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Abstract: Atomic layer deposition (ALD) was used to prepare a thin alumina layer on Fischer–
Tropsch catalysts. Co-Pt-Si/γ-Al2O3 catalyst was overcoated with 15–40 cycles of Al2O3 deposited
from trimethylaluminum (TMA) and water vapor, followed by thermal annealing. The resulting
tailored Fischer–Tropsch catalyst with 35 cycle ALD overcoating had increased activity compared
to unmodified catalyst. The increase in activity was achieved without significant loss of selectivity
towards heavier hydrocarbons. Altered catalyst properties were assumed to result from cobalt
particle stabilization by ALD alumina overcoating and nanoscale porosity of the overcoating. In
addition to optimal thickness of the overcoat, thermal annealing was an essential part of preparing
ALD overcoated catalyst.

Keywords: Fischer–Tropsch synthesis; cobalt catalyst; atomic layer deposition; ALD; cobalt on
alumina; annealing; catalyst overcoating

1. Introduction

Fischer–Tropsch (FT) is a flexible synthesis route that converts synthesis gas into
liquid fuels and chemicals [1–3]. Recently, the use of biomass, waste, or gaseous side
streams as feedstock have gained much interest [4]. To create value from renewable
feedstocks with Fischer–Tropsch technology, catalyst development has a significant role to
play. Numerous studies have shown effects of catalyst support [5–7], promoter [7–10], and
active phase particle size [11–13] on FT catalyst activity. Although these factors are well
documented, challenge remains to keep the catalyst in the desired state during reduction
and FT reaction. Atomic layer deposition (ALD) provides a pathway to create nanoscale
overcoating for protection of active sites and to stabilize them in the most suitable form [3].
ALD is an excellent tool for catalytic solutions due to its ability to produce conformal
and ultrathin layers on various support materials and shapes [3,14,15]. While ALD has
many advantages for catalyst preparation, challenges might arise with highly porous
supports [16,17]. Precursor diffusion into the narrow pores and ligand removal reactions
take longer time with high surface area and aspect ratios compared to smooth, non-porous
surfaces [18]. In addition, although ALD overcoatings are considered as conformal films
on planar substrates, uneven island growth might occur with catalyst samples [19]. This
overcoating island growth results from varying growth regimes depending on the number
of deposited cycles, favoring specific surface locations especially at initial ALD cycles
(<30 cycles) [20]. Despite these challenges, ALD offers an interesting tool for catalyst
preparation with precise control of deposited material composition, size, and structure.

The ALD process is a cyclic deposition method with self-limiting reactions between
the gas phase precursors and substrate surface. Figure 1 presents a schematic illustration of
an atomic layer deposition cycle for Al2O3. In the first step, trimethylaluminum (TMA) is
pulsed to the surface and during a gas–solid reaction, O-Al(CH3)2 structures are formed on
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the surface, releasing methane as a by-product. During the water pulse, hydroxyl structures
are formed on the surface and again CH4 is released as a by-product. After each precursor
pulse, any excess precursors and methane are removed by inert purging.
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excess ligands or carbonaceous precursors could be removed by solvents or an oxidative 
environment accompanied by increased temperature. An alternative and more common 
method is thermal treatment, where porosity is created by temperature ramp in inert at-
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Several studies have investigated how thermally treated ALD overcoatings could be 
used to enhance catalyst properties in severe reaction conditions. Lu et al. [25] reported a 
method to inhibit deactivation by thermally treated ALD overcoating. They investigated 
the deactivation resistance of a Pd-catalyst in oxidative dehydrogenation of ethane, where 
45 cycles of ALD alumina (TMA + H2O) was deposited on the Pd-catalyst. The resulting 
catalyst was less prone to deactivation by coking and sintering and selectivity was shifted 
towards desired products. They explained how an ALD overcoating could selectively in-
teract with the high-energy, low-coordination sites of the active metal believed to be re-
sponsible for particle sintering. Similar results were reported by Ma et al. [22], where 
Au/TiO2 oxidation catalyst with amorphous SiO2 overcoating exhibited increased thermal 
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nanoparticles and created surface conditions less susceptible to cobalt crystallite migra-
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Figure 1. Atomic layer deposition cycle of the Al2O3 process.

