, D.; Mazzeo, M.; Pellecchia, C.; Kol, M.; Lamberti, M. Ring-opening homo- and co-polymerization of lactides and ε-caprolactone by salalen aluminum complexes. Dalt. Trans. 2015, 44, 2157–2165. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, J.; Harinath, A.; Sarkar, A.; Panda, T.K. Alkaline Earth Metal-Mediated Highly Iso-selective Ring-Opening Polymerization of rac-Lactide. Chem.-An Asian J. 2020, 15, 860–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wannipurage, D.; Hollingsworth, T.S.; Santulli, F.; Cozzolino, M.; Lamberti, M.; Groysman, S.; Mazzeo, M. Synthesis of a mononuclear magnesium bis(alkoxide) complex and its reactivity in the ring-opening copolymerization of cyclic anhydrides with epoxides. Dalt. Trans. 2020, 49, 2715–2723. [Google Scholar] [CrossRef]
- Bolley, A.; Mameri, S.; Dagorne, S. Controlled and highly effective ring-opening polymerization of α-chloro-ε-caprolactone using Zn- and Al-based catalysts. J. Polym. Sci. 2020, 58, 1197–1206. [Google Scholar] [CrossRef]
- Rad’Kova, N.Y.; Kovylina, T.A.; Shavyrin, A.S.; Cherkasov, A.V.; Fukin, G.K.; Lyssenko, K.A.; Trifonov, A.A. Amido rare-earth(iii) and Ca(ii) complexes coordinated by tridentate amidinate ligands: Synthesis, structure, and catalytic activity in the ring-opening polymerization of: rac-lactide and ϵ-caprolactone. New J. Chem. 2020, 44, 7811–7822. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, M.; Lee, H.; Nayab, S. Stereoselective polymerization of methyl methacrylate and: rac-lactide mediated by iminomethylpyridine based Cu(ii) complexes. RSC Adv. 2020, 10, 16209–16220. [Google Scholar] [CrossRef]
- Rade, P.P.; Garnaik, B. Synthesis and characterization of biocompatible poly (L-lactide) using zinc (II) salen complex. Int. J. Polym. Anal. Charact. 2020, 25, 283–299. [Google Scholar] [CrossRef]
- Ortiz-Aldaco, M.G.; Baéz, J.E.; Jiménez-Halla, J.O.C. Bismuth subsalicylate, a low-toxicity catalyst for the ring-opening polymerization (ROP) of l-lactide (l-LA) with aliphatic diol initiators: Synthesis, characterization, and mechanism of initiation. RSC Adv. 2020, 10, 30815–30824. [Google Scholar] [CrossRef] [PubMed]
- Gaston, A.J.; Greindl, Z.; Morrison, C.A.; Garden, J.A. Cooperative Heterometallic Catalysts for Lactide Ring-Opening Polymerization: Combining Aluminum with Divalent Metals. Inorg. Chem. 2021, 60, 2294–2303. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.; Lee, H.; Nayab, S. Diverse coordination geometry of cobalt (II), zinc (II), and cadmium (II) complexes comprising N,N-bis(1H-pyrazol-1-yl)methyl)amines derivatives: Synthesis, structures, and ring opening polymerization of rac-lactide. Appl. Organomet. Chem. 2021, 35, e6204. [Google Scholar] [CrossRef]
- Appavoo, D.; Spencer, L.C.; Guzei, I.A.; Gómez-García, C.J.; van Wyk, J.L.; Darkwa, J. Ring opening polymerization of d, l -lactide and ε-caprolactone catalysed by (pyrazol-1-yl)copper( ii ) carboxylate complexes. RSC Adv. 2021, 11, 13475–13485. [Google Scholar] [CrossRef]
- Al-Khafaji, Y.; Prior, T.; Elsegood, M.; Redshaw, C. Molybdenum (VI) Imido Complexes Derived from Chelating Phenols: Synthesis, Characterization and ε-Caprolactone ROP Capability. Catalysts 2015, 5, 1928–1947. [Google Scholar] [CrossRef] [Green Version]
