Selective and Efficient Olefin Epoxidation by Robust Magnetic Mo Nanocatalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Magnetic Nanoparticles
2.2. Catalytic Studies
3. Materials and Methods
3.1. General
3.1.1. Methods
Synthesis of 4-(diphenylphosphino)benzoyl Chloride (phosCl)
Preparation of MNP30-Sius Material
Preparation of MNP30-Si-phos, MNP30-Sius-phos and MNP11-Si-phos Materials
Preparation of MNP30-Si-phos-Mo, MNP30-Sius-phos-Mo, and MNP11-Si-phos-Mo Materials
3.2. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ganesh, M.; Ramakrishna, J. Synthetic Organic Transformations of Transition-Metal Nanoparticles as Propitious Catalysts: A Review. Asian J. Org. Chem. 2020, 9, 1341–1376. [Google Scholar] [CrossRef]
- Duan, M.; Shpter, J.G.; Qi, W.; Yang, S.; Gao, G. Recent progress in magnetic nanoparticles: Synthesis, properties, and applications. Nanotechnology 2018, 29, 452001. [Google Scholar] [CrossRef]
- Arndt, D.; Gesing, T.M.; Bäumer, M. Surface Functionalization of Iron Oxide Nanoparticles and their Stability in Different Media. ChemPlusChem 2012, 77, 576–583. [Google Scholar] [CrossRef]
- Kim, D.; Shin, K.; Kwon, S.G.; Hyeon, T. Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Adv. Mater. 2018, 30, 1802309–1802334. [Google Scholar] [CrossRef]
- Fernandes Cardoso, V.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lancero-Mendez, S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthcare Mater. 2018, 7, 1700845. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, X.; Guan, J. Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Appl. Nano Mater. 2019, 2, 4681–4697. [Google Scholar] [CrossRef]
- Farooqi, Z.H.; Begum, R.; Nassim, K.; Wu, W.; Irfan, A. Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. Catal. Rev. 2020. [Google Scholar] [CrossRef]
- Chiozzi, V.; Rossi, F. Inorganic–organic core/shell nanoparticles: Progress and applications. Nanoscale Adv. 2020, 2, 5090–5105. [Google Scholar] [CrossRef]
- Hou, Z.; Liu, Y.; Xu, J.; Zhu, J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: Synthesis progress and biomedical applications. Nanoscale 2020, 12, 14957–14975. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bhateria, R. Core–shell nanostructures: A simplest two-component system with enhanced properties and multiple applications. Environ. Geochem. Health 2020. [Google Scholar] [CrossRef]
- Plumeré, N.; Ruff, A.; Speiser, B.; Felbmann, V.; Mayer, H.A. Stöber silica particles as basis for redox modifications: Particle shape, size, polydispersity, and porosity. J. Colloid Interface Sci. 2012, 368, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci. 2010, 349, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liu, F.; Sun, L.; Wang, Q.; Ding, Y. Well-Dispersed Fe3O4/SiO2 Nanoparticles Synthesized by a Mechanical Stirring and Ultrasonication Assisted Stöber Method. J. Inorg. Organomet. Polym. 2012, 22, 311–315. [Google Scholar] [CrossRef]