Regarding ALD-enhanced heterogeneous catalysts, Lee et al. [21] have investigated
the effect of TiO2 overcoating on a Co/γ-Al2O3 catalyst with aqueous-phase hydrogenation
reaction. Their results show that an overcoated TiO2 layer inhibits catalyst deactivation
by preventing leaching and sintering of the active phase. Interestingly, when Al2O3 was
used instead of TiO2 as overcoat material, they reported a decrease in catalytic activity. It
was assumed that the use of alumina resulted in partial formation of irreducible cobalt
aluminate. In addition to cobalt aluminate formation, other studies have shown a decrease
in catalytic activity by partial or full coverage of active centers upon application of a thick
overcoat layer [22]. To overcome the decrease in catalytic performance due to active site
coverage, there are methods to re-expose active sites. Liang et al. [23] describe a method
using molecular layer deposition (MLD) with a ligand precursor as well as method with
carbonaceous precursors [24]. To create void spaces and pores through the overcoat layer,
excess ligands or carbonaceous precursors could be removed by solvents or an oxidative
environment accompanied by increased temperature. An alternative and more common
method is thermal treatment, where porosity is created by temperature ramp in inert
atmosphere.

Several studies have investigated how thermally treated ALD overcoatings could be
used to enhance catalyst properties in severe reaction conditions. Lu et al. [25] reported a
method to inhibit deactivation by thermally treated ALD overcoating. They investigated
the deactivation resistance of a Pd-catalyst in oxidative dehydrogenation of ethane, where
45 cycles of ALD alumina (TMA + H2O) was deposited on the Pd-catalyst. The resulting
catalyst was less prone to deactivation by coking and sintering and selectivity was shifted
towards desired products. They explained how an ALD overcoating could selectively
interact with the high-energy, low-coordination sites of the active metal believed to be
responsible for particle sintering. Similar results were reported by Ma et al. [22], where
Au/TiO2 oxidation catalyst with amorphous SiO2 overcoating exhibited increased thermal
stability and activity. According to them, the thermally treated overcoating stabilized
gold nanoparticles and created surface conditions less susceptible to cobalt crystallite
migration and particle sintering. In these conditions, better activity could be expected, as
to some extent, strong metal support interactions (SMSIs) are prohibited by atomic scale
overcoating. In addition to the particle stabilization properties, the overcoated porous
structure influences activity and selectivity as well. O’Neill et al. [26] reported that ALD
deposited alumina binds preferably on low coordination sites, such as steps, creating
pores mainly on terrace surfaces during thermal treatment. Through thermal annealing
reformation of the overcoated surface, the solid surface is turned into a porous layer on top
of the active metal sites and the support [21].
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In this study, we examine the effect of ALD overcoatings on Fischer–Tropsch
Co-Pt-Si/γ-Al2O3 catalysts prepared by incipient wetness impregnation [27]. Furthermore,
we present the effect of varying ALD layer thickness and the temperature annealing method
on catalyst activity and selectivity. To explain changes in catalyst performance, catalysts
were characterized with physical adsorption-desorption (BET, BJH), in-situ X-ray diffrac-
tion (in-situ XRD), temperature-programmed reduction (TPR), static-H2-chemisorption,
and O2-titration methods. Catalytic performance was studied using a tubular fixed-bed
reactor system.

2. Results
2.1. Catalyst Characterization
Nitrogen Adsorption/Desorption

All catalysts exhibited a Gaussian-like pore size distribution. Surface areas ranged
between 13–89 m2 gcat−1, pore volumes 0.03–0.24 mL gcat−1 and average pore sizes
8.0–10.9 nm as shown in Table 1. The addition of ALD top coating noticeably decreased
the physisorption values and after thermal annealing (TA) treatment, the values recovered.
With the thickest 40c ALD overcoating, the surface area and pore volume were clearly
lower compared to the other catalysts with thinner overcoats.

Table 1. Nitrogen sorption results for catalysts with and without thermal annealing (TA).

Catalyst BET Surface Area
(m2 gcat−1)

Pore Volume
(mL gcat−1)

Pore Size
(nm)

Support (Puralox SCCa 5–150) 140 0.46 13.2
Catalyst 87 0.24 10.9

Catalyst + 15c + TA 88 0.23 10.5
Catalyst + 25c + TA 84 0.23 10.8
Catalyst + 35c + TA 89 0.24 10.7

Catalyst + 35c 13 0.03 8.0
Catalyst + 40c + TA 61 0.15 10.0

Experimental error (± 2σ) for surface area was ± 1.2 m2/g, pore volume ± 0.01 mL/g and pore size ± 0.1 nm.
Uncertainty was determined from three independent runs for catalyst without overcoat.

