The Effect of Atomic Layer Deposited Overcoat on Co-Pt-Si/γ-Al2O3 Fischer–Tropsch Catalyst
Abstract
:1. Introduction
2. Results
2.1. Catalyst Characterization
Nitrogen Adsorption/Desorption
2.2. Catalyst Reducibility
2.2.1. In-Situ X-ray Diffraction Results
2.2.2. Hydrogen Chemisorption
2.2.3. Temperature-Programmed Reduction (TPR)
2.2.4. Oxygen Titration
2.3. Fischer–Tropsch Activity and Selectivity
2.4. Effect of ALD Overcoat and Thermal Annealing
3. Experimental
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.2.1. Nitrogen Adsorption and Desorption
3.2.2. Temperature-Programmed Reduction (TPR)
3.2.3. In-Situ X-ray Diffraction
3.2.4. Static H2-Chemisorption and O2-Titration
3.3. Catalyst Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wood, D.; Nwaoha, C.; Towler, B.F. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng. 2012, 9, 196–208. [Google Scholar] [CrossRef]
- Dry, M.E. The Fischer–Tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241. [Google Scholar] [CrossRef]
- O’Neill, B.J.; Jackson, D.H.K.; Lee, J.; Canlas, C.; Stair, P.C.; Marshall, C.L.; Elam, J.W.; Kuech, T.F.; Dumesic, J.A.; Huber, G.W. Catalyst Design with Atomic Layer Deposition. ACS Catal. 2015, 5, 1804–1825. [Google Scholar] [CrossRef] [Green Version]
- De Klerk, A. Transport Fuel. In Future Energy; Elsevier: London, UK, 2020; pp. 199–226. [Google Scholar]
- Garces, L.J.; Hincapie, B.; Zerger, R.; Suib, S.L. The Effect of Temperature and Support on the Reduction of Cobalt Oxide: An in Situ X-ray Diffraction Study. J. Phys. Chem. C 2015, 119, 5484–5490. [Google Scholar] [CrossRef]
- Borg, Ø.; Eri, S.; Blekkan, E.A.; Storsæter, S.; Wigum, H.; Rytter, E.; Holmen, A. Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables. J. Catal. 2007, 248, 89–100. [Google Scholar] [CrossRef]
- Jacobs, G.; Das, T.K.; Zhang, Y.; Li, J.; Racoillet, G.; Davis, B.H. Fischer–Tropsch synthesis: Support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl. Catal. A Gen. 2002, 233, 263–281. [Google Scholar] [CrossRef]
- Dinse, A.; Aigner, M.; Ulbrich, M.; Johnson, G.R.; Bell, A.T. Effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer–Tropsch Synthesis. J. Catal. 2012, 288, 104–114. [Google Scholar] [CrossRef]
- Gavrilović, L.; Save, J.; Blekkan, A. The Effect of Potassium on Cobalt-Based Fischer–Tropsch Catalysts with Different Cobalt Particle Sizes. Catalysts 2019, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Vada, S.; Hoff, A.; Schanke, D.; Holmén, A. Fischer-Tropsch synthesis on supported cobalt catalysts promoted by platinum and rhenium. Top. Catal. 1995, 2, 155–162. [Google Scholar] [CrossRef]
- Breejen, J.P.D.; Radstake, P.B.; Bezemer, G.L.; Bitter, J.H.; Frøseth, V.; Holmen, A.; De Jong, K.P. On the Origin of the Cobalt Particle Size Effects in Fischer−Tropsch Catalysis. J. Am. Chem. Soc. 2009, 131, 7197–7203. [Google Scholar] [CrossRef]
- Fischer, N.; Clapham, B.; Feltes, T.; Claeys, M. Cobalt-Based Fischer–Tropsch Activity and Selectivity as a Function of Crystallite Size and Water Partial Pressure. ACS Catal. 2014, 5, 113–121. [Google Scholar] [CrossRef]
- Bezemer, G.L.; Bitter, J.H.; Kuipers, H.P.; Oosterbeek, H.; Holewijn, J.E.; Xu, X.; Kapteijn, F.; Van Dillen, A.J.; De Jong, K.P. Cobalt Particle Size Effects in the Fischer−Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts. J. Am. Chem. Soc. 2006, 128, 3956–3964. [Google Scholar] [CrossRef] [Green Version]