- Dąbrowska, A.M.; Hurko, A.; Durka, K.; Dranka, M.; Horeglad, P. The Effect of Symmetric and Asymmetric NHCs on the Structure and Catalytic Properties of Dialkylgallium Alkoxides in the Ring-Opening Polymerization of rac-Lactide—Linking the Structure, Activity, and Stereoselectivity. Organometallics 2021, 40, 1221–1234. [Google Scholar] [CrossRef]
- Pappuru, S.; Ramkumar, V. Benzoxazole phenoxide ligand supported group IV catalysts and their application for the ring-opening polymerization of rac-lactide and ε-caprolactone. Polym. Adv. Technol. 2021, 32, 3392–3401. [Google Scholar] [CrossRef]
- Ghosh, S.; Wölper, C.; Tjaberings, A.; Gröschel, A.H.; Schulz, S. Syntheses, structures and catalytic activity of tetranuclear Mg complexes in the ROP of cyclic esters under industrially relevant conditions. Dalt. Trans. 2020, 49, 375–387. [Google Scholar] [CrossRef] [PubMed]
- García-Valle, F.M.; Cuenca, T.; Mosquera, M.E.G.; Milione, S.; Cano, J. Ring-Opening Polymerization (ROP) of cyclic esters by a versatile aluminum Diphenoxyimine Complex: From polylactide to random copolymers. Eur. Polym. J. 2020, 125, 109527. [Google Scholar] [CrossRef]
- Gruszka, W.; Walker, L.C.; Shaver, M.P.; Garden, J.A. In Situ Versus Isolated Zinc Catalysts in the Selective Synthesis of Homo and Multi-block Polyesters. Macromolecules 2020, 53, 4294–4302. [Google Scholar] [CrossRef]
- Nifant’ev, I.; Komarov, P.; Ovchinnikova, V.; Kiselev, A.; Minyaev, M.; Ivchenko, P. Comparative experimental and theoretical study of Mg, al and zn aryloxy complexes in copolymerization of cyclic esters: The role of the metal coordination in formation of random copolymers. Polymers 2020, 12, 2273. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Pascouau, C.; Zhao, J.; Zhang, G.; Peruch, F.; Carlotti, S. Ring-opening polymerization of γ-lactones and copolymerization with other cyclic monomers. Prog. Polym. Sci. 2020, 110, 101309. [Google Scholar] [CrossRef]
- Mandal, M.; Chakraborty, D. Co2O3 and MnO2 as inexpensive catalysts for the ring-opening polymerization of cyclic esters. J. Polym. Res. 2021, 28, 52. [Google Scholar] [CrossRef]
- Xing, T.; Prior, T.J.; Chen, K.; Redshaw, C. Titanium complexes bearing oxa- And azacalix[4,6]arenes: Structural studies and use in the ring opening homo-/co-polymerization of cyclic esters. Dalt. Trans. 2021, 50, 4396–4407. [Google Scholar] [CrossRef]
- Gesslbauer, S.; Hutchinson, G.; White, A.J.P.; Burés, J.; Romain, C. Chirality-Induced Catalyst Aggregation: Insights into Catalyst Speciation and Activity Using Chiral Aluminum Catalysts in Cyclic Ester Ring-Opening Polymerization. ACS Catal. 2021, 11, 4084–4093. [Google Scholar] [CrossRef]
- Osten, K.M.; Mehrkhodavandi, P. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation. Acc. Chem. Res. 2017, 50, 2861–2869. [Google Scholar] [CrossRef] [PubMed]
- Santoro, O.; Elsegood, M.R.J.; Teat, S.J.; Yamato, T.; Redshaw, C. Lithium calix[4]arenes: Structural studies and use in the ring opening polymerization of cyclic esters. RSC Adv. 2021, 11, 11304–11317. [Google Scholar] [CrossRef]