ALD equipment and conditions have a significant effect on overcoat thickness. In
our experiments, according to Si wafer reference, one deposition cycle corresponded
approximately to 0.09 nm. This growth per cycle (GPC) is in line with the earlier studies [28].
As ALD cycle is regarded to produce conformal layer, 15, 25, 35, and 40 ALD cycles
correspond to 1.35, 2.25, 3.15, and 3.60 nm thick coatings by calculation, respectively. The
effect of added overcoat was clearly observed in the 35c catalyst without thermal annealing,
where BET surface area, pore volume, and pore size were significantly decreased. This
behavior was assumed to result from micropore filling and surface smoothening. After
thermal annealing, BET surface area was increased back to similar level compared to
the non-overcoated catalyst. This was a similar finding to the work of O’Neill et al. [3],
who found that overcoat structure can be altered by thermal annealing duration and
temperature.

2.2. Catalyst Reducibility
2.2.1. In-Situ X-ray Diffraction Results

In-situ XRD measurements were performed during thermal annealing and reduction.
Results in Figure 2 show measured responses for (a) catalyst without overcoating and (b)
catalyst + 35c ALD overcoating. Reduction from Co3O4 to CoO started already at 150 ◦C
(after 2 h equilibrium time) in reducing gas flow.
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Figure 2. In-situ XRD results with thermal annealing and reduction program, (a) catalyst without
overcoating and (b) catalyst + 35c ALD overcoating. Open rectangle symbol signifies Co3O4 species,
open circle CoO, and black circle Co0. Phase 1. measurement at 25 ◦C under N2 flow; Phase 2.
measurement after reaching thermal annealing temperature (420 ◦C, under N2 flow); Phase 3. after
cooldown to 150 ◦C and change to reducing gas (10% H2 in N2); Phase 4. after 2 h of reducing gas at
150 ◦C; Phase 5. after temperature increase for reduction (400 ◦C); Phase 6. after 4 h of reduction at
400 ◦C; Phase 7. after 6 h of reduction.

Metallic Co crystallite diameter was calculated from in-situ XRD measurement re-
sults (Table 2) with Scherrer equation (Equation (4)). In comparison to H2-chemisorption
Co0 particle size, smaller Co0 particle size values with in-situ XRD measurement was as-
sumed to result from sample characteristics that are not considered with Scherrer equation,
such as, defect concentration, crystalline strain, stacking faults, compositional variation,
nanocrystallite size distribution, and sample thickness [29].

Table 2. Metallic and oxide cobalt particle size and cobalt dispersion data from X-ray diffraction and hydrogen chemisorption
measurements. Catalyst with and without thermal annealing (TA).

In-Situ XRD H2-Chemisorption

Catalyst
a Co3O4 Particle

Size (nm)

b Co0 Particle Size
(nm)

H2 Uptake
(µmol gcat−1)

c Co0 Particle
Size (nm)

d Cobalt
Dispersion (%)

Catalyst 14.5 7.8 69 14 6.7
Catalyst + 15c + TA - - 47 5 20.2
Catalyst + 25c + TA - - 46 5 19.5
Catalyst + 35c + TA 13. 8.3 58 11 9.0
Catalyst + 40c + TA - - 34 6 16.4

a Co3O4 in-situ XRD result before reduction. b Co0 particle size measured with in-situ XRD after reduction. c Co0 particle size determined
from H2-chemisorption result. d Cobalt dispersion calculated with Equation (5).

2.2.2. Hydrogen Chemisorption

Table 2 gives the dispersion and particle size values from in-situ XRD and static
H2-chemisorption measurements. Cobalt dispersion is determined from catalysts reduced
at 400 ◦C. The dispersion for non-overcoated catalyst is 6.7% and with overcoated catalysts
from 9% to 20.2%. As cobalt dispersion is varying with overcoat thickness, consequently
the particle size fluctuated between 6–14 nm. Several studies have presented the effect of
cobalt particle size on catalyst activity [11,12,30,31] and according to H2-chemisorption
result in Table 2, 35c + TA catalyst most favorable particle size from overcoated catalysts.