- Shokouhimehr, M.; Piao, Y.; Kim, J.; Jan, Y.; Hyeon, T. A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angew. Chem. Int. Ed. Engl. 2007, 46, 7039–7043. [Google Scholar] [CrossRef]
- Pan, Z.; Hua, L.; Qiao, Y.; Yang, H.; Zhao, X.; Feng, B.; Zhu, W. Nanostructured Maghemite-Supported Silver Catalysts for Styrene Epoxidation. Chin. J. Catal. 2011, 32, 428–435. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, P.; Wai, P.T.; Gu, Q.; Zhang, W. Recent Progress in Application of Molybdenum-Based Catalysts for Epoxidation of Alkenes. Catalysts 2019, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Vasconcellos-Dias, M.; Nunes, C.D.; Vaz, P.D.; Ferreira, P.; Brandão, P.; Felix, V.; Calhorda, M.J. Heptacoordinate tricarbonyl Mo(II) complexes as highly selective oxidation homogeneous and heterogeneous catalysts. J. Catal. 2008, 256, 301–311. [Google Scholar] [CrossRef]
- Fernandes, C.I.; Stenning, G.B.G.; Taylor, J.D.; Nunes, C.D.; Vaz, P.D. Helical channel mesoporous materials with embedded magnetic iron nanoparticles: Chiral recognition and implications in asymmetric olefin epoxidation. Adv. Synth. Catal. 2015, 357, 3127–3140. [Google Scholar] [CrossRef]
- Tokudome, Y.; Morimoto, T.; Tarutani, N.; Vaz, P.D.; Nunes, C.D.; Prevot, V.; Stenning, G.B.G.; Takahashi, M. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry. ACS Nano 2016, 10, 5550–5559. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.I.; Carvalho, M.D.; Ferreira, L.P.; Nunes, C.D.; Vaz, P.D. Organometallic Mo complex anchored to magnetic iron oxide nanoparticles as highly recyclable epoxidation catalyst. J. Organomet. Chem. 2014, 760, 2–10. [Google Scholar] [CrossRef]
- Shylesh, S.; Schweizer, J.; Demeshko, S.; Schunemann, V.; Ernst, S.; Thiel, W.R. Nanoparticle Supported, Magnetically Recoverable Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for Selective Epoxidation Reactions. Adv. Synth. Catal. 2009, 351, 1789–1795. [Google Scholar] [CrossRef]
- Bui, T.Q.; Ngo, H.T.M.; Tran, H.T. Surface-protective assistance of ultrasound in synthesis of superparamagnetic magnetite nanoparticles and in preparation of mono-core magnetite-silica nanocomposites. J. Sci. Adv. Mater. Dev. 2018, 3, 323–330. [Google Scholar] [CrossRef]
- Montaño-Priede, J.L.; Coelho, J.P.; Guerrero-Martínez, A.; Peña-Rodriguez, O.; Pal, U. Fabrication of Monodispersed Au@SiO2 Nanoparticles with Highly Stable Silica Layers by Ultrasound-Assisted Stöber Method. J. Phys. Chem. C 2017, 121, 9543–9551. [Google Scholar] [CrossRef]
- Ventura, A.C.; Fernandes, C.I.; Saraiva, M.S.; Nunes, T.G.; Vaz, P.D.; Nunes, C.D. Tuning the Surface of Mesoporous Materials Towards Hydrophobicity-Effects in Olefin Epoxidation. Curr. Inorg. Chem. 2011, 1, 156–165. [Google Scholar] [CrossRef]
