Recent Advances in Biocatalysis and Metabolic Engineering
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W. Power of biocatalysis for organic synthesis. ACS Cent. Sci. 2021, 7, 55–71. [Google Scholar] [CrossRef]
- Boh, B.; Berovic, M.; Zhang, J.; Zhi-Bin, L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Annu. Rev. 2007, 13, 265–301. [Google Scholar]
- Cherian, E.; Sudheesh, N.P.; Janardhanan, K.K.; Patani, G. Free radical scavenging and mitochondrial antioxidant activities of reishi- ganoderma lucidum. J. Basic Clin. Physiol. Pharmacol. 2011, 20, 289–308. [Google Scholar]
- Wang, Y.; Xu, A.; Knight, C.; Xu, L.Y.; Cooper, G.J.S. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity. J. Biol. Chem. 2002, 277, 19521–19529. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.-S.; Chiang, C.-M.; Wang, T.-Y.; Tsai, Y.-L.; Wu, Y.-W.; Ting, H.-J.; Wu, J.-Y. One-pot bi-enzymatic cascade synthesis of novel ganoderma triterpenoid saponins. Catalysts 2021, 11, 580. [Google Scholar] [CrossRef]
- Cör, D.; Knez, Ž.; Hrnčič, M.K. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of ganoderma lucidum terpenoids and polysaccharides: A review. Molecules 2018, 23, 649. [Google Scholar] [CrossRef] [Green Version]
- Ayeleso, T.B.; Matumba, M.G.; Mukwevho, E. Oleanolic acid and its derivatives: Biological activities and therapeutic potential in chronic diseases. Molecules 2017, 22, 1915. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.J.; Finnigan, J.D.; Cook, K.; Black, G.W.; Charnock, S.J. Cytochromes p450: History, classes, catalytic mechanism, and industrial application. Adv. Protein Chem. Struct. Biol. 2016, 105, 105–126. [Google Scholar]
- Cao, N.T.; Nguyen, N.A.; Le, T.-K.; Cha, G.S.; Park, K.D.; Yun, C.-H. Regioselective hydroxylation of oleanolic acid catalyzed by human cyp3a4 to produce hederagenenin, a chiral metabolite. Catalysts 2021, 11, 267. [Google Scholar] [CrossRef]
- Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-H.; Chen, B.-Y.; Liu, Y.-C.; Chen, J.-H.; Shieh, C.-J. Production of resveratrol by piceid deglycosylation using cellulase. Catalysts 2016, 6, 32. [Google Scholar] [CrossRef]
- Sarsaiya, S.; Jain, A.; Awasthi, S.K.; Duan, Y.; Awasthi, M.K.; Shi, J. Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives. Bioresour. Technol. 2019, 291, 121905. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Liu, Z.; Lu, Y. Fed-batch cultivation and adding supplements to increase yield of β-1,3-1,4-glucanase by genetically engineered Escherichia coli. Catalysts 2021, 11, 269. [Google Scholar] [CrossRef]
- Califano, V.; Costantini, A. Enzyme immobilization and biocatalysis. Catalysts 2021, 11, 823. [Google Scholar] [CrossRef]
- El-Shishtawy, R.M.; Ahmed, N.S.E.; Almulaiky, Y.Q. Immobilization of catalase on chitosan/zno and chitosan/zno/fe2o3 nanocomposites: A comparative study. Catalysts 2021, 11, 820. [Google Scholar] [CrossRef]
- Chi, M.-C.; Huang, Y.-F.; Lu, B.-Y.; Lin, M.-G.; Wang, T.-F.; Lin, L.-L. Magnetic cross-linked enzyme aggregates of a transpeptidase-specialized variant (n450d) of bacillus licheniformis γ-glutamyl transpeptidase: An efficient and stable biocatalyst for l-theanine synthesis. Catalysts 2021, 11, 243. [Google Scholar] [CrossRef]
- Ko, Y.-M.; Chen, C.-I.; Lin, C.-C.; Kan, S.-C.; Zang, C.-Z.; Yeh, C.-W.; Chang, W.-F.; Shieh, C.-J.; Liu, Y.-C. Enhanced d-hydantoinase activity performance via immobilized cobalt ion affinity membrane and its kinetic study. Biochem. Eng. J. 2013, 79, 200–205. [Google Scholar] [CrossRef]
- Wong, H.-L.; Hu, N.-J.; Juang, T.-Y.; Liu, Y.-C. Co-immobilization of xylanase and scaffolding protein onto an immobilized metal ion affinity membrane. Catalysts 2020, 10, 1408. [Google Scholar] [CrossRef]
