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Abstract: Epoxides are important industrial intermediates applied in a variety of industrial processes.
During the production of epoxides, catalysts have played an irreplaceable and unique role. In this
review, the historic progress of molybdenum-based catalysts in alkene epoxidation are covered
and an outlook on future challenge discussed. Efficient catalysts are demonstrated including
soluble molybdenum complexes, polyoxometalates catalysts, molybdenum-containing metal organic
frameworks, silica supported molybdenum-based catalysts, polymer supported molybdenum-based
catalysts, magnetic molybdenum-based catalysts, hierarchical molybdenum-based catalysts,
graphene-based molybdenum containing catalysts, photocatalyzed epoxidation catalysts, and some
other systems. The effects of different solvents and oxidants are discussed and the mechanisms
of epoxidation are summarized. The challenges and perspectives to further enhance the catalytic
performances in alkenes epoxidation are presented.
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1. Introduction

Epoxides are essential raw materials in the production of fine chemicals, such as surfactants, epoxy
resins, paints as well as vital intermediates in organic synthesis [1–4]. Epoxidation of alkenes has been
an important main route to produce epoxides and has attracted a lot of researchers’ attention. Generally,
the chlorine-using non-catalytic process, co-epoxidation and catalytic processes using organic peroxides
and peracids are traditional and common technologies in industrial processes [5,6]. However, these
processes are not economic and capital intensive. Furthermore, environmental disadvantages occur as
well. For instance, a massive output of chloride-laden sewage will be caused during the chlorine-using
non-catalytic process, and a large deal of acid waste will also be produced by usage of peracids,
as well as the difficulty of separation of homogeneous catalysts [7–9]. As to the co-epoxidation
processes, the products from coupling might be equivalently commercially desired [10].

Metal catalyzed alkenes to epoxides with milder oxidants including O2, H2O2 and alkyl hydroperoxides
have gained a lot of interest and resulted in the improvement of highly efficient catalysts [11–13].
For metal-catalyzed epoxidations with alkyl hydroperoxides, metal-based catalysts with superior
catalytic activity possess Lewis acidity and low oxidation potentials in their highest oxidation states,
the order of active activity is Mo > W > Ti, V [14]. Moreover, molybdenum is abundant and non-noble.
In these respects, many researchers have focused their attentions on molybdenum-based catalysts for
epoxidation of alkenes in both industrial and laboratory [15].
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The scope of this review is to display the historic progress of molybdenum-based catalysts and
highlight the most advanced epoxidation catalysts at recent.

2. Homogeneous Molybdenum Complexes

Since the 1960s, scientists have found that soluble complexes of molybdenum were one of
the most effective catalysts for epoxidation of alkenes. Molybdenum complexes as homogeneous
epoxidation catalysts, including Mo(CO)6, MoO2(acac)2, MoO2-phthalocyanine, MoO2(octane-1,2-diol)2,
MoO2(trans-cyclohexane-1,2-diol)2, etc., have been widely studied as epoxidation catalysts [16,17].

Since 1968, Mimoun and Sharpless’s groups [18] have reported the peroxo species of molybdenum
regenerated in situ during alkenes epoxidation, which were suggested as the key intermediates in this
whole oxidation process. In 1973, Sharpless and Michaelson [19] discovered Mo(CO)6, an efficient
epoxidation catalyst, which exhibited remarkable reactivity in epoxidation of olefinic alcohols using
t-BuOOH as oxidant and PhH as solvent. In 1974, Fusi et al. [20] reported molybdenum acetylacetonates
(MoO2(acac)2) to directly catalyze epoxidation of alkenes resulting in high selectivity. Trifirò et al. [21]
carried out the kinetic and spectroscopic studies with the presence of MoO2(oxine)2 in the epoxidation
process of cyclohexene employing tert-butyl-hydroperoxide as oxidant.

Subsequently, molybdenum complexes with multifarious types of ligands have been studied and
certified as efficient homogeneous catalysts in the epoxidation of alkenes [22,23]. It is widely considered
that active metal containing Schiff base ligands are promising materials in catalytic epoxidation
reactions [24]. Moreover, it is convenient to adjust the fabrication procedures of metal containing
Schiff base complexes. Cis-[MoO2L2] which derived from the introduction of molybdenum complexes
into Schiff base ligands, has been proved to be a promising catalyst to form epoxides with high
reactivity. Judmaier et al. [25] employed Schiff base ligands (HLX, X = 1–5) with molybdenum(VI) dioxo
complexes (MoO2(η2-tBu2pz)2) to produce cis-[MoO2(LX)2] with an intramolecular donor for efficiently
selective alkenes epoxidation with 80% epoxide yield and 98% selectivity. Bagherzadeh et al. [26]
fabricated oligomer molybdenum complexes [MoO2(L)]n via the reaction of MoO2(acac)2 and an
ONO-type Schiff-base ligand (L = 4-bromo-2-((2-hydroxy-5-methylphenylimino)methyl)phenol) and
applied it as a catalyst in alkene epoxidation with high activity and selectivity as well as excellent
turnover numbers. Antunes et al. [27] designed and prepared the complex (Htrz)2[Mo3O6(O2)4(trz)2]·H2O,
which isolated from the reaction of MoO3 and H2O2 with the usage of 1,2,4-triazole(trz) and was
employed in a model epoxidation reaction with cis-cyclooctene. In order to improve the reactivity
of catalysts, Reich’s group [28] attached fluorinated moieties to molybdenum tricarbonyl complexes
by enhancing Lewis activity through a more electron deficient Mo atom. Arylated molybdenum
tricarbonyl complexes were modified through varying the number and position of CF3 group(s) on
a benzyl moiety connected to a CpMo(CO)3 entity. The as-obtained compounds exhibited better
epoxidation activity benefiting from the modification of CF3 groups. The results of epoxidation
reactions by using different homogeneous molybdenum-based catalysts are summarized in Table 1.
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Table 1. Results of epoxidation reactions by using homogeneous molybdenum-based catalysts.

Entry Catalyst Olefin Oxidant Solvent Temperature
(◦C)

Time
(h)

Conversion
(%)

Selectivity
(%) Ref.