- Strianese, M.; Pappalardo, D.; Mazzeo, M.; Lamberti, M.; Pellecchia, C. The contribution of metalloporphyrin complexes in molecular sensing and in sustainable polymerization processes: A new and unique perspective. Dalt. Trans. 2021, 50, 7898–7916. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Prior, T.J.; Hughes, D.L.; Arbaoui, A.; Redshaw, C. Coordination chemistry of [2+2] Schiff-base macrocycles derived from the dianilines [(2-NH2C6H4)2X] (X = CH2CH2, O): Structural studies and ROP capability towards cyclic esters. Dalt. Trans. 2021, 50, 8057–8069. [Google Scholar] [CrossRef]
- Thamizhlarasan, A.; Meenarathi, B.; Parthasarathy, V.; Jancirani, A.; Anbarasan, R. Structural, thermal, spectral and sustainable drug release studies of deoxyfluorouridine tagged poly(d,l-Lactide). Polym. Bull. 2022, 79, 245–262. [Google Scholar] [CrossRef]
- Ou, H.W.; Lu, W.Y.; Vandavasi, J.K.; Lin, Y.F.; Chen, H.Y.; Lin, C.C. Improvement in titanium complexes supported by Schiff bases in ring-opening polymerization of cyclic esters: ONO-tridentate Schiff bases. Polymer 2018, 140, 315–325. [Google Scholar] [CrossRef]
- Nakayama, Y.; Kosaka, S.; Yamaguchi, K.; Yamazaki, G.; Tanaka, R.; Shiono, T. Controlled ring-opening polymerization of l-lactide and ε-caprolactone catalyzed by aluminum-based Lewis pairs or Lewis acid alone. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 297–303. [Google Scholar] [CrossRef]
- Wang, B.; Pan, L.; Ma, Z.; Li, Y. Ring-Opening Polymerization with Lewis Pairs and Subsequent Nucleophilic Substitution: A Promising Strategy to Well-Defined Polyethylene-like Polyesters without Transesterification. Macromolecules 2018, 51, 836–845. [Google Scholar] [CrossRef]
- Pang, X.; Duan, R.; Li, X.; Gao, B.; Sun, Z.; Wang, X.; Chen, X. Bimetallic Schiff-base aluminum complexes based on pentaerythrityl tetramine and their stereoselective polymerization of racemic lactide. RSC Adv. 2014, 4, 22561–22566. [Google Scholar] [CrossRef]
- Khononov, M.; Fridman, N.; Tamm, M.; Eisen, M.S. Hydroboration of Aldehydes, Ketones, and Carbodiimides Promoted by Mono(imidazolin-2-iminato) Hafnium Complexes. Eur. J. Org. Chem. 2020, 2020, 3153–3160. [Google Scholar] [CrossRef]
- Khononov, M.; Liu, H.; Fridman, N.; Tamm, M.; Eisen, M.S. Benzimidazolin-2-iminato Hafnium Complexes: Synthesis, Characterization, and Catalytic Addition of Alcohols to Carbodiimides. Organometallics 2020, 39, 3021–3033. [Google Scholar] [CrossRef]
- Hamaki, H.; Takeda, N.; Nabika, M.; Tokitoh, N. Catalytic activities for olefin polymerization: Titanium(III), titanium(IV), zirconium(IV), and hafnium(IV) β-diketiminato, 1-aza-1,3-butadienyl-imido, and 1-aza-2-butenyl-imido complexes bearing an extremely bulky substituent, the Tbt group (Tbt= 2, 4, 6-[(Me3Si) 2CH] 3C6H2). Macromolecules 2012, 45, 1758–1769. [Google Scholar]
- Zhang, J.; Mason, A.H.; Motta, A.; Cesar, L.G.; Kratish, Y.; Lohr, T.L.; Miller, J.T.; Gao, Y.; Marks, T.J. Surface vs Homogeneous Organo-Hafnium Catalyst Ion-Pairing and Ligand Effects on Ethylene Homo- and Copolymerizations. ACS Catal. 2021, 11, 3239–3250. [Google Scholar] [CrossRef]
- Resconi, L.M.C.; Schwarzenberger, S.; Virkkunen, V.; Reznichenko, A.; Izmer, V.V.; Voskoboynikov, A.Z. Catalysts. WO 2021/058740, 1 April 2021. [Google Scholar]
