Synthesis and Photocatalytic Activity of Hierarchical Zn-ZSM-5 Structures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization by X-ray Diffraction (XRD)
2.2. Characterization by Scanning Electron Microscopy (SEM)
2.3. Diffracted Ultraviolet–Visible (UV–Vis) Spectra
2.4. Specific Surface Area and Pore Size
3. Photocatalytic Performance
3.1. Photocatalytic Performances of Samples with Different Zn/Si Ratios
3.2. Effects of Solution System on Photocatalytic Degradation
3.3. Photodegradation Kinetics of Hierarchical Zn-ZSM-5 Photocatalyst Structures
3.4. Reusability
3.5. X-Ray Photoelectron Spectroscopy (XPS) Analysis of Reused Samples
4. Experimental
4.1. Synthesis of Hierarchical Zn-ZSM-5 Composite Photocatalysts
4.2. Sample Characterization
4.3. Photocatalytic Degradation Evaluation
4.4. Repeatability Experiment of Photocatalytic Degradation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, Q.-R.; He, S.-Y.; Zhao, X.-L.; Tang, W.-Y.; Song, X.-B.; Xue, L.-H.; Yang, L.-Z. Photocatalytic degradation of methyl orange by AgCl/ZnO/GO. Res. Environ. Sci. 2020, 33, 969–977. [Google Scholar]
- Shang, J.-P.; Liu, R.; Qin, X.-P.; Zhao, B. Modified attapulgite clay with copper and rare earth catalytic oxidation printing and dyeing wastewater. Chem. Ind. Eng. Prog. 2020, 39, 439–444. [Google Scholar]
- Gu, L.; Yu, H.-X.; Wang, Y.; Wang, T.; Yang, W.-H.; Wen, H.-F.; Tao, H. Preparation of TiO2/river sediment composite and its visible light photocatalytic performance. Acta Mater. Compos. Sin. 2019, 36, 2665–2673. [Google Scholar]
- Dong, M.-R.; Yu, X.-J.; Yu, J.; Lin, W.-S. Preparation and photocatalytic performance of g-C3N4/ZnO composite. J. Synth. Cryst. 2019, 48, 1314–1319. [Google Scholar]
- Salazar, H.; Martins, P.M.; Santos, B.; Fernandes, M.M.; Reizabal, A.; Sebastián, V.; Botelho, G.; Tavares, C.J.; Vilas-Vilela, J.L.; Lanceros-Mendez, S. Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications. Chemosphere 2020, 250, 126299–126314. [Google Scholar] [CrossRef]
- Liu, X.-W.; Chen, Y.-J.; Liu, M.-J.; Zhang, X. Preparation and photocatalytic properties of ZnS/ZnO/rGO composite. Min. Metall. Eng. 2020, 40, 131–135. [Google Scholar]
- Hung, F.-P.; Zou, Z.-B.; Zhou, X.-M.; Li, C.-H.; Liu, B.-X.; Ding, L. Preparation of ZnO/Cu2O composite photocatalyst and study on its photocatalytic performance. J. Funct. Mater. 2020, 51, 12113–12119. [Google Scholar]
- Zhou, X.-B.; Chen, J.-L.; Hu, Y.-Y.; Liu, Q.; Chen, C. Research progress on modification of nano-ZnO and its photocatalytic degradation performance. New Chem. Mater. 2019, 47, 47–52. [Google Scholar]
- Cheng, T.; Hu, X.-B.; Xu, Y.-Q.; Wang, L.-J.; Jiang, W.; Jiang, W.H.; Xie, Z.X. Hydrothermal synthesis and fluorescence properties of AgInS2/ZnS Core/Shell quantum dots. Chin. J. Inorg. Chem. 2020, 6, 69–78. [Google Scholar]
- Tang, C.; Li, Y.-Y.; Liu, H.; Li, J.-S.; Xia, Z.; Zuo, J.-L.; Zhao, L. AgBr/ZnO composite photocatalyst and Its photocatalytic performance. J. Chin. Ceram. Soc. 2021, 49, 202–210. [Google Scholar]