1 Cis-[MoO2(LX)2]-1 Cyclooctene TBHP Chloroform 50 1 100 99 (24 h) [25]
2 Cis-[MoO2(LX)2]-2 Cyclooctene TBHP Chloroform 50 1 100 99 (24 h) [25]
3 Cis-[MoO2(LX)2]-3 Cyclooctene TBHP Chloroform 50 1 22 99 (24 h) [25]
4 Cis-[MoO2(LX)2]-4 Cyclooctene TBHP Chloroform 50 1 30 99 (24 h) [25]
5 Cis-[MoO2(LX)2]-5 Cyclooctene TBHP Chloroform 50 1.5 100 99 (24 h) [25]
6 [MoO2L]n Cyclooctene TBHP 1,2-dichloroethane 80 2 93 100 [26]
7 (Htrz)2[Mo3O6(O2)4(trz)2]·H2O Cis-cyclooctene TBHP α,α,α-trifluorotoluene 70 6 94 - [27]
8 [MoO3(trz)0.5] Cis-cyclooctene TBHP α,α,α-trifluorotoluene 70 6 83 - [27]
9 [CpMo(CO)3Bz-m-CF3] Cis-cyclooctene TBHP Benzene 55 24 100 99 [28]
10 [CpMo(CO)3Bz-m-(-CF3)2] Cis-cyclooctene TBHP Benzene 55 24 100 99 [28]
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3. Heterogeneous Molybdenum-Based Catalysts

Although the catalytic activity of homogeneous catalysts is generally high, their non-recycling
property has limited their application. Great efforts have been made to design and prepare
heterogeneous catalysts for the case of overcoming the drawbacks of homogeneous catalysts, which
offer the advantages of easy separation and are environmentally friendly [29]. Moreover, the superior
properties of support materials (e.g., chemical and thermal stabilities, large specific surface area,
hierarchical structures etc.) will exalt the catalytic activity as well [30]. Many stable materials
have been used as supports, such as polymers [31], metal organic frameworks (MOFs) [32], carbon
materials [33], porous silica materials [34] etc. Introducing active sites with diverse protocols on proper
supports is a common and valid strategy of preparing heterogeneous catalysts. Impregnation [35],
co-precipitation [36] and chemical bonding [37] are conventional and facile methods to achieve
this goal.

3.1. Polyoxometalates (POMs) Catalysts

Polyoxometalates (POMs), anionic transition metal oxygen clusters with an extensive diversity of
properties, have been widely used in catalysis, biology, electromagnetic functional materials, medicine
etc. [38]. Interest has been paid in homogeneous and heterogeneous systems by making full use
of the catalytic activity of polyoxometalates (POMs) in distinct oxidation processes. These superior
applications may result from their unique properties, such as acid/base characterization, fast and
reversible multi-electron redox transformations even under mild conditions, electron-transfer
properties, thermal and oxidative strength, flexibility by the incorporation of appropriate metal
ions or counterions to endow a superior catalytic performance [39,40].

Polyoxometalate nanoclusters can be used as an efficient catalyst in epoxidation directly.
For instance, Rezaeifard’s group [41] successfully used {Mo72Cr30} Keplerate polyoxometalate
nanoclusters as phase-transfer catalysts in safe and green ethanol with H2O2 as eco-friendly oxidant.
The polyoxometalate acted as a homogeneous catalyst; however, it can be easily separated and reused
like a heterogeneous catalyst. The dispersion of catalysts during the epoxidation process was shown in
Figure 1a.

However, most of the efficient POMs catalysts for epoxidation are obtained after modification.
Ghorbanloo’s group [42] attached thiazole-hydrazone ligands with molybdenum(VI) complexes. As shown
in Figure 1b, as-prepared MoO2L(EtOH) (Catalyst 2) and [MoO2(HL)(H2O)]2[Mo6O19]·2MeCN (Catalyst 1)
were obtained through the interaction between [MoO2(acac)2] and (E)-2-((2-(benzo[d]thiazol-2-yl)
hydrazono)methyl)-6-methoxyphenol (H2L) by using ethanol and acetonitrile, respectively.
These compounds were efficient catalysts for epoxidation reactions. Gao et al. [43] inserted
molybdenum oxides clusters into the layer of two copper complexes, the resulted samples denoted as
[Cu(bipy)]4[Mo15O47]·2H2O (bipy = 4,4′-bipyridine) and [CuI(bix)][(CuIbix) (δ-MoVI

8O26)0.5] (bix =
1,4-bis(imidazole-1-ylmethyl)benzene). The structures were shown in Figure 1c,d. The as-prepared
catalysts revealed excellent reactivity for olefins epoxidation and could be recycled easily without
obvious decrease. Due to the intense coordination bonds between copper complex and molybdenum
oxide clusters, these catalysts had good stability during epoxidation. Taghiyar et al. [44] investigated
three Keggin-type POMs encapsulated in molybdenum-iron-type Keplerate and studied their catalytic
efficiency in alkenes epoxidation as a heterogeneous catalyst (Figure 1e). These catalysts showed
higher reactivity than parent ones and could be easily recycled through filtration and used without
significant loss over at least eight runs.

To overcome the shortcomings of homogeneous POMs-catalytic systems and enhance stability and
reusability, POMs-based heterogeneous catalysts have been obtained by different “immobilization” or
“solidification” processes with suitable modifications [45]. A variety of materials have been considered
as proper supports for immobilizing POMs, e.g., zeolites, magnetic nanoparticles, metal-organic
frameworks (MOFs), porous carbons, polymers, porous silica, transition metal oxides, etc. [46,47].
Boudjema et al. [40] supported 11-molybdovanado-phosphoric acid with the Keggin structure
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H4[PVMo11O40]·13H2O (PVMo) on acid-activated montmorillonite clay to optimize cyclohexene
epoxidation with hydrogen peroxide. Jameel et al. [48] have used chloropropyltriethoxysilane
functionalized SBA-15 as a support for immobilization of Na9PMo11O39(PMo11) and gold nanoparticles
and studied the molecular oxygen reactivity and stability under facial reaction conditions.
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Figure 1. (a) Photographs of epoxidation process using {Mo72Cr30} as catalyst. Reproduced with
permission from reference [41]. Elsevier (2017). (b) Schematic representation of synthesis procedure
of [MoO2(HL)(H2O)]2[Mo6O19]·2MeCN (1) and MoO2L(EtOH) (2) and their epoxidation process.
Reproduced with permission from reference [42]. Elsevier (2016). (c) View of the infinite-track Cu(bipy)
chain-modified [Mo15O47]n

4n− in [Cu(bipy)]4[Mo15O47]·2H2O (bipy = 4,4′-bipyridine); (d) The 3D
polythreaded supramolecular structure along the given directions in [CuI(bix)][(CuIbix)(δ-MoVI

8O26)0.5]
(bix = 1,4-bis(imidazole-1-ylmethyl)benzene) (green represents penetrated [CuI2(bix2)]n

+ chains).
Reproduced with permission from reference [43]. Elsevier (2015). (e) Epoxidation of alkenes by
catalysts of Keggins encapsulated in molybdenum-iron-type Keplerate. Reproduced with permission
from reference [44]. Elsevier (2018). (f) Epoxidation process of alkenes with [Mo(O)2(salen)-POM].
Reproduced with permission from reference [49]. Elsevier (2010).