- Pagan-Torres, Y.; Gallo, J.M.R.; Wang, D.; Pham, H.N.; Libera, J.A.; Marshall, C.L.; Elam, J.W.; Datye, A.K.; Dumesic, J.A. Synthesis of Highly Ordered Hydrothermally Stable Mesoporous Niobia Catalysts by Atomic Layer Deposition. ACS Catal. 2011, 1, 1234–1245. [Google Scholar] [CrossRef]
- Muylaert, I.; Musschoot, J.; Leus, K.; Dendooven, J.; Detavernier, C.; Van Der Voort, P. Atomic Layer Deposition of Titanium and Vanadium Oxide on Mesoporous Silica and Phenol/Formaldehyde Resins-the Effect of the Support on the Liquid Phase Epoxidation of Cyclohexene. Eur. J. Inorg. Chem. 2011, 2012, 251–260. [Google Scholar] [CrossRef]
- Onn, T.M.; Küngas, R.; Fornasiero, P.; Huang, K.; Gorte, R.J. Atomic Layer Deposition on Porous Materials: Problems with Conventional Approaches to Catalyst and Fuel Cell Electrode Preparation. Inorganics 2018, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Strempel, V.E.; Knemeyer, K.; D’Alnoncourt, R.N.; Driess, M.; Rosowski, F. Investigating the Trimethylaluminium/Water ALD Process on Mesoporous Silica by In Situ Gravimetric Monitoring. Nanomaterials 2018, 8, 365. [Google Scholar] [CrossRef] [Green Version]
- Elam, J.W.; Routkevitch, D.; Mardilovich, P.P.; George, S.M. Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition. Chem. Mater. 2003, 15, 3507–3517. [Google Scholar] [CrossRef]
- Sarnello, E.; Lu, Z.; Seifert, S.; Winans, R.E.; Li, T. Design and Characterization of ALD-Based Overcoats for Supported Metal Nanoparticle Catalysts. ACS Catal. 2021, 11, 2605–2619. [Google Scholar] [CrossRef]
- Lu, J.; Liu, B.; Greeley, J.P.; Feng, Z.; Libera, J.A.; Lei, Y.; Bedzyk, M.J.; Stair, P.C.; Elam, J.W. Porous Alumina Protective Coatings on Palladium Nanoparticles by Self-Poisoned Atomic Layer Deposition. Chem. Mater. 2012, 24, 2047–2055. [Google Scholar] [CrossRef]
- Lee, J.; Jackson, D.H.K.; Li, T.; Winans, R.E.; Dumesic, J.A.; Kuech, T.F.; Huber, G.W. Enhanced stability of cobalt catalysts by atomic layer deposition for aqueous-phase reactions. Energy Environ. Sci. 2014, 7, 1657. [Google Scholar] [CrossRef]
- Ma, Z.; Brown, S.; Howe, J.Y.; Overbury, S.H.; Dai, S. Surface Modification of Au/TiO2 Catalysts by SiO2 via Atomic Layer Deposition. J. Phys. Chem. C 2008, 112, 9448–9457. [Google Scholar] [CrossRef]
- Liang, X.; Li, J.; Yu, M.; McMurray, C.N.; Falconer, J.L.; Weimer, A.W. Stabilization of Supported Metal Nanoparticles Using an Ultrathin Porous Shell. ACS Catal. 2011, 1, 1162–1165. [Google Scholar] [CrossRef]
- Liang, X.; Evanko, B.W.; Izar, A.; King, D.M.; Jiang, Y.-B.; Weimer, A.W. Ultrathin highly porous alumina films prepared by alucone ABC molecular layer deposition (MLD). Microporous Mesoporous Mater. 2013, 168, 178–182. [Google Scholar] [CrossRef]
- Lu, J.; Fu, B.; Kung, M.C.; Xiao, G.; Elam, J.W.; Kung, H.H.; Stair, P.C. Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition. Science 2012, 335, 1205–1208. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, B.J.; Jackson, D.H.K.; Crisci, A.J.; Farberow, C.A.; Shi, F.; Alba-Rubio, A.C.; Lu, J.; Dietrich, P.J.; Gu, X.; Marshall, C.L.; et al. Stabilization of Copper Catalysts for Liquid-Phase Reactions by Atomic Layer Deposition. Angew. Chem. Int. Ed. 2013, 52, 13808–13812. [Google Scholar] [CrossRef]