- Szuromi, E.; Carmelio, A.M.; Devore, D.D.; Milbrandt, K.A.; Christianson, M.D. Bidentate biarylphenoxy group IV transition metal catalysts for olefin polymerization with chain transfer agents. WO 2021/067184, 8 April 2021. [Google Scholar]
- Cueny, E.S.; Nieszala, M.R.; Froese, R.D.J.; Landis, C.R. Nature of the Active Catalyst in the Hafnium-Pyridyl Amido-Catalyzed Alkene Polymerization. ACS Catal. 2021, 11, 4301–4309. [Google Scholar] [CrossRef]
- Holtcamp, M.W.; Charles, J.; Kuppuswamyk, S.; Matthew, S. Metallocenes and methods thereof. WO 2021/025904, 11 April 2021. [Google Scholar]
- Arriola, D.J.; Carnahan, E.M.; Hustad, P.D.; Kuhlman, R.L.; Wenzel, T.T. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 2006, 312, 714–719. [Google Scholar] [CrossRef]
- Matsumoto, K.; Sandhya, K.S.; Takayanagi, M.; Koga, N.; Nagaoka, M. An Active Site Opening Mechanism in a (Pyridylamide)hafnium(IV) Ion Pair Catalyst: An Associative Mechanism. Organometallics 2016, 35, 4099–4105. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takayanagi, M.; Sankaran, S.K.; Koga, N.; Nagaoka, M. Role of the Counteranion in the Reaction Mechanism of Propylene Polymerization Catalyzed by a (Pyridylamido)hafnium(IV) Complex. Organometallics 2018, 37, 343–349. [Google Scholar] [CrossRef]
- Nakata, N.; Saito, Y.; Watanabe, T.; Ishii, A. Completely Isospecific Polymerization of 1-Hexene Catalyzed by Hafnium(IV) Dichloro Complex Incorporating with an [OSSO]-type Bis(phenolate) Ligand. Top. Catal. 2014, 57, 918–922. [Google Scholar] [CrossRef]
- Bochmann, M.; Lancaster, S.J. Cationic group IV metal alkyl complexes and their role as olefin polymerization catalysts: The formation of ethyl-bridged dinuclear and heterodinuclear zirconium and hafnium complexes. J. Organomet. Chem. 1995, 497, 55–59. [Google Scholar] [CrossRef]
- Jiang, P.; Yang, J. Indacene Based Metallocene Catalysts Useful in the Production of Propylene Polymers. US 20210107930, 9 October 2020. [Google Scholar]
- Han, B.; Liu, Y.; Feng, C.; Liu, S.; Li, Z. Development of Group 4 Metal Complexes Bearing Fused-Ring Amido-Trihydroquinoline Ligands with Improved High-Temperature Catalytic Performance toward Olefin (Co)polymerization. Organometallics 2021, 40, 242–252. [Google Scholar] [CrossRef]
- Atienza, C.C.H.; Cano, D.A.; Culcu, G.; Faler, C.A.; Hagardon, J.R. Catalysts for Olefin Polymerization. US 20210107927, 15 April 2021. [Google Scholar]
- Wang, X.-Y.; Yang, F.; Cao, D.-F.; Ma, Z.; Pan, L.; Li, Y.-S. Structure and property of comb-like polyolefins derived from highly Stereospecific homo-polymerization of higher α-olefins. Polymer 2021, 213, 123223. [Google Scholar] [CrossRef]
- Gowda, R.R.; Chakraborty, D.; Ramkumar, V. Aryloxy and benzyloxy compounds of zirconium: Synthesis, structural characterization and studies on solvent-free ring-opening polymerization of ε-caprolactone and δ-valerolactone. J. Organomet. Chem. 2011, 696, 572–580. [Google Scholar] [CrossRef]
- Liang, L.C.; Lin, S.T.; Chien, C.C.; Chen, M.T. Zirconium and hafnium complexes containing N-alkyl substituted amine biphenolate ligands: Coordination chemistry and living ring-opening polymerization catalysis. Dalt. Trans. 2013, 42, 9286–9293. [Google Scholar] [CrossRef]