Stable polyoxometalates (POMs) can also be used as a support to immobilize molybdenum
complexes. For instance, Moghadam et al. [49] used Keggin-type polyoxometalate (K8[SiW11O39]) as
a support and linked molybdenum (salen) [salen = N,N′-bis(salicylidene)ethylnediamine] complex
through covalent attachment (Figure 1f). These as-prepared catalysts can catalyze epoxidation of
different kinds of olefins even including non-activated terminal olefins. Moreover, two active sites
will provide epoxidation reactivity if molybdenum complexes were supported on a molybdenum-base
POMs. The results of epoxidation reactions by using polyoxometalates (POMs) catalysts are summarized
in Table 2.
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Table 2. Results of epoxidation reactions by using polyoxometalates (POMs) catalysts.

Entry Catalyst Olefin Oxidant Solvent Temperature
(◦C)

Time
(h)

Conversion
(%)

Selectivity
(%) Ref.

1 20% PVMo/Hmont Cyclooctene 60 wt% H2O2 Acetonitrile 70 9 91 96 [40]
2 {Mo72Cr30} Cyclooctene 30 wt% H2O2 Ethanol 70 0.75 97 >99 [41]
3 [MoO2(HL)(H2O)]2[Mo6O19]·2MeCN Cyclooctene TBHP 1,2-dichloroethane 80 5 100 100 [42]
4 [Cu(bipy)]4[Mo15O47]·2H2O Cyclooctene TBHP Chloroform 35 8 96 ≈100 [43]
5 [CuI(bix)][(CuIbix)(δ-MoVI

8O26)0.5] Cyclooctene TBHP Chloroform 35 10 92 ≈100 [43]
6 (H2bix)[(Hbix)2(γ-Mo8O26)]2·H2O Cyclooctene TBHP Chloroform 35 10 39 ≈100 [43]
7 {Mo72Fe30} Cyclooctene 30 wt% H2O2 Ethanol 75 3.25 73 97 [44]
8 PMo12 ⊂Mo72Fe30 Cyclooctene 30 wt% H2O2 Ethanol 75 3.25 82 98 [44]
9 SiMo12 ⊂Mo72Fe30 Cyclooctene 30 wt% H2O2 Ethanol 75 3.25 91 99 [44]

10 BW12 ⊂Mo72Fe30 Cyclooctene 30 wt% H2O2 Ethanol 75 3.25 93 99 [44]
11 1% Au/PMo11/CPTES-SBA-15 Cyclohexene O2 (0.4 MPa) - 50 24 48.1 35.9 [48]
12 [Mo(O)2(salen)-POM] Cyclooctene TBHP 1,2-dichloroethane 75 6 100 100 [49]
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3.2. Molybdenum-Containing Metal Organic Frameworks (MOFs)

Metal-organic frameworks (MOFs) are popular functional materials, which are organic-inorganic
hybrid nanoporous crystals composed by metal nodes and connected organic linkers [50]. These materials
have various superior properties such as microporosity, large specific surface area and flexible
structural tailority [51,52]. These properties endow wide applications consisting of catalysis,
gas storage, sensors and drug delivery [53,54]. Remarkably, MOFs are able to insert a lot of
functional groups into the structures via a direct one-step synthesis [55,56]. Whereas, under
solvothermal conditions, chemical or thermal instability occur among a number of modified ligands
under solvothermal conditions and the desired chemical functionality will not be accomplished.
Thus, post-synthetic strategy was carried out to endow MOFs with specific functions. After chemical
modification, organic linkers and unsaturated metal centres will exist following the removal of
solvent [57]. Abednatanzi et al. [58] modified Cu3(BTC)2 with molybdenum species using a two-step
post-synthetic method. In this strategy, covalent connection of aminopyridine groups was first
accompanied and subsequently reacted with bis(acetylacetonato) dioxomolybdenum(VI) (Figure 2a).
The as-obtained molybdenum containing MOFs exhibited multi-functions, which could transfer
both alkenes and allylic alcohols to epoxides as a heterogeneous catalyst (Figure 2b). Furthermore,
the catalyst revealed size-selective properties which indicated the existence of reaction in pores.
Noh et al. [59] utilized condensed-phase deposition method to immobilize molybdenum (VI) oxide
on NU-1000 (metal-organic frameworks). The microporous and mesoporous properties (pore sizes of
10 and 31 Å, respectively) of NU-1000 provided excellent transformation of reactants/products and
convenient access to target active sites (Figure 2c). Density functional theory calculations were utilized
to further verify the stability of Mo-SIM, which revealed that the dissociation of the molybdenum
(VI) species from the node of NU-1000 was endergonic (Figure 2d). Ni et al. [60] synthesized two
kinds of Mo containing metal-organic frameworks via a post-synthetic method (Mo@COMOC-4)
and a ship-in-bottle strategy (PMA@MIL-101), respectively. Mo@COMOC-4 was observed to be a
promising catalyst for propylene epoxidation with cumene hydroperoxide (CHP). By a post-synthetic
strategy, MoO2Cl2 complex was successfully immobilized onto the bipyridine sites of the framework
(COMOC-4 = Ga(OH)(OOC-C12N2H6-COO). A strong affinity existed between MoO2Cl2 complex
and bipyridine sites, which led to good regeneration property. PMA@MIL-101(Cr) was constructed
through a ship-in-bottle method to trap a Keggin-type polyoxometalate (H3PMo12O40). However, the
strong acidity derived from heteropoly acids led to decomposition of CHP during the epoxidation
reaction. In conclusion, suitable ligands should be chosen to construct molybdenum containing MOFs
as epoxidation catalysts.
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3.3. Silica Supported Molybdenum-Based Catalysts

Inorganic porous silica materials are stable materials in epoxidation without swelling or
dissolving in organic solvents. These silica materials also have excellent properties such as large
and defined pore sizes and specific surface area, fantastic mechanical and thermal stabilities as well
as easy functionalization [61]. Molecular sieve materials, e.g., TS-1, MCM-41, MCM-48 and SBA-15,
are common and popular inorganic mesoporous silica materials. The existence of substantial silanol
(Si-OH) groups facilitate these silica materials for organic functionalization [62]. At the same time,
the resulting silica-supported catalysts generally consist of large specific surface area, uniform pore
size distribution, large pore volume and flexible dimensionality of pore channels and structure [63].
These properties promote the reactivity of catalysts. Molybdenum has been incorporated into supports
(e.g., molecule sieves, silicates, etc.) by various strategies such as wet or dry impregnation [64], thermal
spreading [65], post-synthetic surface grafting protocol and direct synthesis methodology [66].

