Development of a Mesoporous Silica-Supported Layered Double Hydroxide Catalyst for the Reduction of Oxygenated Compounds in E. grandis Fast Pyrolysis Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Preparation
2.3. Catalyst Characterisation
2.3.1. Scanning Electron Microscopy
2.3.2. Basicity Measurement
2.3.3. Nitrogen Physisorption
2.3.4. X-ray Diffraction (XRD)
2.4. Fast Pyrolysis
2.4.1. Reactor Preparation
2.4.2. Reactor Operation
2.5. Analysis of Pyrolysis Oils
2.5.1. Fourier-Transform Infrared Spectroscopy (FTIR)
2.5.2. Gas Chromatography-Mass Spectrometry (GC/MS)
2.5.3. Bomb Calorimetry
3. Results and Discussion
3.1. Catalyst Characterisation
3.1.1. Scanning Electron Microscopy
3.1.2. Basicity Measurement
3.1.3. Nitrogen Physisorption
3.1.4. X-ray Diffraction (XRD)
3.2. Catalytic Activity
3.2.1. Pyrolysis Products Distribution
3.2.2. FTIR Spectra
3.2.3. Gas Chromatography/Mass Spectrometry
3.2.4. Thermal Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BET | Branauer–Emmett–Teller |
E. | Eucalyptus grandis |
ESP | Electrostatic precipitator |
FTIR | Fourier-transform infrared spectroscopy |
GC/MS | Gass chromatography/mass spectrometry |
HHV | Higher heating value |
LDH | Layered double hydroxide |
SEM | Scanning electron microscopy |
References
- Stas, M.; Auersvald, M.; Kejla, L.; Vrtiska, D.; Kroufek, J.; Kubicka, D. Quantitative analysis of pyrolysis bio-oils: A review. Trends Anal. Chem. 2020, 126, 115857. [Google Scholar] [CrossRef]
- Sun, T.L.; Lei, T.Z.; Li, Z.F.; Wang, Z.W.; Yang, S.H.; He, X.F.; Yue, Z.H.; Gao, Y.; Wu, Y.F.; Shi, X.G. Optimization of the Pyrolysis Carbonization of Various Corn Stalk Parts in a Rotating Bed Reactor Based on Energy Yield. J. Biobased Mater. Bioenergy 2018, 12, 378–386. [Google Scholar] [CrossRef]
- Imran, A.; Bramer, E.A.; Seshan, K.; Brem, G. An overview of catalysts in biomass pyrolysis for production of biofuels. Biofuel Res. J. 2018, 20, 872–885. [Google Scholar] [CrossRef] [Green Version]
- Ratnasari, D.; Yang, W.; Jönsson, P. Catalytic Pyrolysis of Lignocellulosic Biomass: The Influence of the Catalyst Regeneration Sequence on the Composition of Upgraded Pyrolysis Oils over a H-ZSM-5/Al-MCM-41 Catalyst Mixture. ACS Omega 2020, 5, 28992–29001. [Google Scholar] [CrossRef] [PubMed]
- Behrens, M.; Cross, J.S.; Akasaka, H.; Ohtake, N. A study of guaiacol, cellulose and Hinoki wood pyrolysis with silica, ZrO2 & TiO2 and ZSM-5 catalysts. J. Anal. Appl. Pyrolysis 2017, 125, 178–184. [Google Scholar] [CrossRef]
- Chen, W.; Che, Q.; Li, S.; Liu, Z.; Yang, H.; Chen, Y.; Wang, X.; Shao, J.; Chen, H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Process. Technol. 2019, 196, 106180. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.; Zhang, Z.; Wang, Z.; Yang, S.; Yang, Y.; Wang, X.; Liu, S.; Zhang, Q.; Lei, T. Fast corn stalk pyrolysis and the influence of catalysts on product distribution. Bioresour. Technol. 2020, 301, 122739. [Google Scholar] [CrossRef]
- Katikaneni, S.P.R.; Adjaye, J.D.; Bakhshi, N.N. Performance of aluminophosphate molecular sieve catalysts for the production of hydrocarbons from wood-derived and vegetable oils. Energy Fuels 1995, 9, 1065–1078. [Google Scholar] [CrossRef]
- Arun, J.; Gopinath, K.P.; SundarRajan, P.; Malolan, R.; AjaySrinivaasan, P. Hydrothermal liquefaction and pyrolysis of Amphiroa fragilissima biomass: Comparative study on oxygen content and storage stability parameters of bio-oil. Bioresour. Technol. Rep. 2020, 11, 100465. [Google Scholar] [CrossRef]
- Tharifkhan, S.; Susaimanickam, A.; Mathimani, T.; Kathirvel, B.; Pugazhendhi, A. Upgrading of bio-oil from thermochemical conversion of various biomass—Mechanism, challenges and opportunities. Fuel 2020, 287, 119329. [Google Scholar] [CrossRef]
- Czernik, S.; Bridgwater, T. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy 2004, 18, 590. [Google Scholar] [CrossRef]
- Yildiz, G.; Ronsse, F.; Van Duren, R.; Prins, W. Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass. Renew. Sustain. Energy Rev. 2016, 57, 1596–1610. [Google Scholar] [CrossRef]
- Deutschmann, O.; Knözinger, H.; Kochloefl, K.; Turek, T. Ullmann’s Encyclopedia of Industrial Chemistry Heterogeneous Catalysis and Solid Catalysts, 2. Development and Types of Solid Catalysts. Ullmann’s Encycl. Ind. Chem. 2011, 17, 52. [Google Scholar] [CrossRef]