- Marchese, M.; Heikkinen, N.; Giglio, E.; Lanzini, A.; Lehtonen, J.; Reinikainen, M. Kinetic Study Based on the Carbide Mechanism of a Co-Pt/γ-Al2O3 Fischer–Tropsch Catalyst Tested in a Laboratory-Scale Tubular Reactor. Catalysts 2019, 9, 717. [Google Scholar] [CrossRef] [Green Version]
- Puurunen, R.L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 2005, 97, 121301. [Google Scholar] [CrossRef]
- Richard, L.A.; Moreau, P.; Rugmini, S.; Daly, F. Fischer-Tropsch performance correlated to catalyst structure: Trends in activity and stability for a silica-supported cobalt catalyst. Appl. Catal. A Gen. 2013, 464–465, 200–206. [Google Scholar] [CrossRef]
- Pestman, R.; Chen, W.; Hensen, E.J. Insight into the Rate-Determining Step and Active Sites in the Fischer–Tropsch Reaction over Cobalt Catalysts. ACS Catal. 2019, 9, 4189–4195. [Google Scholar] [CrossRef] [Green Version]
- Breejen, J.P.D.; Sietsma, J.R.; Friedrich, H.; Bitter, J.H.; De Jong, K.P. Design of supported cobalt catalysts with maximum activity for the Fischer–Tropsch synthesis. J. Catal. 2010, 270, 146–152. [Google Scholar] [CrossRef]
- Nabaho, D.; Niemantsverdriet, J.H.; Claeys, M.; van Steen, E. Hydrogen spillover in the Fischer–Tropsch synthesis: An analysis of gold as a promoter for cobalt–alumina catalysts. Catal. Today 2016, 275, 27–34. [Google Scholar] [CrossRef]
- Van De Loosdrecht, J.; Barradas, S.; Caricato, E.; Ngwenya, N.; Nkwanyana, P.; Rawat, M.; Sigwebela, B.; Van Berge, P.; Visagie, J. Calcination of Co-Based Fischer–Tropsch Synthesis Catalysts. Top. Catal. 2003, 26, 121–127. [Google Scholar] [CrossRef]
- Nabaho, D. Hydrogen Spillover in the Fischer-Tropsch Synthesis: The Role of Platinum and Gold as Promoters in Co-Balt-Based Catalysts. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2015. [Google Scholar]
- Broas, M.; Kanninen, O.; Vuorinen, V.; Tilli, M.; Paulasto-Kröckel, M. Chemically Stable Atomic-Layer-Deposited Al2O3 Films for Processability. ACS Omega 2017, 2, 3390–3398. [Google Scholar] [CrossRef] [Green Version]
- Broas, M.; Lemettinen, J.; Sajavaara, T.; Tilli, M.; Vuorinen, V.; Suihkonen, S.; Paulasto-Kröckel, M. In-situ annealing characterization of atomic-layer-deposited Al2O3 in N2, H2 and vacuum atmospheres. Thin Solid Films 2019, 682, 147–155. [Google Scholar] [CrossRef]
- Cimalla, V.; Baeumler, M.; Kirste, L.; Prescher, M.; Christian, B.; Passow, T.; Benkhelifa, F.; Bernhardt, F.; Eichapfel, G.; Himmerlich, M.; et al. Densification of Thin Aluminum Oxide Films by Thermal Treatments. Mater. Sci. Appl. 2014, 05, 628–638. [Google Scholar] [CrossRef] [Green Version]
- Jakschik, S.; Schroeder, U.; Hecht, T.; Gutsche, M.; Seidl, H.; Bartha, J.W. Crystallization behavior of thin ALD-Al2O3 films. Thin Solid Films 2003, 425, 216–220. [Google Scholar] [CrossRef]
- Lu, J.; Liu, B.; Guisinger, N.P.; Stair, P.C.; Greeley, J.P.; Elam, J.W. First-Principles Predictions and in Situ Experimental Validation of Alumina Atomic Layer Deposition on Metal Surfaces. Chem. Mater. 2014, 26, 6752–6761. [Google Scholar] [CrossRef]
- Feng, H.; Lu, J.; Stair, P.C.; Elam, J.W. Alumina Over-coating on Pd Nanoparticle Catalysts by Atomic Layer Deposition: Enhanced Stability and Reactivity. Catal. Lett. 2011, 141, 512–517. [Google Scholar] [CrossRef]