- Rajashekhar, B.; Roymuhury, S.K.; Chakraborty, D.; Ramkumar, V. Group 4 metal complexes of Trost’s semi-crown ligand: Synthesis, structural characterization and studies on the ring-opening polymerization of lactides and ε-caprolactone. Dalt. Trans. 2015, 44, 16280–16293. [Google Scholar] [CrossRef]
- Sun, Y.; Jia, Z.; Chen, C.; Cong, Y.; Mao, X.; Wu, J. Alternating Sequence Controlled Copolymer Synthesis of α-Hydroxy Acids via Syndioselective Ring-Opening Polymerization of O-Carboxyanhydrides Using Zirconium/Hafnium Alkoxide Initiators. J. Am. Chem. Soc. 2017, 139, 10723–10732. [Google Scholar] [CrossRef] [PubMed]
- Sauer, A.; Kapelski, A.; Fliedel, C.; Dagorne, S.; Kol, M.; Okuda, J. Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide monomers. Dalt. Trans. 2013, 42, 9007–9023. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.T.; Fazekas, E.; Patterson, S.B.H.; Rosair, G.M.; Vilela, F.; McIntosh, R.D. Polymetallic Group 4 Complexes: Catalysts for the Ring Opening Polymerisation of rac-Lactide. Catalysts 2021, 11, 551. [Google Scholar] [CrossRef]
- Santoro, O.; Elsegood, M.R.J.; Bedwell, E.V.; Pryce, J.A.; Redshaw, C. INSIGHTS into the structures adopted by titanocalix[6 and 8]arenes and their use in the ring opening polymerization of cyclic esters. Dalton Transactions 2020, 49, 11978–11996. [Google Scholar] [CrossRef]
- Haynes, E.W.M. CRC Handbook of Chemistry and Physics; CRC Press/Taylor And Francis: Boca Raton, FL, USA, 2016. [Google Scholar]
- Wu, X.; Tamm, M. Transition metal complexes supported by highly basic imidazolin-2-iminato and imidazolin-2-imine N-donor ligands. Coord. Chem. Rev. 2014, 260, 116–138. [Google Scholar] [CrossRef]
- Shoken, D.; Sharma, M.; Botoshansky, M.; Tamm, M.; Eisen, M.S. Mono(imidazolin-2-iminato) titanium complexes for ethylene polymerization at low amounts of methylaluminoxane. J. Am. Chem. Soc. 2013, 135, 12592–12595. [Google Scholar] [CrossRef]
- Ochiai, T.; Franz, D.; Inoue, S. Applications of N-heterocyclic imines in main group chemistry. Chem. Soc. Rev. 2016, 45, 6327–6344. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Kulbitski, K.; Tamm, M.; Eisen, M.S. Organoactinide-Catalyzed Monohydroboration of Carbodiimides. Chem.-A Eur. J. 2018, 24, 5738–5742. [Google Scholar] [CrossRef]
- Liu, H.; Fridman, N.; Tamm, M.; Eisen, M.S. Catalytic Addition of Alcohols to Carbodiimides Mediated by Benzimidazolin-2-iminato Actinide Complexes. Organometallics 2017, 36, 4600–4610. [Google Scholar] [CrossRef]
- Liu, H.; Khononov, M.; Eisen, M.S. Catalytic 1,2-Regioselective Dearomatization of N-Heteroaromatics via a Hydroboration. ACS Catal. 2018, 8, 3673–3677. [Google Scholar] [CrossRef]
- Liu, H.; Khononov, M.; Fridman, N.; Tamm, M.; Eisen, M.S. Synthesis, characterization and catalytic performances of benzimidazolin-2-iminato actinide (IV) complexes in the Tishchenko reactions for symmetrical and unsymmetrical esters. J. Organomet. Chem. 2018, 857, 123–137. [Google Scholar] [CrossRef]