- Kumaresan, N.; Ramamurthi, K.; Babu, R.R.; Sethuraman, K.; Babu, S.M. Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Appl. Surf. Sci. 2017, 418, 138–146. [Google Scholar] [CrossRef]
- Chai, B.; Song, F.-K.; Chen, W.-J.; Zhou, H.; Zhang, F.; Zhu, Y.-C. Preparation and photocatalytic properties of flake-like C60/ZnO nanocomposites. J. Funct. Mater. 2013, 44, 1816–1820. [Google Scholar]
- Yan, B.; Cheng, W.; Ma, J.-Z. Morphology control of ZnO microstructures by varying hexamethylenetetramine and trisodium citrate concentration and their photocatalytic activity. Mater. Des. 2016, 101, 7–15. [Google Scholar]
- Wu, X.; Sun, Y.-Z.; Wang, Y.; Deng, X.-Y.; Ma, C.; Li, L.-H. Research progress on zinc-based nano photocatalyst in wastewater treatment. New Chem. Mater. 2019, 47, 35–39. [Google Scholar]
- Liu, W.; Zhan, W.-T.; Li, Y.; Chen, R.-S.; Ni, H.-W. Synthesis of ZnO/graphene oxide nanocomposite by microwave hydrothermal method and its photoelectrochemical property. J. Wuhan Univ. Sci. Technol. 2019, 42, 22–27. [Google Scholar]
- Lu, Y.-H.; Xu, Y.-H.; Zhang, S.-L.; Bai, X.-J.; Huang, Y.; Chen, Y.-S. Visible-light photocatalytic activity of ZnO enhanced by single-walled carbon nanotubes. CIESC J. 2014, 65, 2855–2860. [Google Scholar]
- Wang, Z.-Q.; Liang, X.-R.; Zhu, Y.-Y.; Zouhu, X.-Z.; Zhu, R.-J. Ag and Cu2O modified 3D flower-like ZnO nanocomposites and evaluated by photocatalysis oxidation activity regulation. Ceram. Int. 2019, 45, 23310–23319. [Google Scholar] [CrossRef]
- Vijaya, K.; Suprabha, Y.; Anuj, M.; Kavitha, K.; Bernabe, M.; Naveen, K. Surface plasmon response of Pd deposited ZnO/CuO nanostructures with enhanced photocatalytic efficacy towards the degradation of organic pollutants. Inorg. Chem. Commun. 2020, 121, 108241–108250. [Google Scholar]
- Haris-Mahyuddin, M.; Tanaka, S.; Shiota, Y.; Yoshizawa, K. Room-Temperature activation of methane and direct formations ofacetic acid and methanol on Zn-ZSM-5 zeolite: A mechanistic DFT study. Bull. Chem. Soc. Jpn. 2020, 93, 345–354. [Google Scholar] [CrossRef]
- Zhang, J.-M.; Liu, Y.-Q.; Li, H.-J.; Li, K.L. Study on Photocatalytic Performance of Natural Attapulgite and Optimization Of response Surface method. J. Funct. Mater. 2020, 51, 6158–6163. [Google Scholar]
- Wei, C.-L.; Gao, J.; Wang, K.; Dong, M.; Fan, W.-B.; Qin, Z.-F.; Wang, J.-G. Effect of hydrogen pre-treatment on the catalytic properties of Zn/HZSM-5 zeolite for ethylene aromatization reaction. Acta Phys. Chim. Sin. 2017, 33, 1483–1491. [Google Scholar] [CrossRef]
- Dauda, I.B.; Yusuf, M.; Gbadamasi, S.; Bello, M.; Atta, A.Y.; Aderemi, B.O.; Jibril, B.Y. Highly selective hierarchical ZnO/ZSM-5 catalysts for propane aromatization. ACS Omega 2020, 5, 2725–2733. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, X.-Y.; Zhang, P.; Liu, D.-S.; Gui, J.-Z.; Peng, H.-L.; Liu, D. Noble metal-supported rod-like ZnO with enhanced photocatalytic performance. Acta Phys. Chim. Sin. 2017, 33, 2082–2091. [Google Scholar]
- Yang, Z.-Q.; Yuan, F.; Wang, Y.; Zhao, S.; Sun, Z.-M. Preparation and photocatalytic performance of ZnO/stellerite composite. Inorg. Chem. Ind. 2021, 53, 100–104. [Google Scholar]