Pt and Si as catalyst promoters were presumed to have an insignificant effect on the
produced overcoat. ALD overcoat reformation through thermal annealing was assumed
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to reveal the active cobalt particles only partly for H2-chemisorption, thus increasing
the calculated dispersion value. It was suggested that ALD overcoating influenced de-
termined dispersion and particle size through Co particle confinement. As amorphous
ALD overcoating has no clear response in XRD, only minute deviation was found be-
tween non-overcoated catalyst (7.8 nm) and 35c + TA catalyst (8.3 nm). Different to XRD,
H2-chemisorption directly interacted with available metallic cobalt sites, indicating particle
confinement effect in Table 2 Co0 particle size approximation with H2-chemisorption.

2.2.3. Temperature-Programmed Reduction (TPR)

The temperature-programmed reduction results presented in Table 3 show the extent
of reduction for each sample. First, TPR was performed on the non-overcoated catalyst until
900 ◦C (Figure 3). Full cobalt reduction was assumed at this temperature and the extent of
reduction was determined by dividing the hydrogen consumption ≤ 400 ◦C (reduction
temperature) by the total hydrogen consumed at 900 ◦C. Secondly, non-overcoated catalyst
total hydrogen consumption was used to determine the extent of reduction for the ALD
samples. As ALD overcoating clearly inhibited complete Co reduction (Figure 4), the
quantity of adsorbed hydrogen was compared to the total amount measured with the
catalyst without overcoating.

Table 3. O2-titration and TPR data for degree of reduction. Untreated catalyst and ALD overcoated
catalyst after thermal annealing (TA).

Extent of Reduction (%)
Catalyst O2 Titration TPR

Catalyst 62.6 57.7
Catalyst + 15c + TA 1.8 13.1
Catalyst + 25c + TA 3.8 16.9
Catalyst + 35c + TA 15.7 35.8
Catalyst + 40c + TA 1.4 11.7
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Figure 4. TPR curves for non-overcoated catalyst and ALD overcoated catalysts with thermal
annealing (TA).

Gaussian peak deconvolution was used to determine six distinctive reduction peak
positions. Figure 3 presents the results, where the first two peaks at temperature 126 ◦C and
195 ◦C relate to the nitrate residue reduction from the catalyst Co(NO3)2 precursor [32,33].
The peak at 275 ◦C was attributed to Co3O4 reduction to CoO and the peak at 400 ◦C to
CoO reduction to metallic Co. Peaks found at temperatures 511 ◦C and 781 ◦C correspond
to reduction of mixed cobalt-support complexes [32,34].

Lower hydrogen consumption was measured for all overcoated catalysts. Particularly,
15c and 40c overcoat catalysts consume significantly less hydrogen in TPR. Lee et al. [21]
presented with an ALD overcoated catalyst (Al2O3/Co/γ-Al2O3) in aqueous phase reaction
that irreducible cobalt aluminate was formed during calcination process. Our results could
support this finding as 15c, 25c, and 40c catalysts have hydrogen consumption peak at
600 ◦C. Interestingly, the 35c catalyst showed different trend as hydrogen consumption
was higher and peak at 600 ◦C was suppressed compared to other ALD catalysts.

2.2.4. Oxygen Titration

Prior to oxygen titration, the samples were reduced with hydrogen flow at 400 ◦C.
After reduction, helium was used as a purge and carrier gas. Temperature was increased
to 450 ◦C and oxygen pulses were introduced to the sample until no consumption was
measured by the thermal conductive detector (TCD). Reduction is a two-step process that
propagates according to Equation (1) and Equation (2).

Co3O4 + H2 → 3CoO + H2O (1)

3CoO + 3H2 → 3Co + 3H2O (2)

Oxygen titration was assumed to follow a reversible stoichiometry.
According to Ma et al. [22], ALD treatment can partially or fully cover catalyst active

sites upon overcoating. Table 3 results seem to support their finding, as oxygen consump-
tion was much lower for ALD overcoated catalysts. For this reason, the extent of reduction
of the ALD catalysts as presented in Table 3 was underestimated compared to the TPR
results. Interestingly, catalyst + 35c + TA had significantly higher O2 consumption, which
would indicate that, compared to other overcoated catalysts, more active sites were open
after thermal annealing (TA) process.
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2.3. Fischer–Tropsch Activity and Selectivity

