Preparation of Eggshell-Type Ru/Al2O3 Catalysts for Hydrogen Production Using Steam-Methane Reforming on PEMFC
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of the Ru/γ-Al2O3 Catalysts
2.2. Catalytic Performance of the Ru/γ-Al2O3 Catalysts
2.2.1. Catalytic Test in Long-Term Stability Test
2.2.2. Catalytic Test in DSS Operation
3. Materials and Methods
3.1. Materials
3.2. Catalysts Preparation
3.3. Characterization
3.4. Steam-Methane Reforming Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dodds, P.E.; Staffell, I.; Hawkes, A.D.; Li, F.; Grünewald, P.; McDowall, W.; Ekins, P.J. Hydrogen and fuel cell technologies for heating: A review. Int. J. Hydrogen Energy 2015, 40, 2065–2083. [Google Scholar] [CrossRef] [Green Version]
- Bian, Z.; Wang, Z.; Jiang, B.; Hongmanorom, P.; Zhong, W.; Kawi, S. A review on perovskite catalysts for reforming of methane to hydrogen production. Renew. Sustain. Energy Rev. 2020, 134, 110291. [Google Scholar] [CrossRef]
- Summa, P.; Samojeden, B.; Motak, M. Dry and steam reforming of methane. Comparison and analysis of recently investigated catalytic materials. A short review. Pol. J. Chem. Technol. 2019, 21, 31–37. [Google Scholar] [CrossRef]
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G.A. Catalytic hydrogen production from methane: A review on recent progress and prospect. Catalysts 2020, 10, 858. [Google Scholar] [CrossRef]
- Cho, E.H.; Koo, K.Y.; Lee, H.W.; Park, Y.-K.; Yoon, W.L.; Ko, C.H. Preparation of egg-shell-type Ni/Ru bimetal alumina pellet catalysts: Steam methane reforming for hydrogen production. Int. J. Hydrogen Energy 2017, 42, 18350–18357. [Google Scholar] [CrossRef]
- Ligthart, D.; Van Santen, R.; Hensen, E.J.M. Influence of particle size on the activity and stability in steam methane reforming of supported Rh nanoparticles. J. Catal. 2011, 280, 206–220. [Google Scholar] [CrossRef]
- Miyata, T.; Li, D.; Shiraga, M.; Shishido, T.; Oumi, Y.; Sano, T.; Takehira, K. Promoting effect of Rh, Pd and Pt noble metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in CH4 steam reforming. Appl. Catal. A Gen. 2006, 310, 97–104. [Google Scholar] [CrossRef]
- Wei, J.; Iglesia, E. Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru− based catalysts. J. Phys. Chem. B 2004, 108, 7253–7262. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Jakobsen, J.G.; Shim, S.S.; Kleis, J.; Andersson, M.P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J. Catal. 2008, 259, 147–160. [Google Scholar] [CrossRef]
- Kikuchi, E.; Tanaka, S.; Yamazaki, Y.; Morita, Y. Steam Reforming of Hydrocarbons on Noble Metal Catalysts (Part 1) The Catalytic Activity in Methane-Steam Reaction. Bull. Jpn. Pet. Inst. 1974, 16, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.; Lapszewicz, J. Study of mixed steam and CO2 reforming of CH4 to syngas on MgO-supported metals. Catal. Today 1994, 21, 551–560. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Z.; Hu, Y.H. Steam reforming of methane: Current states of catalyst design and process upgrading. Renew. Sustain. Energy Rev. 2021, 149, 111330. [Google Scholar] [CrossRef]
- Morales-Cano, F.; Lundegaard, L.F.; Tiruvalam, R.R.; Falsig, H.; Skjøth-Rasmussen, M.S. Improving the sintering resistance of Ni/Al2O3 steam-reforming catalysts by promotion with noble metals. Appl. Catal. A Gen. 2015, 498, 117–125. [Google Scholar] [CrossRef]
- Mang, T.; Breitscheidel, B.; Polanek, P.; Knözinger, H. Adsorption of platinum complexes on silica and alumina: Preparation of non-uniform metal distributions within support pellets. Appl. Catal. A Gen. 1993, 106, 239–258. [Google Scholar] [CrossRef]