Soluble molybdenum complexes usually grafted on silica supports by post-synthetic surface
grafting protocols through an organometallic precursor to react with the surface silanol groups to
produce Mo-O-Si bond. In 2007, Luts et al. [67] covalently attached the Mo (IV)-Salen complexes to
silica supports and investigated their epoxidation performances. After comparison, the operation
of immobilization endowed both the advantages of homogeneous (enantioselectivity, high catalytic
activity) and heterogeneous (easy separation and recovery, reusing) catalysts. This method overcame
the problems with separation and recycling, greatly improving their properties and commercial value.
Morales-delaRosa et al. [15] used bis-oxomolybdenum(VI) acetylacetonate as molybdenum precursor
and incorporated the molybdenum into a silica gel support. By changing different kinds of solvents
and the amount of molybdenum precursors in the synthetic process, different samples were obtained.
When proper solvents (THF series) were chosen, the incorporation of molybdenum in silica occurred
through a reaction between the molybdenum precursor and the surface hydroxyl groups on silica.
Zhang et al. [68] successfully immobilized two molybdenum(VI) tridentate Schiff base complexes
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on modified SBA-15 by a covalent grafting method. Interestingly, silylation treatment was used to
improve the hydrophobicity of the silica surface via replacing residual Si-OH groups by Si-OTMS
and the catalytic activity was proved to be improved. Higher hydrophobicity of the catalysts was
considered to increase the compatibility between the catalysts and the reactants. Baskaran et al. [69]
constructed a facile protocol to graft molybdenum carbonyl onto diaminosilane-modified SBA-15.
Generally, the introduction of molybdenum oxo-species on SBA-DA-Mo led to promising reactivity
for alkene epoxidation. Moreover, the active sites were tested to be stable on the surface and showed
good recyclability.

The accessibility of the active metallic species is easy to achieve when the molybdenum complexes
are grafted on supports by chemical bonding. However, the risk of leaching of active species still exists.
Besides molybdenum complexes, molybdenum oxides are also efficient candidates for epoxidation.
Choudhary and coworkers [70] used MoO3 as epoxidation catalysts and obtained high catalytic
reactivity for selective epoxidation of styrene with TBHP as oxidant. Fernandes et al. [71] successfully
fabricated α-MoO3 nanoparticles with an average size smaller than 100 nm, which were obtained
from thermal oxidative annealing of MoO2 nano-crystalline particles. Carreiro et al. [72] made efforts
to carry out a facial alkenes epoxidation system using MoO3 as catalysts and TBHP as oxidant,
with the addition of pyridine and pyrazole to accelerate the reaction. The highest conversion was
gained with styrene (92%) and the highest selectivity with β-methylstyrene (≥99%), respectively.
Incorporation of molybdenum oxides on supports will greatly improve the stability of catalysts as
well as promote the conversion and yield of epoxidation from specific characteristics of supports.
Scientists have made efforts to discover a different synthetic strategy to obtain highly dispersed metal
species as well as create simple accessibility to molybdenum sites. Melero et al. [73] presented a
direct synthetic procedure for the fabrication of molybdenum-containing SBA-15 materials under
high acidic conditions using ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) as metallic
source and tetraethylorthosilicate (TEOS) as silicon precursors. The as-prepared materials showed
good catalytic activity, stability and reusability in olefins epoxidation with alkyl hydroperoxides as
oxidants. In 2002, Briot et al. [74] proposed a novel method of incorporating molybdenum oxo species
with high dispersion into SBA-15 with the presence of H2O2. In this procedure, low-condensed neutral
or anionic oxoperoxometalate species were supposed to generate under the condition of pH 1–2 with
excess H2O2. The excess of H2O2 was expected to prevent the formation of oligomeric species such
as the Keggin units ([SiM12O40]4−, M = Mo, W), which would decrease the high dispersion of metal
species in supports. This method has been successfully used in preparing efficient epoxidation catalysts.
Bakala et al. [75] applied this method to insert MoOx within MCM-41, SBA-15 and other silica materials.
The catalysts were obtained by the reaction between Mo (VI) peroxo species and silica supports or
precipitated silica in an acidic and peroxidic medium (peroxo route). In conclusion, MoOx has
been successfully inserted into mesoporous materials and resulted in excellent epoxidation reactivity.
By using peroxo routes, molybdenum oxide species could be successfully inserted and/or supported
in specific support. Moreover, the porosity of silica-based materials also contributes to restrict the
size of molybdenum species and to achieve MoOx species in high dispersion. We [76] used this route
to incorporate molybdenum species in silica nanoparticles and obtained molybdenum incorporated
silica nanoparticles. These catalysts have been used in epoxidation of alkenes and obtained efficient
reactivity. Miao and coworkers [77] used the sol-gel method to prepare MoO3/SiO2 catalysts
with different surface molybdenum species, which included polymolybdate, α-MoO3, β-MoO3,
monomeric molybdenum species and silicomolybdic acid. Certain amount of (NH4)6Mo7O24·4H2O
was added during the sol-gel process of TEOS. The preparation conditions and MoO3 loading have
been verified to affect the distributions and subsistence states. The catalysts displayed catalytic
activities for propylene epoxidation with cumene hydroperoxide. Chandra et al. [78] used SiO2, TiO2

and ZrO2 nanospheres to immobilize ultrasmall MoO3 nanoparticles in a one-pot reverse micelle
method. After recycling for five runs, the catalytic activity and selectivity was maintained with
minor loss. Ramanathan et al. [79] reported evaporation induced self-assembly method to prepare
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molybdenum-incorporated mesoporous silicates. During the procedure, P123 triblock copolymer
and MoCl5 were employed as structure-directing agent and molybdenum source, respectively.
The as-prepared catalysts displayed tunable acidity and promising catalytic activity for the metathesis
of 2-butene and ethylene to production of propene. Smeets et al. [80] designed and prepared a
SiO2-TiO2 mesoporous epoxidation catalyst via non-hydrolytic sol-gel strategy. This catalyst was
employed in cyclohexene epoxidation with the presence of H2O2 in acetonitrile, which showed
equivalent performance comparing with a TS-1 catalyst. One-pot synthesis silanization with
methyltrichlorosilane and post-synthesis silanization with methyltrimethoxysilane were investigated.
The latter method could greatly improve the catalytic performances, which resulted from a hydrophobic
surface with a high active site content. The surface hydrophobization producing from methyl groups
was proved to contribute the catalytic reactivity as referred in Zhang’s work [68]. The aforementioned
silica supported molybdenum-based catalysts are summarized in Table 3.
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Table 3. Results of epoxidation reactions by using various silica supported molybdenum-based catalysts.