Low conversion level (<16%) was important for preventing mass and energy transfer
limitations. Furthermore, temperature differences in catalyst bed were minimized by
catalyst bed silicon carbide dilution. In the reaction experiments, mass transfer limitations
were shown to be negligible by varying reaction flow. In Figure 5, CO conversion as
a function of space-time (GHSV−1) showed linear behavior, which would indicate that
experimental results provided reliable comparative information between catalysts.
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Figure 5 presents the reaction experiment results, with the 15c and 25c catalysts showing
a slight CO conversion increase at space-time 0.09 h. However, with the catalyst + 35c + TA,
the conversion increases from 6.7% to 10.3%. Figure 6 gives the initial activity phase in
identical reaction conditions without space-time or gas hourly space velocity normalization.
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Figure 6. Catalyst overall activity during reaction start-up phase and stabilization during 40-h
time-on-stream with fixed reaction conditions (200 ◦C, 20 bar, and total flow 6.6 nL h−1). Catalyst
bed containing 603, 603, 613, 609, and 601 mg of catalyst respectively to non-overcoated catalyst, 15c,
25c, 35c, and 40c catalysts.

In addition to online carbon monoxide conversion monitoring, a complete mass
balance was determined by combining online and offline measurements from gaseous,
oil and wax fractions. As the hot and cold trap separated the overlapping hydrocarbon
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fractions, the mass balance was determined from gaseous online samples and offline
analysis results were fitted to the total mass balance. The mass balance results are presented
in Figure 7 as hourly hydrocarbon production rate per mass of catalyst (gHC gcat−1 h−1)
and the space-time yield of C5+ hydrocarbons.
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determined from samples with comparative feed flow and time-on-stream (space-time 0.09 h, TOS 40 h).

Figures 7 and 8 results indicate that a small variation in number of ALD cycles
can lead to rather different selectivity (see Supplementary Material for olefin to paraffin
selectivity). Especially 15c and 40c catalysts promoted light hydrocarbon formation. This
was assumed to result from enhanced hydrogenation activity of olefinic intermediates and
a less suitable environment for CHx step polymerization. Catalysts with 25 and 35 cycle
overcoating appear to have similar enhanced hydrogenation abilities while promoting
intermediate polymerization. Interestingly, the turn-over frequencies (TOF) in Figure 9 are
increasing with thickening overcoat. According to H2-chemisorption (Table 2) and TPR
results (Table 3), overcoated catalysts had fewer cobalt sites available compared to non-
overcoated catalyst. Therefore, TOF suggests that although fewer sites were available, the
sites open for reaction had increased activity. It must be noted that although the available
sites had increased activity, 40c + ALD lowered the overall activity especially (see Figure 6).
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Turn-over frequency was calculated with the equation

TOF =
xCO ·

.
molCO

molCo · s
(3)

where xCO is CO conversion,
.

molCO is carbon monoxide molar flow, and molCo is moles of
available metallic cobalt determined by static H2-chemisorption measurement.

2.4. Effect of ALD Overcoat and Thermal Annealing

According to reaction experiment results presented in Figure 10, thermal annealing
(TA) was required to have increased activity for catalyst + 35c. When the thermal annealing
process was applied prior to reduction, catalyst rate of reaction increased compared to
non-thermal annealed ALD catalyst and non-overcoated catalyst.
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In previous studies, the favorable effects of ALD overcoating on catalysts are explained
by the nanoporous structure achieved with thermal annealing [3,25]. Porous coating stabi-
lizes catalyst particles, while pores enable reactants to find their way onto the surface. Atomic
layer deposited Al2O3 is known to remain amorphous in higher temperatures compared to
our annealing temperature of 420 ◦C [26]; hence, it was unlikely that pore formation was
originating from crystallization of Al2O3. Depending on the reference [35–38], crystallization
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of amorphous ALD overcoating require approximately 700–900 ◦C. Therefore, we suggest
that the enhanced performance of overcoated catalysts result from milder changes taking
place during thermal annealing. Previous studies have shown that already during thermal
annealing at lower temperatures, ALD overcoatings densify, resulting in mass loss and
change of chemical composition [37,38]. Mass is lost mainly due to oxygen, hydrogen,
and carbon residue evaporation, causing overcoat densification and thinning. These trans-
formations together change the chemical reaction environment on the catalyst surface,
affecting the activity and selectivity of the catalyst, as well as stabilizing and protecting
cobalt particles from sintering and migration.