- Arzoumanian, H.; Castellanos, N.J.; Martínez, F.O.; Páez-Mozo, E.A.; Ziarelli, F. Silicon-Assisted Direct Covalent Grafting on Metal Oxide Surfaces: Synthesis and Characterization of Carboxylate N,N′-Ligands on TiO2. Eur. J. Inorg. Chem. 2010, 1633–1641. [Google Scholar] [CrossRef]
- Vaz, P.D.; Nunes, C.D.; Vasconcellos-Dias, M.; Nolasco, M.M.; Ribeiro-Claro, P.J.A.; Calhorda, M.J. Vibrational Study on the Local Structure of Post-Synthesis and Hybrid Mesoporous Materials: Are There Fundamental Distinctions? Chem. Eur. J. 2007, 13, 7874–7882. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.K. Seven-coordinate halocarbonyl complexes of the type [MXY(CO)3(NCMe)2] (M = Mo, W.; X, Y = halide, pseudo halide) as highly versatile starting materials. Chem. Soc. Rev. 1998, 27, 125–132. [Google Scholar] [CrossRef]
- Fernandes, C.I.; Silva, N.U.; Vaz, P.D.; Nunes, T.G.; Nunes, C.D. Bio-inspired Mo(II) complexes as active catalysts in homogeneous and heterogeneous olefin epoxidation. Appl. Catal. A Gen. 2010, 384, 84–93. [Google Scholar] [CrossRef]
- Guo, W.C.; Wang, G.; Wang, Q.; Dong, W.J.; Yang, M.; Huang, X.B.; Yu, J.; Shi, Z. A hierarchical Fe3O4@P4VP@MoO2(acac)2 nanocomposite: Controlled synthesis and green catalytic application. J. Mol. Catal. A Chem. 2013, 378, 344–349. [Google Scholar] [CrossRef]
- Huang, X.B.; Guo, W.C.; Wang, G.; Yang, M.; Wang, Q.; Zhang, X.X.; Feng, Y.H.; Shi, Z.; Li, C.G. Synthesis of Mo–Fe3O4@SiO2@P4VP core–shell–shell structured magnetic microspheres for alkene epoxidation reactions. Mater. Chem. Phys. 2012, 135, 985–990. [Google Scholar] [CrossRef]
- Tong, J.; Cai, X.; Wang, H.; Zhang, Q. Improvement of catalytic activity in selective oxidation of styrene with H2O2 over spinel Mg–Cu ferrite hollow spheres in water. Mater. Res. Bull. 2014, 55, 205–211. [Google Scholar] [CrossRef]
- Wilson, K.; Lee, A.F. Catalyst design for biorefining. Philos. Trans. R. Soc. A 2016, 374, 20150081. [Google Scholar] [CrossRef]
- Pardeshi, S.K.; Pawar, R.Y. SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene. J. Mol. Catal. A Chem. 2011, 334, 35–43. [Google Scholar] [CrossRef]
- Ma, N.; Yue, Y.; Hua, W.; Gao, Z. Selective oxidation of styrene over nanosized spinel-type MgxFe3−xO4 complex oxide catalysts. Appl. Catal. A Gen. 2003, 251, 39–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Z.; Tang, J.; Zhang, Y.; Kong, L.; Zhang, Y. Direct, efficient, and inexpensive formation of a-hydroxyketones from olefins by hydrogen peroxide oxidation catalyzed by the 12-tungstophosphoric acid/cetylpyridinium chloride system. Org. Biomol. Chem. 2006, 4, 1478–1482. [Google Scholar] [CrossRef]
- Farzaneh, F.; Asgharpour, Z. Synthesis of a new Schiff base oxovanadium complex with melamine and 2-hydroxynaphtaldehyde on modified magnetic nanoparticles as catalyst for allyl alcohols and olefins epoxidation. Appl. Organomet. Chem. 2019, 33, e489. [Google Scholar] [CrossRef]