- Naktode, K.; Das, S.; Bhattacharjee, J.; Nayek, H.P.; Panda, T.K. Imidazolin-2-iminato Ligand-Supported Titanium Complexes as Catalysts for the Synthesis of Urea Derivatives. Inorg. Chem. 2016, 55, 1142–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naktode, K.; Das, S.; Nayek, H.P.; Panda, T.K. Imidazolin-2-iminato ligand supported titanium(IV) aryloxo complexes—Syntheses and structures. Inorganica Chim. Acta 2017, 456, 24–33. [Google Scholar] [CrossRef]
- Shoken, D.; Shimon, L.J.W.; Tamm, M.; Eisen, M.S. Synthesis of Imidazolin-2-iminato Titanium Complexes Containing Aryloxo Ligands and Their Catalytic Performance in the Polymerization of α-Olefins. Organometallics 2016, 35, 1125–1131. [Google Scholar] [CrossRef]
- Klosin, J.; Fontaine, P.P.; Figueroa, R.; McCann, S.D.; Mort, D. Preparation of new olefin polymerization precatalysts by facile derivatization of imino-enamido ZrMe3 and HfMe3 complexes. Organometallics 2013, 32, 6488–6499. [Google Scholar] [CrossRef]
- Karmel, I.S.R.; Botoshansky, M.; Tamm, M.; Eisen, M.S. Uranium(IV) imidazolin-2-iminato complexes: A new class of actinide complexes. Inorg. Chem. 2014, 53, 694–696. [Google Scholar] [CrossRef]
- Karmel, I.S.R.R.; Fridman, N.; Tamm, M.; Eisen, M.S. Mono(imidazolin-2-iminato) actinide complexes: Synthesis and application in the catalytic dimerization of aldehydes. J. Am. Chem. Soc. 2014, 136, 17180–17192. [Google Scholar] [CrossRef]
- Karmel, I.S.R.; Fridman, N.; Tamm, M.; Eisen, M.S. Mixed Imidazolin-2-iminato-Cp∗ Thorium(IV) Complexes: Synthesis and Reactivity Toward Oxygen-Containing Substrates. Organometallics 2015, 34, 2933–2942. [Google Scholar] [CrossRef]
- Liu, H.; Khononov, M.; Fridman, N.; Tamm, M.; Eisen, M.S. Catalytic Addition of Alcohols into Carbodiimides Promoted by Organoactinide Complexes. Inorg. Chem. 2017, 56, 3153–3157. [Google Scholar] [CrossRef]
- Liu, H.; Fridman, N.; Tamm, M.; Eisen, M.S. Addition of E-H (E = N, P, C, O, S) Bonds to Heterocumulenes Catalyzed by Benzimidazolin-2-iminato Actinide Complexes. Organometallics 2017, 36, 3896–3903. [Google Scholar] [CrossRef]
- Naktode, K.; Das, S.; Pada Nayek, H.; Panda, T.K. Reactivity of titanium imidazolin-2-iminato complexes with 2,6-diisopropylaniline and 2-{(2,6-diisopropylphenyl)-iminomethyl}pyrrole. J. Coord. Chem. 2018, 71, 4148–4163. [Google Scholar] [CrossRef]
- Glöckner, A.; Bannenberg, T.; Daniliuc, C.G.; Jones, P.G.; Tamm, M. From a cycloheptatrienylzirconium allyl complex to a cycloheptatrienylzirconium imidazolin-2-iminato “pogo stick” complex with imido-type reactivity. Inorg. Chem. 2012, 51, 4368–4378. [Google Scholar] [CrossRef]
- Tamm, M.; Randoll, S.; Bannenberg, T.; Herdtweck, E. Titanium complexes with imidazolin-2-iminato ligands. Chem. Commun. 2004, 4, 876–877. [Google Scholar] [CrossRef]
- Tamm, M.; Randoll, S.; Herdtweck, E.; Kleigrewe, N.; Kehr, G.; Erker, G.; Rieger, B. Imidazolin-2-iminato titanium complexes: Synthesis, structure and use in ethylene polymerization catalysis. Dalt. Trans. 2006, 2, 459–467. [Google Scholar] [CrossRef]
- Panda, T.K.; Trambitas, A.G.; Bannenberg, T.; Hrib, C.G.; Randoll, S.; Jones, P.G.; Tamm, M. Imidazolin-2-iminato complexes of rare earth metals with very short metal-nitrogen bonds: Experimental and theoretical studies. Inorg. Chem. 2009, 48, 5462–5472. [Google Scholar] [CrossRef]