- Waez, Z.; Javanbakht, V. Synthesis characterization and photocatalytic activity of ZSM-5/ZnO nanocomposite modified by Ag nanoparticles for methyl orange degradation. J. Photochem. Photobiol. A Chem. 2020, 388, 112064–112075. [Google Scholar]
- Xin, M.; Xing, E.; Ouyang, Y.; Xu, G.-T.; Luo, Y.-B.; Shu, X.-T. Influence of status of Zn species in Zn/ZSM-5 on its catalytic performance. Pet. Process. Petrochem. 2019, 50, 42–50. [Google Scholar]
- Shi, J.; Chen, J.; Feng, Z.; Chen, T.; Wang, X.; Ying, P.; Li, C. Time-Resolved Photoluminescence Characteristics of Subnanometer ZnO Clusters Confined in the Micropores of Zeolites. J. Phys. Chem. B 2006, 110, 25612–25618. [Google Scholar] [CrossRef]
- Tang, X.; Gang, R.; Li, J.; Zhang, Z.-Q.; Xiang, C.-X. Extremely efficient and rapidly adsorb methylene blue using porous adsorbent prepared from waste paper: Kinetics and equilibrium studies. J. Hazard. Mater. 2021, 402, 123579–123592. [Google Scholar] [CrossRef]
- Fathi, R.; Mohammadi, P.; Hosseini, S.A.; Yosefvand, F.; Norouzi, H. Modeling of ammonia removal from wastewater using air stripping/modified clinoptilolite: Reusability, optimization, isotherm, kinetic, and equilibrium studies. Int. J. Environ. Sci. Technol. 2021, 170, 148–157. [Google Scholar]
- Kolyagin, Y.G.; Ordomsky, V.V.; Khimyak, Y.Z.; Rebrov, A.I.; Fajula, F.; Ivanova, I.I. Initial stages of propane activation over Zn MFI catalyst studied by in situ NMR and IR spectroscopic techniques. J. Catal. 2006, 238, 122–133. [Google Scholar] [CrossRef]
- Li, H.-J.; Wang, F.-L.; Li, X.; Yang, J.; Song, J.-H.; Li, B. Influence of activated attapulgite an synthesis and pore structure of hierarchical zeolite. J. Mater. Eng. 2020, 48, 158–164. [Google Scholar]
Sample | SBET/(m2/g) | Vtot/(cm³/g) | Vmes/(cm³/g) | Vmes/VtOt (%) | Pore Size/(nm) |
---|---|---|---|---|---|
a | 333 | 0.19 | 0.093 | 48.83 | 3.48 |
b | 319 | 0.18 | 0.072 | 39.67 | 2.73 |
c | 309 | 0.18 | 0.068 | 37.47 | 2.46 |
d | 308 | 0.16 | 0.055 | 33.41 | 2.26 |
e | 120 | 0.54 | 0.497 | 91.78 | 14.46 |
Sample | O1s | Zn2p | C1s | Si2s | Si2p | Al2p |
---|---|---|---|---|---|---|
ZSM-5 | 40.5 | 0.00 | 37.20 | 9.45 | 11.69 | 1.15 |
Zn-ZSM-5 | 42.88 | 0.61 | 33.46 | 9.65 | 12.23 | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, Y.; Diao, J.; Qiang, M.; Chen, Z. Synthesis and Photocatalytic Activity of Hierarchical Zn-ZSM-5 Structures. Catalysts 2021, 11, 797. https://doi.org/10.3390/catal11070797
Li H, Zhang Y, Diao J, Qiang M, Chen Z. Synthesis and Photocatalytic Activity of Hierarchical Zn-ZSM-5 Structures. Catalysts. 2021; 11(7):797. https://doi.org/10.3390/catal11070797
Chicago/Turabian StyleLi, Hongji, Yu Zhang, Jiaqi Diao, Mengmeng Qiang, and Zhe Chen. 2021. "Synthesis and Photocatalytic Activity of Hierarchical Zn-ZSM-5 Structures" Catalysts 11, no. 7: 797. https://doi.org/10.3390/catal11070797
APA StyleLi, H., Zhang, Y., Diao, J., Qiang, M., & Chen, Z. (2021). Synthesis and Photocatalytic Activity of Hierarchical Zn-ZSM-5 Structures. Catalysts, 11(7), 797. https://doi.org/10.3390/catal11070797