It is reported that in the beginning of the ALD process, overcoating prefers to grow on
low-coordination sites leaving other areas of the substrate with thinner coating [25,39,40].
Due to the FT reaction complexity and challenge to characterize alumina overcoating on
alumina supported catalyst, this low-coordination site favoring effect on catalyst perfor-
mance remains unclear (see Supplementary Materials for scanning electron (SEM) and
transmission electron microscopy (TEM) images). Nevertheless, our results show overall
activity increase for catalyst + 35c + TA and having particle size with structure-insensitive
reaction rate [11,38,41] (11 nm, Table 2), indeed it must be the overcoat having effect on
the catalyst activity and selectivity. Our assumption was that increased activity relates to
the overcoating opening at the high activity locations, creating a porous film for enhanced
hydrogenation activity. In addition, lower activity sites might have been modified towards
increased activity. In literature, terrace site lower specific activity is attributed to a slower
intermediate (CHx) hydrogenation and decreased CO dissociation [42]. ALD overcoat
reformation during thermal annealing may create defects on terrace sites, resulting in
conditions similar to higher activity sites. This assumption could be supported with a
recent study by Pestman et al. [30], who presented that a shortage of stepped sites would
limit hydrocarbon formation due to insufficient CO dissociation locations. They proposed
that if enough CO dissociation step sites are present, structure-insensitive hydrogenation
will dictate the overall reaction rate. As hydrogenation is a structure-insensitive reaction
step, a porous overcoat could generate better activity via increased CO dissociation sites
on otherwise low activity surfaces (e.g., terraces).

3. Experimental
3.1. Catalyst Preparation

Co-Pt-Si/γ-Al2O3 catalyst was prepared by incipient wetness co-impregnation of
cobalt nitrate (Co(NO3)2·6H2O) and platinum nitrate (Pt(NO3)2). Tetraethoxysilane
(C8H20SiO4) was impregnated in a following separate step on γ-Al2O3 support (Puralox
SCCa 5-150 Brunsbüttel, Germany), SBET 140 m2 g−1, Vpore 0.46 Nml g−1 and dpore 13.2 nm).
The catalyst was dried in a rotary evaporator (80 ◦C, 60 min) and calcination was carried
out under continuous air flow at 250 ◦C (ramp 2 ◦C min−1, 1 Nl gcat−1 h−1) for 4 h. After
the calcination, the catalyst was sieved, and a 50–150 µm particle size fraction was col-
lected. The resulting catalyst had 21.4 wt % cobalt, 0.2 wt % platinum, and 1.6 wt % silicon.
Platinum promoter assisted hydrogen reduction and silicon was added to prevent support
leaching [43]. From here on, catalyst refers to Co-Pt-Si/γ-Al2O3 and ALD overcoating and
thermal annealing is labelled in short for example catalyst + 35c + TA, where 35 denotes
for the number of ALD cycles.

The prepared catalyst batch was divided into two separate sets. The first set was
used as such in the Fischer–Tropsch tubular reactor experiments, and the second set was
overcoated by ALD with 15, 25, 35, and 40 cycles of Al2O3 at 150 ◦C. ALD coatings
for approximately 3-g batches were performed using an ALD Picosun R-200 tool and
POCA powder coating system. Due to the porosity of the catalyst powder, the sequential
micro pulsing set up was used for enhancing the precursor diffusion. In this set up,
several consecutive short pulses of the same precursor are fed to the reactor before long
purging steps. Furthermore, substrate agitation was carried out with an ultrasound system,
included in the POCA system. N2 (purity 99.999%) from liquid nitrogen gas was used
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as a carrier gas. Si (100) (Siltronic Corporation) was used as the substrate for measuring
reference thicknesses, and Al2O3 overcoatings were prepared from TMA (>98%, Strem
Chemicals, Newburyport, MA, USA) as a metal precursor and deionized water.

Before reduction, the ALD overcoated catalysts were annealed in a tubular reactor at
atmospheric pressure, N2 flow 40 Nml min−1 (~0.6 g) and with a temperature program
from room temperature to 420 ◦C at 4 ◦C min−1. Immediately after reaching terminal tem-
perature, cool down was started with an N2 flow of 80 Nml min−1 and the temperature was
decreased to 150 ◦C. Reduction was started by adding a hydrogen flow of 100 Nml min−1

with temperature ramp of 5 ◦C min−1 to 400 ◦C. Finally, after 12 h reduction, the reactor
was cooled to 180 ◦C (under H2 flow of 20 mL min−1) and the catalyst was ready for the
reaction experiment.

3.2. Catalyst Characterization
3.2.1. Nitrogen Adsorption and Desorption

To determine the catalyst surface area, pore volume and average pore diameter,
nitrogen adsorption–desorption isotherms were measured at liquid nitrogen temperature
(77 K) with a Micromeritics 3Flex 3500 instrument (Atlanta, GA, USA). Before isotherm
measurement, samples (~0.1 g) were outgassed with a VacPrep instrument at 200 ◦C for 12 h.