- Sharma, M.; Yameen, H.S.; Tumanskii, B.; Filimon, S.A.; Tamm, M.; Eisen, M.S. Bis(1,3-di-tert-butylimidazolin-2-iminato) titanium complexes as effective catalysts for the monodisperse polymerization of propylene. J. Am. Chem. Soc. 2012, 134, 17234–17244. [Google Scholar] [CrossRef]
- Hao, J.; Wei, X.; Huang, S.; Guo, J.; Liu, D. Synthesis and structures of the chelating diamido zirconium and hafnium compounds. Appl. Organomet. Chem. 2005, 19, 1010–1014. [Google Scholar] [CrossRef]
- Lorber, C.; Donnadieu, B.; Choukroun, R. Synthesis and structure of group 4 and 5 metal complexes with an ancillary sterically demanding diamido ligand. Organometallics 2000, 19, 1963–1966. [Google Scholar] [CrossRef]
- Večeřa, M.; Varga, V.; Císařová, I.; Pinkas, J.; Kucharczyk, P.; Sedlařík, V.; Lamač, M. Group 4 Metal Complexes of Chelating Cyclopentadienyl-ketimide Ligands. Organometallics 2016, 35, 785–798. [Google Scholar] [CrossRef]
- Batke, S.; Kothe, T.; Haas, M.; Wadepohl, H.; Ballmann, J. Diamidophosphines with six-membered chelates and their coordination chemistry with group 4 metals: Development of a trimethylene-methane-tethered [PN2]-type “molecular claw”. Dalt. Trans. 2016, 45, 3528–3540. [Google Scholar] [CrossRef] [Green Version]
- Trambitas, A.G.; Panda, T.K.; Tamm, M. Rare Earth metal complexes supported by ancillary imidazolin-2-iminato ligands. Zeitschrift fur Anorg. und Allg. Chem. 2010, 636, 2156–2171. [Google Scholar] [CrossRef]
- Arbaoui, A.; Redshaw, C. Metal catalysts for ε-caprolactone polymerisation. Polym. Chem. 2010, 1, 801. [Google Scholar] [CrossRef]
- Liu, H.; Khononov, M.; Fridman, N.; Tamm, M.; Eisen, M.S. (Benz)Imidazolin-2-iminato Aluminum, Zinc, and Magnesium Complexes and Their Applications in Ring Opening Polymerization of ε-Caprolactone. Inorg. Chem. 2019, 58, 13426–13439. [Google Scholar] [CrossRef]
- Dubois, P.; Coulembier, O.; Raquez, J.M. Handbook of Ring-Opening Polymerization; John Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Černicki, B. NMR Study of the ROH-D2O Systems I. Ethanol, Propanol-1, Propanol-2. Berichte der Bunsenges. für Phys. Chem. 1965, 69, 57–60. [Google Scholar] [CrossRef]
- Routaray, A.; Nath, N.; Maharana, T.; Sutar, A. kumar Synthesis and Immortal ROP of L -Lactide Using Copper Complex. J. Macromol. Sci. Part A 2015, 52, 444–453. [Google Scholar] [CrossRef]
- Xie, H.; Mou, Z.; Liu, B.; Li, P.; Rong, W.; Li, S.; Cui, D. Phosphinimino-amino Magnesium Complexes: Synthesis and Catalysis of Heteroselective ROP of rac-Lactide. Organometallics 2014, 33, 722–730. [Google Scholar] [CrossRef]
- Levens, A.; An, F.; Breugst, M.; Mayr, H.; Lupton, D.W. Influence of the N-Substituents on the Nucleophilicity and Lewis Basicity of N-Heterocyclic Carbenes. Org. Lett. 2016, 18, 3566–3569. [Google Scholar] [CrossRef]
- Wang, K.T.; Wang, Y.X.; Wang, B.; Li, Y.G.; Li, Y.S. Novel zirconium complexes with constrained cyclic β-enaminoketonato ligands: Improved catalytic capability toward ethylene polymerization. Dalt. Trans. 2016, 45, 10308–10318. [Google Scholar] [CrossRef]
- Kappa CCD Server Software; Nonius BV: Delft, The Netherlands, 1997.