Entry Catalyst Olefin Oxidant Solvent Temperature
(◦C)

Time
(h)

TOF
(h−1)

Conversion
(%)

Selectivity
(%) Ref.

1 Peptide immobil. Mo-Salen Cyclooctene TBHP Toluene 75 3 24.5 ≈100 ≈100 [67]
2 Mo-FSAP-CH3-Cl-SBA-15 Cyclohexene TBHP 1,2-Dichloroethane 80 4 - 68 95 [68]
3 SBA-DA-Mo Cyclooctene TBHP Mesitylene 70 4 - 93 86 [69]
4 MoO3 Styrene TBHP - 82-83 3 10.7 42 76.2 [70]
5 MoO3 and 0.17 Pyrazole Styrene TBHP Toluene 100 1 - 44 91 [72]
6 Mo-SBA-15 1-octene TBHP Decane 80 6 97.2 58.5 99.9 [73]
7 Mo-MCM-41(68) Cyclooctene TBHP Acetonitrile 40 3 - 66 >99 [75]
8 Mo-SBA-15(122) Cyclooctene TBHP Acetonitrile 40 3 - 85 93 [75]
9 Mo-SiO2-bead(160) Cyclooctene TBHP Acetonitrile 40 3 - 51 50 [75]

10 Mo-MSN-50 Cyclooctene H2O2 Acetonitrile 70 4 - 79 >95 [76]
11 MoO3/SiO2 Propylene CHP tert-butyl alcohol 80 (2.6 MPa) 4 - 99 85.3 [77]
12 MoO3/SiO2 Cyclooctene TBHP 1,2-dichloroethane 80 2 72.3 90 100 [78]
13 MoO3/TiO2 Cyclooctene TBHP 1,2-dichloroethane 80 2 24.8 37 100 [78]
14 MoO3/ZrO2 Cyclooctene TBHP 1,2-dichloroethane 80 2 25.9 39.6 100 [78]
15 NHSG Cyclooctene 30 wt% H2O2 Acetonitrile/H2O 60 2 - 13 16 [80]
16 NHSG@0.3Me Cyclooctene 30 wt% H2O2 Acetonitrile/H2O 60 2 - 13.7 37 [80]
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3.4. Polymer Supported Molybdenum-Based Catalysts

Besides POMs and silica materials, the design of polymer-supported catalysts has gained a lot
of attention since the 1970s. Molybdenum complexes have been widely immobilized on polymers
including various resins, cross-linked poly(ethylene oxide), polyvinylalcohol, poly(vinylpyridine) etc.
Nowadays, a great number of chelating functional molybdenum-based copolymers have been prepared
and applied as alkenes epoxidation catalysts [24]. Fan et al. [81] used cross-linked porous copolymer
to immobilize MoO2(acac)2 through covalent bonds under facile conditions. The resulting materials
were proved efficient epoxidation catalysts for a variety of alkenes with tert-butyl hydroperoxide
(TBHP). Furthermore, these materials could be easily reused at least five runs with no obvious loss in
catalytic activity.

3.5. Magnetic Molybdenum-Based Catalysts

The utilization of different supports is a convenient method for obtaining distinct heterogenous
catalysts. However, there is an activity loss during the separation process of filtration and
centrifugation. To solve these problems, some scientists has immobilized catalysts on magnetic
nanoparticles, which can simplify the recycling process. Zhang et al. [82] fabricated magnetic
γ-Fe2O3@C@MoO3 core-shell structures and investigated their catalytic performance in heterogeneous
epoxidation reaction (Figure 3a,b). From the results of epoxidation, good conversion (100%) and
selectivity (>99%) were observed under gentle conditions with low catalyst dosage. Moreover, the
catalyst could be conveniently recycled through an external magnet with no obvious decrease in
activity and selectivity after nine runs (Figure 3c). Zare et al. [83] used magnetic nanoparticles as
supports and applied two methods to anchor a molybdenum (VI) complex (MoO2(sal-phz)(CH3OH))
on their surface (Figure 3d). The first protocol was directly modified the magnetic nanoparticles’
surface with 3-chloropropyltrimethoxysilane (1A). In the second protocol, tetraethoxysilane was
used to construct a silica coating on the surface of magnetic nanoparticles, then functionalized
with 3-chloropropyltrimethoxysilane (2B). Afterwards, composites 2A and 3B were obtained by the
interaction between complex 1 and 1A/2B through covalent attachment, respectively. Compared
with composite 3B, nanocomposite 2A revealed better reactivity and stability during the liquid phase
epoxidation reactions. The better catalytic activity and selectivity might be attributed to the higher
hydrophobicity of 2A. First, the good hydrophobicity would improve the adsorption of reactants.
Second, the higher hydrophobicity was assumed to reduce the abilities of adsorbing final products
and oxidants. Hence, the final products would easily desorb from the surface.
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Figure 3. Scanning electron microscope (SEM) (a) and transmission electron microscope (TEM)
(b) images of the as-prepared γ-Fe2O3@C@MoO3 core/shell nanoparticles (NPs); (c) Photographs
of reaction mixtures before and after magnetic separation. Reproduced with permission from
reference [82]. Royal Society of Chemistry (2014). (d) Two synthetic pathways of preparing
molybdenum Schiff base complexes modified Fe3O4. Reproduced with permission from reference [83].
Royal Society of Chemistry (2016).

3.6. Hierarchical Molybdenum-Based Catalysts

Hierarchically porous materials have attracted tremendous attentions resulting from their
diversity and superior performance, and possess multiple porosities and structures. In general,
the hierarchical pore sizes are organized by bimodalities (micro-meso, meso-macro, and micro-macro)
or even trimodalities (micro-meso-macro, meso-meso-macro) [84]. Attribute to these special
structures, hierarchically porous materials possess superior properties including high surface area, low
density, easy transformation, flexible chemical compositions and hierarchical porosity and structure.
These characterizations are favourable for numerous applications and have been widely applied
in energy storage and conversion, catalysis, photocatalysis, adsorption, separation, gas sensing,
and biomedicine etc. [85]. Amongst them, nanomaterials with hollow structure have attracted
much attention, and possess tunable morphology and structure. Hollow silica materials as easily
available, abundant and cheap materials have unique properties, e.g., large specific surface areas, large
capacity, low toxicity, superior thermal and mechanical stability, low density and high biocompatibility.
These properties endow tremendous applications in drug delivery, various catalysis, electronic devices,
bioimaging, energy-storage etc. Our group [86] proposed a modified immersion method to obtain
highly dispersed molybdenum (VI) that incorporated hollow mesoporous silica catalyst. Benefiting
from the modified immersion method and the special hierarchical structure, the active sites were
introduced into shell and the active metal species could be isolated effectively (Figure 4a). In this
way, highly dispersed molybdenum species were obtained. Meanwhile, the hollow interior and the
shorter pore channels also contributed to the easy transfer of reactants and products in and out of
the supports with less transformation blockage. Thanks to the properties of catalysts, such materials
displayed high TON values. Kuwahara and his workers [87] presented a one-pot strategy of preparing
yolk-shell MoOx-SiO2 nanostructured composites organized by MoOx NPs cores and porous hollow
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silica spheres (Figure 4b,c), which were constructed by a self-assembly approach. Herein, poly(acrylic
acid) was used as an organic template and dodecyltrimethoxysilane acted as a pore-directing agent
(Figure 4d). The as-prepared yolk-shell MoOx-SiO2 composites showed promising catalytic stability in
the liquid-phase alkenes epoxidation with TBHP as oxidants. The high reusability was assumed to
result from the permeable silica shell, which made it a prominent heterogeneous catalyst.
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Figure 4. (a) Epoxidation process (left) and turnover number (TON) (right). Reproduced with
permission from reference [86]. Elsevier (2017). (b) Scanning transmission electron microscope (STEM)
image of MoOx@HSS-2; (c) high-angle annular dark-field imaging STEM (HAADF-STEM) image of
MoOx@HSS-2; (d) Schematic illustration of the preparation process of MoOx@HSS. Reproduced with
permission from reference [87]. Royal Society of Chemistry (2017).

