Enhanced Photocatalytic Activity of ZnO–CdS Composite Nanostructures towards the Degradation of Rhodamine B under Solar Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ZnO Nanoparticles
2.3. Synthesis of CdS Nanoparticles
2.4. Synthesis of ZnO–CdS Composite Nanostructures
2.5. Characterization Techniques
2.6. Photocatalytic Activity
3. Results and Discussion
3.1. X-ray Diffraction Study
3.2. Morphological Study
3.3. Absorption Study
3.4. Photoluminescence Study
3.5. Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, L.; Li, S.; Ding, Z.; Wang, X. Wet chemical synthesis of CdS/ZnO nanoparticle/nanorod hetero-structure for enhanced visible light disposal of Cr(VI) and methylene blue. Colloids Surf. A 2020, 607, 125489. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 48, 428. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536. [Google Scholar] [CrossRef]
- Li, C.; Chen, S.; Gao, X.; Zhang, W.; Wang, Y. Fabrication, characterization and photoelectrochemical properties of CdS/CdSe nanofilm co-sensitized ZnO nanorod arrays on Zn foil substrate. J. Colloid Interface Sci. 2021, 588, 269. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, J.; Liu, G.; Shi, J.; Guo, L. Controllable synthesis of double layered tubular CdSe/ZnO arrays and their photoelectrochemical performance for hydrogen production. Appl. Catal. B Environ. 2013, 304, 138–139. [Google Scholar] [CrossRef]
- Nie, Q.; Yang, L.; Cao, C.; Zeng, Y.; Wang, G.; Wang, C.; Lin, S. Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low temperature thermal treatment for improved photoelectrochemical water splitting. Chem. Eng. J. 2017, 325, 151. [Google Scholar] [CrossRef]
- Wang, R.; Chen, S.; Ng, Y.H.; Gao, Q.; Yang, S.; Zhang, S.; Peng, F.; Fang, Y.; Zhang, S. ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chem. Eng. J. 2019, 362, 658. [Google Scholar] [CrossRef]
- Seol, M.; Jang, J.; Cho, S.; Lee, J.S.; Yong, K. Highly efficient and stable cadmium chalcogenide quantum dot/ZnO nanowires for photoelectrochemical hydrogen generation. Chem. Mater. 2013, 25, 184. [Google Scholar] [CrossRef]
- Altaf, C.T.; Faraji, M.; Kumtepe, A.; Abdullayeva, N.; Yilmaz, N.; Karagoz, E.; Bozbey, A.; Kurt, H.; Sankir, M.; Sankir, N.D. Highly efficient 3D-ZnO nanosheet photoelectrodes for solar-driven water splitting: Chalcogenide nanoparticle sensitization and mathematical modeling. J. Alloys Compd. 2020, 828, 154472. [Google Scholar] [CrossRef]
- Dai, B.; Fang, J.; Yu, Y.; Sun, M.; Huang, H.; Lu, C.; Kou, J.; Zhao, Y.; Xu, Z. Construction of Infrared-Light-Responsive Photoinduced Carriers Driver for Enhanced Photocatalytic Hydrogen Evolution. Adv. Mater. 2020, 32, 1906361. [Google Scholar] [CrossRef]
- Qiu, Y.; Pan, Z.; Chen, H.; Ye, D.; Guo, L.; Fan, Z.; Yang, S. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci. Bull. 2019, 64, 1348. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Chen, Y.; Zheng, Y.; Wang, Y. CdS/ZnO: A multi-pronged approach for efficient reduction of carbon dioxide under visible light irradiation. ACS Sustain. Chem. Eng. 2020, 8, 5270. [Google Scholar] [CrossRef]
- Sun, G.; Xiao, B.; Zheng, H.; Shi, J.; Mao, S.; He, C.; Li, Z.; Cheng, Y. Ascorbic acid functionalized CdS–ZnO core–shell nanorods with hydrogen spillover for greatly enhanced photocatalytic H2 evolution and outstanding photostability. J. Mater. Chem. A 2021, 9, 9735. [Google Scholar] [CrossRef]
- Senasu, T.; Chankhanittha, T.; Hemavibool, K.; Nanan, S. Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic. Mater. Sci. Semicond. Process. 2021, 123, 105558. [Google Scholar] [CrossRef]
- Rao, G.T.; Ravikumar, R.V.S.S.N.; Reddy, N.B.; Zyryanov, G.V. Investigation on synthesis, structural and optical properties of CdS nanoparticles. AIP Conf. Proc. 2020, 2280, 040038. [Google Scholar]
- Rao, G.T.; Babu, B.; Stella, R.J.; Manjari, V.P.; Ravikumar, R.V.S.S.N. Spectral investigations on undoped and Cu2+ doped ZnO–CdS composite nanopowders. Spectrochim. Acta A 2015, 139, 86. [Google Scholar]
- Aswani, T.; Babu, B.; Manjari, V.P.; Stella, R.J.; Rao, G.T.; Krishna, C.R.; Ravikumar, R.V.S.S.N. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders. Spectrochim. Acta A 2014, 121, 544. [Google Scholar] [CrossRef]
- Rao, G.T.; Stella, R.J.; Babu, B.; Ravindranadh, K.; Reddy, C.V.; Shim, J.; Ravikumar, R.V.S.S.N. Structural, optical and magnetic properties of Mn2+ doped ZnO-CdS composite nanopowder. Mater. Sci. Eng. B 2015, 201, 72. [Google Scholar] [CrossRef]