- Lin, C.-C.; Yap, C.J.S.; Kan, S.-C.; Hsueh, N.-C.; Yang, L.-Y.; Shieh, C.-J.; Huang, C.-C.; Liu, Y.-C. Deciphering characteristics of the designer cellulosome from bacillus subtilis wb800n via enzymatic analysis. Biochem. Eng. J. 2017, 117, 147–155. [Google Scholar] [CrossRef]
- Bokare, A.; Chinnusamy, S.; Erogbogbo, F. Tio2-graphene quantum dots nanocomposites for photocatalysis in energy and biomedical applications. Catalysts 2021, 11, 319. [Google Scholar] [CrossRef]
- Liu, C.; Im, S.H.; Yu, T. Synthesis of au–cu alloy nanoparticles as peroxidase mimetics for h2o2 and glucose colorimetric detection. Catalysts 2021, 11, 343. [Google Scholar] [CrossRef]
- Gu, S.; Hsieh, C.-T.; Kao, C.-P.; Fu, C.-C.; Ashraf Gandomi, Y.; Juang, R.-S.; Kihm, K.D. Electrocatalytic oxidation of glucose on boron and nitrogen codoped graphene quantum dot electrodes in alkali media. Catalysts 2021, 11, 101. [Google Scholar] [CrossRef]
- Palmier, M.O.; Van Doren, S.R. Rapid determination of enzyme kinetics from fluorescence: Overcoming the inner filter effect. Anal. Biochem. 2007, 371, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Maryati, M.; Kaur, I.; Jadhav, G.P.; Olotu-Umoren, L.; Oveh, B.; Hashmi, L.; Fischer, P.M.; Winkler, G.S. A fluorescence-based assay suitable for quantitative analysis of deadenylase enzyme activity. Nucleic Acids Res. 2014, 42, e30. [Google Scholar] [CrossRef]
- Vorob’ev, M.M. Tryptophan fluorescence and time-lag hydrolysis of peptide bonds during degradation of β-lactoglobulin by trypsin. Catalysts 2020, 10, 1368. [Google Scholar] [CrossRef]
- Gong, M.-M.; Dai, C.-Y.; Severance, S.; Hwang, C.-C.; Fang, B.-K.; Lin, H.-B.; Huang, C.-H.; Ong, C.-W.; Wang, J.-J.; Lee, P.-L. A bioorthogonally synthesized and disulfide-containing fluorescence turn-on chemical probe for measurements of butyrylcholinesterase activity and inhibition in the presence of physiological glutathione. Catalysts 2020, 10, 1169. [Google Scholar] [CrossRef]
- Slovakova, M.; Bilkova, Z. Contemporary enzyme-based methods for recombinant proteins in vitro phosphorylation. Catalysts 2021, 11, 1007. [Google Scholar] [CrossRef]
- Molina, M.A.; Gascón-Pérez, V.; Sánchez-Sánchez, M.; Blanco, R.M. Sustainable one-pot immobilization of enzymes in/on metal-organic framework materials. Catalysts 2021, 11, 1002. [Google Scholar] [CrossRef]
- Wang, X.; Lan, P.C.; Ma, S. Metal-organic frameworks for enzyme immobilization: Beyond host matrix materials. ACS Cent. Sci. 2020, 6, 1497–1506. [Google Scholar] [CrossRef]
- Ha-Tran, D.M.; Nguyen, T.T.M.; Huang, C.-C. Clostridium thermocellum as a promising source of genetic material for designer cellulosomes: An overview. Catalysts 2021, 11, 996. [Google Scholar] [CrossRef]
- Xu, L.; Sun, J.; Qaria, M.A.; Gao, L.; Zhu, D. Dye decoloring peroxidase structure, catalytic properties and applications: Current advancement and futurity. Catalysts 2021, 11, 955. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, N.-J.; Li, S.-Y.; Liu, Y.-C. Recent Advances in Biocatalysis and Metabolic Engineering. Catalysts 2021, 11, 1052. https://doi.org/10.3390/catal11091052
Hu N-J, Li S-Y, Liu Y-C. Recent Advances in Biocatalysis and Metabolic Engineering. Catalysts. 2021; 11(9):1052. https://doi.org/10.3390/catal11091052
Chicago/Turabian StyleHu, Nien-Jen, Si-Yu Li, and Yung-Chuan Liu. 2021. "Recent Advances in Biocatalysis and Metabolic Engineering" Catalysts 11, no. 9: 1052. https://doi.org/10.3390/catal11091052
APA StyleHu, N.-J., Li, S.-Y., & Liu, Y.-C. (2021). Recent Advances in Biocatalysis and Metabolic Engineering. Catalysts, 11(9), 1052. https://doi.org/10.3390/catal11091052