- Silva, N.U.; Fernandes, C.I.; Nunes, T.G.; Saraiva, M.S.; Nunes, C.D.; Vaz, P.D. Performance evaluation of mesoporous host materials in olefin epoxidation using Mo(II) and Mo(VI) active species—Inorganic vs. hybrid matrix. Appl. Catal. A Gen. 2011, 408, 105–116. [Google Scholar] [CrossRef]
- Al-Ajlouni, A.; Valente, A.A.; Nunes, C.D.; Pillinger, M.; Santos, A.M.; Zhao, J.; Romão, C.C.; Gonçalves, I.S.; Kühn, F.E. Kinetics of Cyclooctene Epoxidation with tert-Butyl Hydroperoxide in the Presence of [MoO2X2L]-Type Catalysts (L = Bidentate Lewis Base). Eur. J. Inorg. Chem. 2005, 9, 1716–1723. [Google Scholar] [CrossRef]
- Rayati, S.; Moradi, D.; Nejabat, F. Magnetically recoverable porphyrin-based nanocatalysts for the effective oxidation of olefins with hydrogen peroxide: A comparative study. New J. Chem. 2020, 44, 19385–19392. [Google Scholar] [CrossRef]
- Mortazavi-Manesh, A.; Bagherzadeh, M. Synthesis and characterization of molybdenum (VI) complex immobilized on polymeric Schiff base-coated magnetic nanoparticles as an efficient and retrievable nanocatalyst in olefin epoxidation reactions. Appl. Organomet. Chem. 2020, 34, e5410. [Google Scholar] [CrossRef]
- Niakan, M.; Asadi, Z.; Masteri-Farahani, M. Immobilization of salen molybdenum complex on dendrimer functionalized magnetic nanoparticles and its catalytic activity for the epoxidation of olefins. Appl. Surf. Sci. 2019, 481, 394–403. [Google Scholar] [CrossRef]
- Fakhimi, P.; Bezaatpour, A.; Amiri, M.; Szunerits, S.; Boukherroub, R.; Eskandari, H. Manganese Ferrite Nanoparticles Modified by Mo(VI) Complex: Highly Efficient Catalyst for Sulfides and Olefins Oxidation Under Solvent-less Condition. ChemistrySelect 2019, 4, 7116–7122. [Google Scholar] [CrossRef]
- Gimenez, G.; Nunes, C.D.; Vaz, P.D.; Valente, A.A.; Ferreira, P.; Calhorda, M.J. Hepta-coordinate halocarbonyl molybdenum(II) and tungsten(II) complexes as heterogeneous polymerization catalysts. J. Mol. Catal. A Chem. 2006, 256, 90–98. [Google Scholar] [CrossRef]
Entry | Reaction [a] | Catalyst | Solvent | Temp. (K) | Conv. [b] (%) | Yield [b] (%) | Select. [c] (%) |
---|---|---|---|---|---|---|---|
1 | | MNP30-Si-phos-Mo | CH3CN | 353 | 97 | 97 | 100 |
2 | Toluene | 353 | 97 | 97 | 100 | ||
3 | Toluene | 383 | 75 | 75 | 100 | ||
4 | Decane | 393 | 53 | 53 | 100 | ||
5 | MNP11-Si-phos-Mo | CH3CN | 353 | 92 | 92 | 100 | |
6 | Toluene | 353 | 99 | 99 | 100 | ||
7 | Toluene | 383 | 99 | 99 | 100 | ||
8 | Decane | 393 | 85 | 85 | 100 | ||
9 | MNP30-Sius-phos-Mo | CH3CN | 353 | 83 | 83 | 100 | |
10 | Toluene | 353 | 99 | 99 | 100 | ||
11 | Toluene | 383 | 87 | 87 | 100 | ||
12 | Decane | 393 | 52 | 52 | 100 | ||
13 | | MNP30-Si-phos-Mo | CH3CN | 353 | 100 | 38 | 38 [d] |
14 | Toluene | 353 | 99 | 12 | 12 [d] | ||
15 | Toluene | 383 | 100 | 39 | 39 [d] | ||
16 | Decane | 393 | 100 | 27 | 27 [d] | ||
17 | MNP11-Si-phos-Mo | CH3CN | 353 | 100 | 17 | 17 [d] | |
18 | Toluene | 353 | 100 | 5 | 5 [d] | ||
19 | Toluene | 383 | 100 | 19 | 19 [d] | ||