The catalyst surface area was estimated using the Brunauer–Emmett–Teller (BET) [44]
equation, and the Barrett–Joyner–Halenda (BJH) [45] method was used for total pore
volume and average pore diameter determination. Average pore diameter was evaluated
from the nitrogen desorption branch.

3.2.2. Temperature-Programmed Reduction (TPR)

Catalyst sample reducibility measurements were performed by H2 temperature-
programmed reduction with a Micromeritics 3Flex 3500 (Atlanta, GA, USA) instrument.
Prior to analysis, the sample (~0.1 g) was packed into a quartz U-tube reactor and out-
gassed in a flow of He at 200 ◦C for 2 h. After inert gas treatment, the temperature was
decreased to 30 ◦C and reduction was started with 10% H2 in Ar (50 Nml min−1) at a
ramp rate of 10 ◦C min−1 until 900 ◦C. During the temperature program, hydrogen con-
sumption was monitored with a thermal conductivity detector (TCD) and cold trap (liquid
nitrogen/isopropanol mixture) was used to remove residual water before analysis.

3.2.3. In-Situ X-ray Diffraction

Catalyst XRD diffraction patterns were measured with a PANalytical X’Pert PRO MPD
Alfa-1 diffractometer (Malvern, UK) (CuKα1 radiation at 45 kV/40 mA, λ1 = 1.54060 Å)
and Anton-Paar HTK 1200N furnace with fixed divergence, anti-scatter slits and 10 mm
mask. The scans were performed in the 2θ range from 30◦ to 47◦, with a step size 0.039◦.
In-situ measurement was initiated by flowing in nitrogen (40 Nml min−1) at 25 ◦C. After
1 h of nitrogen flushing, thermal annealing was performed as described earlier. When
thermal annealing reached temperature of 420 ◦C, the XRD chamber was cooled down to
150 ◦C under nitrogen flow (80 Nml min−1). At 150 ◦C, the nitrogen feed was switched
to reducing gas (10 % H2 in N2, 100 Nml min−1) and the reduction was started with
5 ◦C min−1 to 400 ◦C (hold 6 h). In-situ XRD diffractograms were collected at 25 ◦C before
annealing, at 420 ◦C right after annealing, at 150 ◦C before reducing gas feed, at 150 ◦C
before starting reduction temperature ramp, and every hour after reaching 400 ◦C.

Average cobalt oxide crystallite size was determined before thermal annealing and
reduction with Scherrer’s equation [46] using the highest intensity (311) Co3O4 peak found
at 2θ = 36.9◦ [47]

d(Co3O4) = ×
180◦

π
(4)

where 0.89 is the K-factor, λ is the X-ray wavelength, and B is the full width at half maximum
(FWHM) of the cobalt oxide diffraction peak.
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Co0 peak found at 2θ= 44.2◦ (Cubic Co, JCPDS card no. 00-015-0806) was used to determine
the metallic cobalt particle size for catalyst without overcoating and catalyst + 35c + TA.

3.2.4. Static H2-Chemisorption and O2-Titration

Hydrogen adsorption isotherms were measured with a Micromeritics 3Flex 3500
instrument. Catalyst samples (~0.1 g) were evacuated at 40 ◦C for 1 h and reduced in-situ
with flowing hydrogen at 400 ◦C for 12 h (ramp rate 2 ◦C min−1). After reduction, the
samples were cooled in vacuum (<0.1 mm Hg) to 35 ◦C. The adsorption isotherms were
obtained at 35 ◦C between 2.1–446 mm Hg. Equation (5) was used to determine the cobalt
metal dispersion [48], where one hydrogen molecule was assumed to interact with two
cobalt surface atoms [6,48]. The calculated dispersion percentage was then used to estimate
the cobalt particle size (nm) in Equation (6) by assuming spherical and uniform metal
particles with a site density of 14.6 atoms nm−2 [49].

Dispersion = 1.18χ/EOR/M% (5)

where χ is H2 uptake (µmol gcat−1) from chemisorption measurement, extent of reduction
(EOR) is from TPR measurement (Table 3), and M% is the percentage of active metal by
weight as grams of metal per gram of sample.