- Mo, Z.; Huang, Y.; Lu, S.; Fu, Y.; Shen, X.; He, H. Growth of ZnO nanowires and their applications for CdS quantum dots sensitized solar cells. Optik 2017, 149, 63. [Google Scholar] [CrossRef]
- Gurugubelli, T.R.; Ravikumar, R.V.S.S.N.; Koutavarapu, R. Structural, optical, and luminescence properties of Ni2+-doped ZnO–CdS nanocomposite: Synthesis and investigations for green light emission. Chem. Pap. 2022, 76, 557. [Google Scholar] [CrossRef]
- Zeng, H.; Cai, W.; Hu, J.; Duan, G.; Liu, P.; Li, Y. Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation. Appl. Phys. Lett. 2006, 88, 17191025. [Google Scholar] [CrossRef]
- Rao, G.T.; Babu, B.; Stella, R.J.; Manjari, V.P.; Reddy, C.V.; Shim, J.; Ravikumar, R.V.S.S.N. Synthesis and characterization of VO2+ doped ZnO–CdS composite nanopowder. J. Mol. Struc. 2015, 1081, 254. [Google Scholar]
- Rao, G.T.; Ravikumar, R.V.S.S.N. Novel Fe-doped ZnO-CdS nanocomposite with enhanced visible light-driven photocatalytic performance. Mater. Res. Innov. 2021, 25, 215. [Google Scholar] [CrossRef]
- Ravindranadh, K.; Tamtam, M.R.; Lee, S.G.; Rao, M.C.; Lee, D.Y.; Shim, J. Synthesis of 2D NiFe2O4 nanoplates/2D Bi2WO6 nanoflakes heterostructure: An enhanced Z-scheme charge transfer and separation for visible-light-driven photocatalytic degradation of toxic pollutants. J. Environ. Chem. Eng. 2021, 9, 105893. [Google Scholar]
- Zguraa, I.; Preda, N.; Socol, G.; Ghica, C.; Ghica, D.; Enculescu, M.; Negut, I.; Nedelcu, L.; Frunza, L.; Ganea, C.P.; et al. Wet chemical synthesis of ZnO-CdS composites and their photocatalytic Activity. Mater. Res. Bull. 2018, 99, 174. [Google Scholar] [CrossRef]
- Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue. Phys. B Condens. Matter 2018, 534, 56. [Google Scholar] [CrossRef]
- Nandi, P.; Das, D. ZnO/CdS/CuS heterostructure: A suitable candidate for applications in visible-light photocatalysis. J. Phy. Chem. Solid 2022, 160, 110344. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Iqbal, M.; Louis, H.; Bello, O.S. Synthesis, characterization and application of CdS/ZnO nanorod heterostructure for the photodegradation of Rhodamine B dye. Mater. Sci. Energy Technol. 2019, 2, 329. [Google Scholar] [CrossRef]
Sample | Crystallite Size(d) nm | Microstrain (ε) × 10−3 | Lattice Parameters (a, c) nm |
---|---|---|---|
ZnO NPs | 34.21 | 1.0103 | (0.3250, 0.5211) |
CdS NPs | 18.76 | 1.8477 | (0.4132, 0.6753) |
ZnO–CdS NCs | 26.75 | 1.2955 | (0.3254, 0.5214), (0.4136, 0.6756) |
Sample | Dye | Synthesis Method | Light Source | Irradiation Time (min) | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
ZnO–CdS | RhB | Wet Chemical | UV | 80 | 90 | [25] |
CdS/ZnO | MB | SILAR and CBD | Solar Light | 240 | 91 | [26] |
ZnO/CdS | RhB, MB | Low temp. Aqueous solution | Visible | 120 | 72.4, 88.5 | [27] |
ZnO/CdS/CuS | RhB, MB | Low temp. Aqueous solution | Visible | 120 | 82, 97 | [27] |
ZnO/CdS | RR141 | Hydrothermal | Visible | 240 | 80 | [14] |
CdS/ZnO | MB | Wet Chemical | Visible | 60 | 85 | [1] |
CdS/ZnO | RhB | Hydrothermal and Photochemical | Visible | 30 | 85 | [28] |
ZnO–CdS | RhB | Chemical Precipitation | Solar Light | 80 | 98.16 | [* PW] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurugubelli, T.R.; Ravikumar, R.V.S.S.N.; Koutavarapu, R. Enhanced Photocatalytic Activity of ZnO–CdS Composite Nanostructures towards the Degradation of Rhodamine B under Solar Light. Catalysts 2022, 12, 84. https://doi.org/10.3390/catal12010084
Gurugubelli TR, Ravikumar RVSSN, Koutavarapu R. Enhanced Photocatalytic Activity of ZnO–CdS Composite Nanostructures towards the Degradation of Rhodamine B under Solar Light. Catalysts. 2022; 12(1):84. https://doi.org/10.3390/catal12010084
Chicago/Turabian StyleGurugubelli, Thirumala Rao, R. V. S. S. N. Ravikumar, and Ravindranadh Koutavarapu. 2022. "Enhanced Photocatalytic Activity of ZnO–CdS Composite Nanostructures towards the Degradation of Rhodamine B under Solar Light" Catalysts 12, no. 1: 84. https://doi.org/10.3390/catal12010084
APA StyleGurugubelli, T. R., Ravikumar, R. V. S. S. N., & Koutavarapu, R. (2022). Enhanced Photocatalytic Activity of ZnO–CdS Composite Nanostructures towards the Degradation of Rhodamine B under Solar Light. Catalysts, 12(1), 84. https://doi.org/10.3390/catal12010084