20 | Decane | 393 | 100 | 5 | 5 [d] | ||
21 | MNP30-Sius-phos-Mo | CH3CN | 353 | 100 | 72 | 72 [d] | |
22 | Toluene | 353 | 96 | 7 | 8 [d] | ||
23 | Toluene | 383 | 100 | 54 | 54 [d] | ||
24 | Decane | 393 | 99 | 26 | 26 [d] |
Entry | Reaction [a] | Catalyst | Solvent | Temp. (K) | Conv. [b] (%) | Yield [b] (%) | Select. [c] (%) |
---|---|---|---|---|---|---|---|
1 | | MNP30-Si-phos-Mo | CH3CN | 353 | 99 | 65 | 65 [d] |
2 | Toluene | 353 | 99 | 74 | 74 [d] | ||
3 | Toluene | 383 | 100 | 96 | 99 [d] | ||
4 | Decane | 393 | 99 | 86 | 87 [d] | ||
5 | MNP11-Si-phos-Mo | CH3CN | 353 | 100 | 78 | 78 [d] | |
6 | Toluene | 353 | 100 | 87 | 87 [d] | ||
7 | Toluene | 383 | 100 | 88 | 88 [d] | ||
8 | Decane | 393 | 99 | 88 | 88 [d] | ||
9 | MNP30-Sius-phos-Mo | CH3CN | 353 | 88 | 75 | 85 [d] | |
10 | Toluene | 353 | 81 | 73 | 90 [d] | ||
11 | Toluene | 383 | 97 | 92 | 95 [d] | ||
12 | Decane | 393 | 76 | 63 | 83 [d] | ||
13 | | MNP30-Si-phos-Mo | CH3CN | 353 | 95 | 65 | 70 [e] |
14 | Toluene | 353 | 97 | 78 | 80 [e] | ||
15 | Toluene | 383 | 99 | 82 | 83 [e] | ||
16 | Decane | 393 | 95 | 76 | 80 [e] | ||
17 | MNP11-Si-phos-Mo | CH3CN | 353 | 86 | 56 | 65 [e] | |
18 | Toluene | 353 | 98 | 85 | 86 [e] | ||
19 | Toluene | 383 | 100 | 93 | 93 [e] | ||
20 | Decane | 393 | 99 | 84 | 85 [e] | ||
21 | MNP30-Sius-phos-Mo | CH3CN | 353 | 100 | 50 | 50 [e] | |
22 | Toluene | 353 | 100 | 50 | 50 [e] | ||
23 | Toluene | 383 | 96 | 89 | 93 [e] | ||
24 | Decane | 393 | 98 | 97 | 99 [e] |
Entry | Reaction [a] | Catalyst | Solvent | Temp. (K) | Conv. [b,c] (%) |
---|---|---|---|---|---|
1 | | MNP30-Si-phos-Mo | CH3CN | 353 | 97/85/70 |
2 | Toluene | 353 | 97/96/96 | ||
3 | Toluene | 383 | 75/64/53 | ||
4 | Decane | 393 | 53/36/18 | ||
5 | MNP11-Si-phos-Mo | CH3CN | 353 | 92/72/70 | |
6 | Toluene | 353 | 99/82/78 | ||
7 | Toluene | 383 | 99/99/98 | ||
8 | Decane | 393 | 85/73/68 | ||
9 | MNP30-Sius-phos-Mo | CH3CN | 353 | 83/86/40 | |
10 | Toluene | 353 | 99/99/81 | ||
11 | Toluene | 383 | 87/49/35 | ||
12 | Decane | 393 | 52/39/17 | ||
13 | | MNP30-Si-phos-Mo | CH3CN | 353 | 99/90/72 |
14 | Toluene | 353 | 99/97/37 | ||
15 | Toluene | 383 | 100/100/94 | ||
16 | Decane | 393 | 99/31/27 | ||
17 | MNP11-Si-phos-Mo | CH3CN | 353 | 100/99/99 | |
18 | Toluene | 353 | 100/99/99 | ||
19 | Toluene | 383 | 100/100/100 | ||
20 | Decane | 393 | 99/99/99 | ||
21 | MNP30-Sius-phos-Mo | CH3CN | 353 | 88/53/13 | |
22 | Toluene | 353 | 81/45/10 | ||
23 | Toluene | 383 | 97/49/47 | ||
24 | Decane | 393 | 76/63/29 | ||
25 | | MNP30-Si-phos-Mo | CH3CN | 353 | 95/95/86 |
26 | Toluene | 353 | 97/95/89 | ||
27 | Toluene | 383 | 99/96/93 | ||
28 | Decane | 393 | 95/92/91 | ||
29 | MNP11-Si-phos-Mo | CH3CN | 353 | 86/67/34 | |
30 | Toluene | 353 | 98/87/30 | ||
31 | Toluene | 383 | 100/100/63 | ||
32 | Decane | 393 | 99/99/79 | ||
33 | MNP30-Sius-phos-Mo | CH3CN | 353 | 100/68/73 | |
34 | Toluene | 353 | 100/99/44 | ||