Cobalt particle size (nm) =
96.2

D(%)
(6)

Prior to oxygen titration with calibrated pulses of O2, the catalyst sample was reduced
in the conditions described above for the static H2-chemisorption experiment. Before
starting oxygen pulsing, the temperature was increased from reduction temperature to
425 ◦C and O2 pulses were introduced to a known sample amount. O2 pulses were added
until no consumption was detected by thermal conductive detector (TCD). The extent of
reduction was calculated by assuming Co0 to Co3O4 stoichiometric conversion.

3.3. Catalyst Testing

Fischer–Tropsch experiments were performed in a tubular fixed-bed reactor system
(Hastelloy C, 9.1 mm i.d.) at a temperature of 200 ◦C, pressure 20 bar and H2/CO ratio 2.0.
Detailed equipment description can be found elsewhere [27]. To minimize temperature
gradients over the catalyst bed, ~0.6 g of sample (50–150 µm) was diluted with ~2.0 g of
silicon carbide (105 µm). Prior to CO addition, reactor was pressurized with H2 and N2.
After pressure was stabilized, CO addition was started. Initial reaction temperature run-
away was prevented by slow addition of CO at 180 ◦C. After desired inlet gas composition
was reached (H2 60 vol %, CO 30 vol %, N2 10 vol % internal standard), the temperature
was increased to 200 ◦C. Gas hourly space velocity was altered during the experiment to
achieve at least three different CO conversion levels in the range of 5–15%.

Heavy Fischer–Tropsch products were separated in a hot trap (100 ◦C, at reaction
pressure), while water and lighter hydrocarbons (C6–C20) were collected in a liquid-liquid-
gas separator at 10 ◦C. The remaining effluent gas compounds (H2, N2, CO, CO2, C1-C14
hydrocarbons) were analyzed with an on-line gas chromatograph (Shimadzu GC-2014,
Kyoto, Japan) with a thermal conductivity (TCD) and flame ionization detectors (FID). H2,
N2, CO, CO2, and CH4 were analyzed with a TCD line consisting of a precolumn (Porapak-
Q, 1 mm i.d. × 1.8 m) and an analytical column (Carboxen-1000, 1 mm i.d. × 2.5 m). The
precolumn was adapted to facilitate backflush of heavy hydrocarbons enabling only light
compounds entering the TCD. The remaining hydrocarbon products from C1 to C14 as
well as C1–C9 n-alcohols were separated and analyzed with a DB-1 capillary column
(i.d. 0.25 mm × 60 m × 1 µm) and FID.

Fischer–Tropsch oil and wax samples were analyzed with offline methods after sample
collection. Hydrocarbon analyses for C6-C20 and C1-C9 n-alcohols were performed with a
Shimadzu GC-2014 (Rxi-5HT, i.d. 0.32 mm × 30 m × 0.10 µm df) and heavy hydrocarbons
ranging from C10 to C80+ were analyzed with a high-temperature HP5890 gas chromato-
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graph with an on-column injection port and a CP-SimDist UltiMetal separation column
(i.d. 0.53 mm × 10 m × 0.17 µm df, 1 m retention gap).

4. Conclusions

A catalyst with 21.4 wt % cobalt, 0.2 wt % platinum, and 1.6 wt % silicon on a γ-Al2O3
support was prepared by incipient wetness co-impregnation and overcoated with ALD
deposited Al2O3. Prepared and thermally annealed catalysts were studied in a tubular
reactor under relevant Fischer–Tropsch conditions (200 ◦C, 20 bar, H2/CO ratio 2) and
characterized by several methods. A positive effect on catalyst activity was observed with
35 cycle ALD catalyst without compromising selectivity towards heavy hydrocarbons.
Our results indicate that the ALD overcoat alters the chemical environment on catalyst
surface resulting in modified activity and selectivity. In this study, we showed that thermal
treatment (420 ◦C) for ALD overcoat is required to prepare a FT catalyst with modified
surface structure leading to enhanced activity and selectivity. However, more thorough
characterization of the ALD surface structure and reactions are needed to confirm the
hypothesis presented in this study. ALD catalyst research has been very promising and
successful during the past decade, but more fundamental research and experiments are
still needed in addition to efforts for scaling-up the processes for industrial manufacturing.

Supplementary Materials: The following tables are available online at https://www.mdpi.com/
article/10.3390/catal11060672/s1. scanning electron microscope (SEM) and transmission electron
microscopy (TEM) images for catalyst sample with and without ALD overcoating; product selectivity
as olefin to paraffin ratio.
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