3.7. Graphene-Based Molybdenum-Containing Catalysts

Graphene oxide (GO) has been widely studied as an efficient support for heterogeneous catalytic
reactions, which have oxygen-containing functional groups, superior mechanical strength as well as
considerable specific surface area. Masteri-Farahani et al. [88] used carboxylic acid ligands to functionalize
the surfaces of GO and rGO and then coordinated with bis(acetylacetonato)dioxomolybdenum (VI)
(Figure 5a). The resulting catalysts acted as desired molybdenum-based catalysts in epoxidation
reactions. High turnover frequencies (TOFs) and good selectivity (100%) were observed from both of
the catalysts in the epoxidation process (Figure 5b,c). Furthermore, the catalyst using reduced graphene
oxide as support exhibited better catalytic activity benefiting from the stronger hydrophobic nature,
which could make easy access of the olefin to the catalytic active sites. Our group [89] demonstrated a
novel mesoporous MoO2 composite supported on graphene oxide (m-MoO2/GO) and certified as a
more efficient epoxidation catalyst than pure mesoporous MoO2 (m-MoO2). During the epoxidation
reaction, the conversion and selectivity for cyclooctene were both above 99% after reacting for 6 h.
The mesoporous structure in m-MoO2/GO deriving from SiO2 nanospheres resulted in better catalytic
performance for long chain olefins or large ring size: the conversion of methyl oleate can be as high as
82%. Such a robust catalyst was easily reused with no obvious loss of catalytic activity after recycling
for 5 runs.
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3.8. Photocatalyzed Epoxidation Catalysts

Due to the severe global energy problems and the consumption of fossil fuels, more attention has
been paid to environmental and clean energy. As a renewable and inexhaustible energy, solar energy,
has attracted a lot of scientists’ interest. This energy has been applied in overall water splitting and
degradation of organics. Nowadays, this energy has started to be utilized in organic reactions, such as
epoxidation. Martínez et al. [90] anchored dichloro-dioxo-[4,4-dicarboxylato-2,2-bipyridine]-Mo(VI)
complexes on different mesoporous TiO2 materials (Figure 6a). These catalysts were presented as
efficient and durable catalysts for photo-epoxidation of alkenes under ultraviolet-visible (UV-vis)
light and using molecular oxygen as oxidant (Figure 6b). The catalytic activity was considered to be
relevant to the –OH density on the surface of titania which facilitated the high dispersion of Mo(VI)
complex and promoted the catalytic properties. Higher content and even dispersion of the grafted
Mo(VI)Cl2O2Bipy complex could be obtained from the mesoporous TiO2 produced under supercritical
CO2 conditions. This kind of mesoporous TiO2 support was proved to own the most suitable structures
and was considered the most efficient support for the formation of epoxides compared with other
TiO2 discussed in this work. Remarkably, these catalysts showed good stability even after a long-term
photo-oxidation process. Our group [91] supported Schiff (Mo) base complex on graphene oxide
sheets and subsequently combined with graphitic carbon nitride (g-C3N4) to endow its photoactivity
(Figure 6c). The photocatalytic activity of epoxidation was investigated under simulated sunlight
(AM 1.5) with different olefin substrates. GO and the metal active sites were confirmed to efficiently
accelerate electron transformation, which led to superior catalytic performance (Figure 6d).
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applied in cis-cyclooctene and other alkenes. 3-(trimethoxysilyl) propylchloride and 3-
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Figure 6. (a) Proposed photo-epoxidation catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′-
bipyridine) molybdenum (VI) grafted on mesoporous TiO2; (b) selectivity and conversion values
for the photo-oxidation of different alkenes catalyzed by Mo(VI)Cl2O2Bipy/TiO2(SC-150) after reacting
for 35 h. Reproduced with permission from reference [90]. Elsevier (2016). (c) Synthetic route to prepare
Mo-GO/g-C3N4 composite; (d) photocatalytic performance of Mo-GO/g-C3N4 during cyclooctene
epoxidation assessed using different illuminants a and solvents b. a Reaction conditions: cyclooctene
(10 mmol), CH3CN (10 mL, solvent), chlorobenzene (5 mmol), catalyst (10 mg) and O2. The mixture was
continuously stirred under different illuminants for 6 h. b Reaction conditions: cyclooctene (10 mmol),
solvent (10 mL), chlorobenzene (5 mmol), catalyst (10 mg) and O2. The mixture was continuously
stirred under a Xe lamp (300 W) with an AM 1.5 G filter for 6 h. Reproduced with permission from
reference [91]. Royal Society of Chemistry (2018).