35 | Toluene | 383 | 96/98/85 | ||
36 | Decane | 393 | 98/98/96 |
Entry | Reaction [a] | Catalyst | Temp. (K) | Conv. [b] (%) | Select. [b,c] (%) | ||||
---|---|---|---|---|---|---|---|---|---|
100 [d] | 150 [d] | 200 [d] | 100 [d] | 150 [d] | 200 [d] | ||||
1 | | MNP30-Si-phos-Mo | 353 | 99 | 99 | 97 | 100 | 100 | 100 |
2 | 383 | 99 | 99 | 75 | 100 | 100 | 100 | ||
3 | MNP11-Si-phos-Mo | 353 | 54 | 28 | 99 | 100 | 100 | 100 | |
4 | 383 | 93 | 100 | 99 | 100 | 100 | 100 | ||
5 | MNP30-Sius-phos-Mo | 353 | 37 | 37 | 99 | 100 | 100 | 100 | |
6 | 383 | 84 | 86 | 87 | 100 | 100 | 100 | ||
7 | | MNP30-Si-phos-Mo | 353 | 46 | 60 | 99 | 91 [e] | 92 [e] | 74 [e] |
8 | 383 | 99 | 57 | 100 | 65 [e] | 92 [e] | 99 [e] | ||
9 | MNP11-Si-phos-Mo | 353 | 64 | 89 | 100 | 93 [e] | 90 [e] | 87 [e] | |
10 | 383 | 81 | 97 | 100 | 94 [e] | 93 [e] | 88 [e] | ||
11 | MNP30-Sius-phos-Mo | 353 | 27 | 41 | 81 | 87 [e] | 88 [e] | 90 [e] | |
12 | 383 | 100 | 76 | 97 | 87 [e] | 92 [e] | 95 [e] |
Entry | Catalyst | Substrate | Oxidant | Temp (K) | Conv. (%) | Epoxide Select. (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | Fe3O4@SiO2@PTMS@Mel-Naph-VO | cis-cyclooctene | tbhp | 353 | 80 | 100 (8 h) | [36] |
2 | styrene | 56 | 58 (3 h) | ||||
3 | Fe3O4/SiO2/NH2-MnTCPP(OAc) | cis-cyclooctene | H2O2 | 303 | 85 | 100 (3 h) | [39] |
4 | styrene | 74 | 78 (3 h) | ||||
5 | MNP@PMA-SB-Mo | cis-cyclooctene | tbhp | 357 | 98 | 100 (1 h) | [40] |
6 | styrene | 92 | 72 (3 h) | ||||
7 | Fe3O4@SiO2-dendrimer-Mo | cis-cyclooctene | tbhp | 323 | 96 | 99 (1 h) | [41] |
8 | styrene | 92 | 98 (2 h) | ||||
9 | MnFe2O4-Mo(VI) | cis-cyclooctene | tbhp | 368 | 99 | 100 (10 min) | [42] |
10 | styrene | 94 | 56 (15 min) | ||||
11 | MNP30-Si-phos-Mo | cis-cyclooctene | tbhp | 383 | 75 | 100 (24 h) | This work |
12 | styrene | 99 | 39 (24 h) | ||||
13 | MNP11-Si-phos-Mo | cis-cyclooctene | tbhp | 383 | 99 | 99 (24 h) | This work |
14 | styrene | 100 | 19 (24 h) | ||||
15 | MNP30-Sius-phos-Mo | cis-cyclooctene | tbhp | 383 | 87 | 100 (24 h) | This work |
16 | styrene | 100 | 54 (24 h) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, C.I.; Vaz, P.D.; Nunes, C.D. Selective and Efficient Olefin Epoxidation by Robust Magnetic Mo Nanocatalysts. Catalysts 2021, 11, 380. https://doi.org/10.3390/catal11030380
Fernandes CI, Vaz PD, Nunes CD. Selective and Efficient Olefin Epoxidation by Robust Magnetic Mo Nanocatalysts. Catalysts. 2021; 11(3):380. https://doi.org/10.3390/catal11030380
Chicago/Turabian StyleFernandes, Cristina I., Pedro D. Vaz, and Carla D. Nunes. 2021. "Selective and Efficient Olefin Epoxidation by Robust Magnetic Mo Nanocatalysts" Catalysts 11, no. 3: 380. https://doi.org/10.3390/catal11030380
APA StyleFernandes, C. I., Vaz, P. D., & Nunes, C. D. (2021). Selective and Efficient Olefin Epoxidation by Robust Magnetic Mo Nanocatalysts. Catalysts, 11(3), 380. https://doi.org/10.3390/catal11030380