- Otwinowski, Z.; Minor, W. Methods Enzym; Academic Press: Cambridge, MA, USA, 1997; pp. 307–326. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
Bond Length (Å) and Angle (°) | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Hf-N1 | 2.118(5) | 1.925(4) | 1.907(4) | 1.911(4) |
Hf-N1#1 | 2.175(5) | |||
Hf-CBenz | 2.268(7) | 2.267(5) | 2.229(6) | 2.254(5) |
N-Cipso | 1.330(8) | 1.323(6) | 1.297(6) | 1.299(5) |
Hf-CBenz | 2.262(8) | 2.270(5) | 2.251(6) | 2.279(5) |
Hf-CBenz | 2.326(5) | 2.290(6) | 2.278(5) | 2.281(4) |
Cone angle | 128 | 124 | 155 | 262 |
N1-Hf1-N1#1 | 76.26(19) | |||
Hf1-N1-Hf1#1 | 102.15(19) | |||
C1-N1-Hf | 129.5(4) | 176.3(3) | 164.1(4) | 172.2(3) |
CBenz-Hf-CBenz | 91.5(3) | 104.2(2) | 107.1(2) | 102.7(2) |
CBenz-Hf-CBenz | 98.5(3) | 113.3(19) | 109.6(2) | 117.4(2) |
CBenz-Hf-CBenz | 118.2(3) | 121.48(19) | 122.3(2) | 121.3(18) |
Complex | Activity (g mol−1 h−1)·104 | ||
---|---|---|---|
Cat:Monomer | 1:100 | 1:1000 | 1:2000 |
1 | 4.5 | 11.4 | 6.1 |
2 | 3.9 | 9.8 | 6.3 |
3 | 2.5 | 4.9 | 4.4 |
4 | 10.7 | 19.8 | 27.5 |
Cat:Monomer | 1:100 | 1:1000 | 1:2000 |
---|---|---|---|
Yield (±0.03%) | 78.3 | 14.6 | 10.8 |
A (g mol−1 h−1)·105 | 1.07 | 1.98 | 2.75 |
PDI | 1.7 | 2.4 | 2.7 |
Mn corrected·103 (g/mol) | 10.9 | 13.0 | 15.8 |
Complex | Time (min) | Conversion % | Mn (g/mol) | PDI |
---|---|---|---|---|
4 | 10 | 23 | 4030 | 1.36 |
4 | 30 | 34 | 6160 | 1.90 |
4 | 50 | 44 | 7950 | 1.88 |
4 | 70 | 50 | 7450 | 1.70 |
4 | 90 | 57 | 8790 | 1.66 |
5 | 10 | 38 | 1120 | 1.25 |
5 | 20 | 60 | 1340 | 1.08 |
5 | 30 | 78 | 1680 | 1.10 |
5 | 50 | 95 | 1900 | 1.50 |
5 | 60 | 100 | 2130 | 1.10 |
6 | 10 | 22 | 670 | 1.20 |
6 | 20 | 46 | 1230 | 1.12 |
6 | 30 | 71 | 1850 | 1.40 |
6 | 40 | 86 | 2000 | 1.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khononov, M.; Liu, H.; Fridman, N.; Tamm, M.; Eisen, M.S. Mono(imidazolin-2-iminato) Hafnium Complexes: Synthesis and Application in the Ring-Opening Polymerization of ε-Caprolactone and rac-Lactide. Catalysts 2022, 12, 1201. https://doi.org/10.3390/catal12101201
Khononov M, Liu H, Fridman N, Tamm M, Eisen MS. Mono(imidazolin-2-iminato) Hafnium Complexes: Synthesis and Application in the Ring-Opening Polymerization of ε-Caprolactone and rac-Lactide. Catalysts. 2022; 12(10):1201. https://doi.org/10.3390/catal12101201
Chicago/Turabian StyleKhononov, Maxim, Heng Liu, Natalia Fridman, Matthias Tamm, and Moris S. Eisen. 2022. "Mono(imidazolin-2-iminato) Hafnium Complexes: Synthesis and Application in the Ring-Opening Polymerization of ε-Caprolactone and rac-Lactide" Catalysts 12, no. 10: 1201. https://doi.org/10.3390/catal12101201
APA StyleKhononov, M., Liu, H., Fridman, N., Tamm, M., & Eisen, M. S. (2022). Mono(imidazolin-2-iminato) Hafnium Complexes: Synthesis and Application in the Ring-Opening Polymerization of ε-Caprolactone and rac-Lactide. Catalysts, 12(10), 1201. https://doi.org/10.3390/catal12101201