3.9. Others

Besides the aforementioned supports, many other materials are also used as supports to design
epoxidation catalysts. Clay minerals, which present various superior properties including high surface
area, large reservation, and cheap price etc., have been widely used in many scientific applications. These
materials are composed of octahedral and tetrahedral silica units containing pores and –OH groups which
are outstanding candidates to immobilize active complexes. Golmohamadpour et al. [30] prepared
a sepiolite-type molybdenum catalyst by using 3-(tri-methoxysilyl)propylamine functionalized
surface of sepiolite clay mineral to immobilize MoO2(acac)2. This catalyst was later applied in
the epoxidation of cis-cyclooctene with high catalytic activity even in a large-scale process. Thus,
this material was considered as a convincing candidate for epoxidation in both research and
industrial applications. Mirzaee et al. [92] used boehmite (γ-AlOOH) nanoparticles to immobilize
acetylacetonate complexes of vanadium and molybdenum and applied in cis-cyclooctene and
other alkenes. 3-(trimethoxysilyl) propylchloride and 3-(trimethoxysilyl) propylamine were used
to covalently functionalize boehmite nanoparticles, and the functionalized nanoparticles were
utilized to immobilize bis-acetylacetonato-di-oxo molybdenum complexes subsequently. Metal oxides
can also be used as efficient supports. Mirzaee et al. [93] utilized 3-(trimethoxysilyl)-propylamine
and salicyl aldehyde to covalently functionalize hydrous zirconia nanoparticles and grafted
bis-acetylacetonato-di-oxo-molybdenum (VI) and some molybdenum containing Keggin-type
heteropolyacids on hydrous zirconia nanoparticles. The catalysts were successfully employed in
epoxidation of cis-cyclooctene and other linear/non-linear alkenes. The results of epoxidation by using
different types of heterogeneous molybdenum-based catalysts are summarized in Table 4.
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Table 4. Results of epoxidation by using different types of heterogeneous molybdenum-based catalysts.

Entry Catalyst Olefin Oxidant Solvent Temperature
(◦C)

Time
(h)

TOF
(h−1)

Conversion
(%)

Selectivity
(%) Ref.

1 Mo-AMP-CuBTC Cyclooctene TBHP Chloroform 60 2 521 99 >99 [58]
2 Mo-SIM Cyclohexene TBHP Toluene 60 7 420 93 99 [59]
3 DVB-AA-Mo Cyclooctene TBHP Chloroform 70 4 - 95 100 [81]
4 γ-Fe2O3@C@MoO3 Cyclooctene TBHP Tetrachlormethane 80 6 - 97.3 99.9 [82]

5
MoO2(sal-phz)(CH3OH)/

Chloropropyltriethoxysilane
coated Fe3O4

Cyclooctene TBHP 1,2-dichloroethane 84 1 426 98 99 [83]

6 Mo/HMSS-X Cyclohexene TBHP 1,2-dichloroethane 80 4 893 87 99 [86]
7 MoOx@HSS-2 Cyclooctene TBHP 1,2-dichloroethane 80 8 - 80 99 [87]
8 GO-Mo Cyclooctene TBHP Chloroform Reflux 8 100 92 >99 [88]
9 rGO-Mo Cyclooctene TBHP Chloroform Reflux 8 230 95 >99 [88]

10 m-MoO2/GO Cyclooctene TBHP Chloroform 60 6 410 >99 >99 [89]
11 Mo(VI)Cl2O2Bipy/TiO2 SC-150 Cyclohexene O2 (UV-vis) Acetonitrile 19 56 - 65.9 83 [90]

12 Mo-GO/g-C3N4 Cyclooctene O2 (AM 1.5G) Acetonitrile Ambient
temperature 6 164 44 98 [91]

13 Sep-Am-MoO2 Cyclooctene TBHP 1,2-dichloroethane 84 1.25 74.16 98 100 [30]
14 Mo-Im-BNPs Cyclooctene TBHP Tetrachlormethane Reflux 1 126 97 97 [92]
15 Mo-A-BNPs Cyclooctene TBHP Tetrachlormethane Reflux 3.5 89 97 97 [92]
16 PMo-AFZNP Cyclooctene TBHP 1,2-dichloroethane Reflux 2 49 98 100 [93]
17 SiMo-AFZNP Cyclooctene TBHP 1,2-dichloroethane Reflux 3 35 98 100 [93]
18 Mo-AFZNP Cyclooctene TBHP 1,2-dichloroethane Reflux 4.5 12 90 100 [93]
19 Mo-IFZNP Cyclooctene TBHP 1,2-dichloroethane Reflux 1 119 91 100 [93]
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4. Reaction Conditions and Mechanisms

4.1. Oxidizing Agents

The choice of oxidants is one of the most significant factors in improving the efficiency of the
epoxidation reaction. In the industrial production of fine chemicals, organic peracids such as peracetic
acid and m-chlorobenzoic acid are usually used as oxidants. However, the employment of organic
peracids will produce massive acid waste. It is essential to develop new epoxidation methods by using
safer and green oxidants with little waste. Nowadays, there has been a trend to develop catalysts
with high atom economy and selectivity as well as broad substrate scope. O2 is considered the ideal
oxidant with the potential atom economy of 100% and its ubiquity. Some works even used air as an
oxidant [34]. Unfortunately, molecular oxygen is unreactive toward olefins at recent. Furthermore,
the reaction which requires high temperatures has an intrinsic possibility to totally oxidize alkenes
to CO2. Remarkably, hydrogen peroxide becomes an environmental and economic choice and has
received a lot of attention. The advantages of H2O2 are that it contains high oxygen content, and has a
cheap price and commercial availability [94]. Actually, hydrogen peroxide owns high atom economy
(48%) and the only byproduct is just water [95]. However, a general and highly enantioselective
epoxidation of unfunctionalized olefins with hydrogen peroxide has not been developed [96]. Another
major oxidant group are alkyl peroxides [97], such as tert-butyl-hydroperoxide (TBHP) or cumene
hydroperoxide (CHP). This kind of oxidants has good compatibility with alkenes, which provide
high activity. However, either they form stoichiometric byproducts, which are commercialized or
costly recycled. Thus, the choice of oxidant should continue to be considered in the future. Green and
environmental oxidants (air, O2, H2O2) should be used more and more, which drives us to develop
relevant epoxidation technologies.

4.2. Solvents

During the epoxidation reaction, the reaction medium is also a significant factor. Organic solvents
have been widely used as a common reaction medium in industrial production. The use of solvents
facilitates to homogenize the liquid phase, which prevents the difficulty of mass-transfer to promote
the access and interaction between reactants and catalysts. In fact, the role of solvents is complex.
Many factors endow epoxidation activity, such as the aprotic/protic properties and polarity of solvents,
the solubility of reactants and products in solvents, the diffusion and counter diffusion effects [98,99].
Furthermore, the interaction between the solvent and the oxidant or the intermediate species will
dramatically affect the pathways of epoxidation. There is a competition between solvents and oxidants
for coordinating to the active sites. Coordinating solvents (alcohols, ethers, etc.) will form complexes
with the catalyst and hinder the formation of the catalyst-hydroperoxide complex [100]. Thus, the rate
and selectivity of epoxidation will be low. In conclusion, many factors should be considered to choose
an optimal solvent.