- Pinna, F. Supported metal catalysts preparation. Catal. Today 1998, 41, 129–137. [Google Scholar] [CrossRef]
- Porta, A.; Falbo, L.; Visconti, C.G.; Lietti, L.; Bassano, C.; Deiana, P. Synthesis of Ru-based catalysts for CO2 methanation and experimental assessment of intraporous transport limitations. Catal. Today 2020, 343, 38–47. [Google Scholar] [CrossRef]
- Zhuang, Y.; Claeys, M.; Van Steen, E. Novel synthesis route for egg-shell, egg-white and egg-yolk type of cobalt on silica catalysts. Appl. Catal. A Gen. 2006, 301, 138–142. [Google Scholar] [CrossRef]
- Spieker, W.; Regalbuto, J. A fundamental model of platinum impregnation onto alumina. Chem. Eng. Sci. 2001, 56, 3491–3504. [Google Scholar] [CrossRef]
- Fenoglio, R.; Alvarez, W.; Nunez, G.; Resasco, D. Interactions of the Impregnating Solution with the Support during the Preparation of Rh/Tio2 Catalysts. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1991; Volume 63, pp. 77–86. [Google Scholar]
- Watanabe, F.; Kaburaki, I.; Shimoda, N.; Satokawa, S. Influence of nitrogen impurity for steam methane reforming over noble metal catalysts. Fuel Process. Technol. 2016, 152, 15–21. [Google Scholar] [CrossRef]
- Carvalho, L.S.; Martins, A.R.; Reyes, P.; Oportus, M.; Albonoz, A.; Vicentini, V.; do Carmo Rangel, M. Preparation and characterization of Ru/MgO-Al2O3 catalysts for methane steam reforming. Catal. Today 2009, 142, 52–60. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Sanz, O.; Italiano, C.; Vita, A.; Montes, M.; Specchia, S. Analysis of Ru/La-Al2O3 catalyst loading on alumina monoliths and controlling regimes in methane steam reforming. Chem. Eng. J. 2018, 334, 1792–1807. [Google Scholar] [CrossRef]
- Ohi, T.; Miyata, T.; Li, D.; Shishido, T.; Kawabata, T.; Sano, T.; Takehira, K. Sustainability of Ni loaded Mg–Al mixed oxide catalyst in daily startup and shutdown operations of CH4 steam reforming. Appl. Catal. A Gen. 2006, 308, 194–203. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) | Ru Crystallite Size (nm) |
---|---|---|---|---|
RA (0, 1 h) | 143 | 0.50 | 10.2 | 43.8 |
RA (10, 0.25 h) | 153 | 0.49 | 9.4 | 25.7 |
RA (10, 1 h) | 156 | 0.49 | 9.5 | 27.2 |
RA (10, 24 h) | 151 | 0.49 | 9.5 | 27.5 |
RA (20, 1 h) | 154 | 0.50 | 9.8 | 23.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Jo, S.; Kim, T.-Y.; Woo, J.-H.; Lee, Y.; Kim, M.-S.; Park, H.-O.; Lee, S.-C.; Kim, J.-C. Preparation of Eggshell-Type Ru/Al2O3 Catalysts for Hydrogen Production Using Steam-Methane Reforming on PEMFC. Catalysts 2021, 11, 951. https://doi.org/10.3390/catal11080951
Lee J-H, Jo S, Kim T-Y, Woo J-H, Lee Y, Kim M-S, Park H-O, Lee S-C, Kim J-C. Preparation of Eggshell-Type Ru/Al2O3 Catalysts for Hydrogen Production Using Steam-Methane Reforming on PEMFC. Catalysts. 2021; 11(8):951. https://doi.org/10.3390/catal11080951
Chicago/Turabian StyleLee, Jong-Heon, Seongbin Jo, Tae-Young Kim, Jin-Hyeok Woo, Yeji Lee, Min-Seok Kim, Hye-Ok Park, Soo-Chool Lee, and Jae-Chang Kim. 2021. "Preparation of Eggshell-Type Ru/Al2O3 Catalysts for Hydrogen Production Using Steam-Methane Reforming on PEMFC" Catalysts 11, no. 8: 951. https://doi.org/10.3390/catal11080951
APA StyleLee, J.-H., Jo, S., Kim, T.-Y., Woo, J.-H., Lee, Y., Kim, M.-S., Park, H.-O., Lee, S.-C., & Kim, J.-C. (2021). Preparation of Eggshell-Type Ru/Al2O3 Catalysts for Hydrogen Production Using Steam-Methane Reforming on PEMFC. Catalysts, 11(8), 951. https://doi.org/10.3390/catal11080951