- Ge, A.Q.; Neurock, M. Adsorption and Activation of CO over Flat and Stepped Co Surfaces: A First Principles Analysis. J. Phys. Chem. B 2006, 110, 15368–15380. [Google Scholar] [CrossRef]
- Den Breejen, J.P. Cobalt Particle Size Effects in Catalysis. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2010. [Google Scholar]
- Rytter, E.; Holmen, A. On the support in cobalt Fischer–Tropsch synthesis—Emphasis on alumina and aluminates. Catal. Today 2016, 275, 11–19. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Grosse und der inneren Struktur von Kolloidterilchen mittels Rontgestrahlen. Nachr. Ges. Wiss. Göttingen 1918, 1918, 98–100. (In Germany) [Google Scholar]
- Wang, Z.L. Characterization of nanophase materials. Part. Part. Syst. Charact. 2001, 18, 142–165. [Google Scholar] [CrossRef]
- Cook, K.M.; Poudyal, S.; Miller, J.T.; Bartholomew, C.H.; Hecker, W.C. Reducibility of alumina-supported cobalt Fischer–Tropsch catalysts: Effects of noble metal type, distribution, retention, chemical state, bonding, and influence on cobalt crystallite size. Appl. Catal. A Gen. 2012, 449, 69–80. [Google Scholar] [CrossRef]
- Jones, R.D.; Bartholomew, C.H. Improved flow technique for measurement of hydrogen chemisorption on metal catalysts. Appl. Catal. 1988, 39, 77–88. [Google Scholar] [CrossRef]
Catalyst | BET Surface Area (m2 gcat−1) | Pore Volume (mL gcat−1) | Pore Size (nm) |
---|---|---|---|
Support (Puralox SCCa 5–150) | 140 | 0.46 | 13.2 |
Catalyst | 87 | 0.24 | 10.9 |
Catalyst + 15c + TA | 88 | 0.23 | 10.5 |
Catalyst + 25c + TA | 84 | 0.23 | 10.8 |
Catalyst + 35c + TA | 89 | 0.24 | 10.7 |
Catalyst + 35c | 13 | 0.03 | 8.0 |
Catalyst + 40c + TA | 61 | 0.15 | 10.0 |
In-Situ XRD | H2-Chemisorption | ||||
---|---|---|---|---|---|
Catalyst | a Co3O4 Particle Size (nm) | b Co0 Particle size (nm) | H2 Uptake (µmol gcat−1) | c Co0 Particle size (nm) | d Cobalt Dispersion (%) |
Catalyst | 14.5 | 7.8 | 69 | 14 | 6.7 |
Catalyst + 15c + TA | - | - | 47 | 5 | 20.2 |
Catalyst + 25c + TA | - | - | 46 | 5 | 19.5 |
Catalyst + 35c + TA | 13. | 8.3 | 58 | 11 | 9.0 |
Catalyst + 40c + TA | - | - | 34 | 6 | 16.4 |
Extent of Reduction (%) | ||
---|---|---|
Catalyst | O2 Titration | TPR |
Catalyst | 62.6 | 57.7 |
Catalyst + 15c + TA | 1.8 | 13.1 |
Catalyst + 25c + TA | 3.8 | 16.9 |
Catalyst + 35c + TA | 15.7 | 35.8 |
Catalyst + 40c + TA | 1.4 | 11.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heikkinen, N.; Keskiväli, L.; Eskelinen, P.; Reinikainen, M.; Putkonen, M. The Effect of Atomic Layer Deposited Overcoat on Co-Pt-Si/γ-Al2O3 Fischer–Tropsch Catalyst. Catalysts 2021, 11, 672. https://doi.org/10.3390/catal11060672
Heikkinen N, Keskiväli L, Eskelinen P, Reinikainen M, Putkonen M. The Effect of Atomic Layer Deposited Overcoat on Co-Pt-Si/γ-Al2O3 Fischer–Tropsch Catalyst. Catalysts. 2021; 11(6):672. https://doi.org/10.3390/catal11060672
Chicago/Turabian StyleHeikkinen, Niko, Laura Keskiväli, Patrik Eskelinen, Matti Reinikainen, and Matti Putkonen. 2021. "The Effect of Atomic Layer Deposited Overcoat on Co-Pt-Si/γ-Al2O3 Fischer–Tropsch Catalyst" Catalysts 11, no. 6: 672. https://doi.org/10.3390/catal11060672
APA StyleHeikkinen, N., Keskiväli, L., Eskelinen, P., Reinikainen, M., & Putkonen, M. (2021). The Effect of Atomic Layer Deposited Overcoat on Co-Pt-Si/γ-Al2O3 Fischer–Tropsch Catalyst. Catalysts, 11(6), 672. https://doi.org/10.3390/catal11060672