Due to toxicological and environmental pollution problems, volatile solvents are limited to
applications in pharmaceutical and chemical industries. Recently, solvent-free epoxidation has
attracted numerous attentions [101,102]. As is known to all, water is highly cheap, safe, sustainable
and environmentally benign. However, few reports have efficiently used water as a successful
reaction medium resulting from low solubility of substrates and the rashly decomposition of active
species in water. Currently, these shortcomings have been resolved by synthesis of catalysts with
specific properties [103]. Rezaeifard at al. [104] studied a Keplerate {Mo132} nanoball, [(NH4)42[MoVI

72

MoV
60O372(CH3COO)30(H2O)72] and applied it in the aerobic epoxidation of olefins “on water” at

ambient temperature and pressure in the absence of reducing agent or radical initiators (Figure 7a).
This catalyst showed high yield and selectivity as well as stability (Figure 7b). The discrete
single-molecular clusters were considered to contribute the high activity, which was generated in
aqueous solution benefiting from the good dispersity of {Mo132}-type cluster. In order to further confirm
the reactivity, {Mo132} was replaced by simple salts of Mo(VI), such as MoO3, Na2MoO4·4H2O and
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(NH4)6MO7O24·4H2O, and no oxidation product was found even after 24 h reaction (Figure 7c). Owing
to the flexibility of steric or electronic characterizations of Schiff bases through the adjustments of
corresponding aldehyde and amine contents, Schiff bases with different functions have been obtained.
Cindrić et al. [105] constructed molybdenum (VI) complexes coordinating with ONO or ONS ligands
and utilized in epoxidation of alkenes without organic solvents (Figure 7d). Furthermore, the synthesis
process was green as well, presenting first time liquid-assisted mechanosynthesis. Distorted octahedral
Mo(VI) coordination by ONO donor atoms from a dianionic tridentate Schiff-base ligand was observed
via crystal structure analysis of mononuclear complexes. In virtue of the trans effect of the oxido
oxygen atom, Mo-O(MeOH) was the longest bond distance within the Mo coordination sphere and
was considered to be the important factor to contribute maximum reactivity. Zare et al. [106] anchored
a molybdenum (VI)-oxodiperoxo complex which contained an oxazine ligand (MoO(O2)2(phox)) onto
chloro-functionalized SBA-15 by covalent attachment. The covalent bonding was generated between
the chloropropyl group from the internal surface of the pores and the nitrogen atom from oxazine ligand
(Figure 7e). [MoO(O2)2(phox)]/SBA-15 was applied in alkenes epoxidation as a heterogeneous catalyst,
which showed good catalytic activity in accordance with homogeneous catalyst [MoO(O2)2(phox)]
without the use of solvents. Moreover, the catalysts displayed good stability that its recyclability was
maintained the same even after nine cycles.
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Figure 7. (a) Epoxidation of alkenes in water with {Mo132} nanoball; (b) time course of oxygen
uptake by cyclooctene in the presence of {Mo132} (black line), (NH4)6Mo7O24·6H2O (blue line), and
NaMoO4·2H2O (red line) in water; (c) recycling of the catalytic system for aerobic epoxidation
of cyclooctene in water. Reproduced with permission from reference [104]. ACS Publications
(2013). (d) Two synthetic strategies of molybdenum (VI) complexes and ligands in epoxidation
catalysts. Reproduced with permission from reference [105]. The Royal Society of Chemistry (2017).
(e) Immobilization of the [MoO(O2)2(phox)] complex on Cl/SBA-15 mesoporous silica. Reproduced
with permission from reference [106]. Elsevier (2017).

4.3. Mechanism

In the 1970s, two general mechanisms of Mo-based catalyzed epoxidation of olefins were proposed
by Mimoun (Figure 8a) and Sharpless’s groups (Figure 8b). Mimoun [107] put forward a multi-step
mechanism, where alkene was inserted into the metal-peroxo bond and then it was coordinated with the
metal center. A five-membered metallacycle was assumed to act as an intermediate. Sharpless [17,18]
proposed a mechanism which did not include a direct interaction between the metal and the olefin.
This suggestion considered that direct interaction between the alkene and one of the peroxide
oxygen atoms occurred and a spiro-like transition state was formed. Most of the mechanism studies
have been based on these two theories. Thiel et al. [108] presented a DFT study which involved
TBHP as an oxidant for molybdenum precursors and gained results highly in accord with Sharpless’
proposal. Nevertheless, the practical epoxidation reactions seemed to be more complex than originally
considered [109]. Lewis acidity of metal centers has been considered in the mechanism. A general
mechanism which is widely recognized is depicted in Figure 8c [93]. The first stage included the
transfer of the oxidant (TBHP, in this case), and the hydroxy proton was coordinated with a terminal
oxygen atom from molybdenum sites. This result led to the interaction between the tert-butylperoxide
anion and the Lewis acidic metal sites. Afterwards, the metal oxygen bond from the coordinated
peroxide electrophile anion was inserted by the alkenes which acted as nucleophile. The above
mechanism is widely accepted and can easily illustrate the reason for more efficient catalytic activity
of the electron-rich alkenes (cyclic alkenes with higher electron density and nucleophilicity) compared
with the electron-poor ones (terminal alkenes) [88]. Then the epoxides were produced, and at the same
time the tert-butylperoxide anion transferred to the tert-butoxide anion. Finally, the peroxides were
released and the epoxidation progress was driven by a reborn tert-butylperoxide to take the place of
tertbutoxide anion. Kinetic study of the epoxidation reaction is also discussed, and some researchers
have certified the reaction rates of epoxidation to be a first-order reaction depending on the reactants
concentrations [110].
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Figure 8. (a) Mechanism for epoxidation of alkenes proposed by Mimoun et al. Reproduced with
permission from reference [107]. Pergamon (1970); (b) Epoxidation mechanisms involving coordinated
alkyl hydroperoxide. Reproduced with permission from reference [17]. ACS Publications (1977);
(c) Proposed mechanism for alkenes epoxidation with TBHP using molybdenum-based catalysts.
Reproduced with permission from reference [93]. Springer (2018).

5. Summary

In this review we have discussed the development in molybdenum-based catalyzed epoxidation
of alkenes. In conclusion, tremendous progress has been achieved, and most epoxidation reactions
of alkene substrates have acquired excellent stereoselectivity and yield. A diversity of strategies has
been used for preparing efficient catalysts. According to sustainable and environmentally friendly
principles, photo-catalyzed epoxidation and solvent-free epoxidation have attracted scientists, and
some progress has been achieved in these fields. However, there are still large challenges in obtaining
high selectivity and yield for photo-catalyzed and solvent-free epoxidation reactions. On the other
side, to improve the selectivity and yields for terminal and long-chain alkenes still needs to be solved.
In order to fulfill the ultimate aim by which they can be used in industrial production, much work,
such as enhancing the turn-over frequencies, still needs to be done in the future.
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