- Carlson, T.; Tompsett, G.; Conner, W.; Huber, G. Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks. Top. Catal. 2009, 52, 241. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Zhang, H.; Wu, S.; Xiao, R. Molecular shape selectivity of HZSM-5 in catalytic conversion of biomass pyrolysis vapors: The effective pore size. Energy Convers. Manag. 2020, 210, 112678. [Google Scholar] [CrossRef]
- Bhoi, P.; Ouedraogo, A.; Soloiu, V.; Quirino, R. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Renew. Sustain. Energy Rev. 2020, 121, 109676. [Google Scholar] [CrossRef]
- Lappas, A.; Samolada, M.; Iatridis, D.; Voutetakis, S.; Vasalos, I. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel 2002, 81, 2087–2095. [Google Scholar] [CrossRef]
- Iliopoulou, E.; Antonakou, E.; Karakoulia, S.; Vasalos, I.; Lappas, A.; Triantafyllidis, K. Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts. Chem. Eng. J. 2007, 134, 51–57. [Google Scholar] [CrossRef]
- Fahmi, R.; Bridgwater, T.; Darvell, L.; Jones, J.; Yates, N.; Thain, S.; Donnison, I. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses. Fuel 2007, 86, 1560–1569. [Google Scholar] [CrossRef]
- Song, Y.; Beaumont, S.; Zhang, X.; Wilson, K.; Lee, A. Catalytic applications of layered double hydroxides in biomass valorisation. Curr. Opin. Green Sustain. Chem. 2019, 22. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Wang, X.; Feng, X.; Ye, X.; Fu, J. Small-Sized Mg–Al LDH Nanosheets Supported on Silica Aerogel with Large Pore Channels: Textural Properties and Basic Catalytic Performance after Activation. Nanomaterials 2018, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Hora, L.; Kelbichova, V.; Kikhtyanin, O.; Bortnovskiy, O.; Kubička, D. Aldol condensation of furfural and acetone over Mgsingle bondAl layered double hydroxides and mixed oxides. Catal. Today 2014, 223, 138–147. [Google Scholar] [CrossRef]
- Navarro, R.M.; Guil-Lopez, R.; Fierro, J.L.G.; Mota, N.; Jiménez, S.; Pizarro, P.; Coronado, J.M.; Serrano, D.P. Catalytic fast pyrolysis of biomass over Mg-Al mixed oxides derived from hydrotalcite-like precursors: Influence of Mg/Al ratio. J. Anal. Appl. Pyrolysis 2018, 134, 362–370. [Google Scholar] [CrossRef]
- Bing, W.; Zheng, L.; He, S.; Rao, D.; Xu, M.; Zheng, L.; Wang, B.; Wang, Y.; Wei, M. Insights on Active Sites of CaAl-Hydrotalcite as a High-Performance Solid Base Catalyst toward Aldol Condensation. Catalysis 2018, 8, 656–664. [Google Scholar] [CrossRef]
- de Jong, K.P. Synthesis of Solid Catalysts; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Fotoohi, B.; Kazemzad, M.; Mercier, L. Additive-free synthesis of robust monolithic mesoporous silica support used in catalysis. Ceram. Int. 2018, 44, 20199–20210. [Google Scholar] [CrossRef]
- Merckel, R.; Heydenrych, M.; Sithole, B. Pyrolysis oil composition and catalytic activity estimated by cumulative mass analysis using Py-GC/MS EGA-MS. Energy 2020, 219, 119428. [Google Scholar] [CrossRef]
- Barnabas, M.; Parambadath, S.; Ha, C. Amino modified core-shell mesoporous silica based layered double hydroxide (MS-LDH) for drug delivery. J. Ind. Eng. Chem. 2017, 53, 392–403. [Google Scholar] [CrossRef]
- She, Q.M.; Huang, W.J.; Talebian-Kiakalaieh, A.; Yang, H.; Zhou, C.H. Layered double hydroxide uniformly coated on mesoporous silica with tunable morphorlogies for catalytic transesterification of glycerol with dimethyl carbonate. Appl. Clay Sci. 2021, 55. [Google Scholar] [CrossRef]
- Schubert, U.S.; Hüsing, N. Synthesis of Inorganic Materials, 4th ed.; Wiley: New York, NY, USA, 2019. [Google Scholar]
- Ko, E.I. Sol-Gel Process. In Preparation of Solid Catalysts; Ertl, G., Knözinger, H., Weitkamp, J., Eds.; Wiley-VCH: New York, NY, USA, 1999; p. 85. [Google Scholar]
- Jose, F.; Nuria, G.; Alba, M.; Pires, E.; Roldan, L. The basicity of mixed oxides and the influence of alkaline metals: The case of transesterification reactions. Appl. Catal. A Gen. 2010, 387, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Fan, G.; Yang, Y. Multi-level three-dimensional Mg–Al layered double hydroxide hierarchical microstructures with enhanced basic catalytic property. J. Colloid Interface Sci. 2014, 432, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Dhepe, P. Upgrading lignin derived monomers over basic supported metal catalysts. Fuel 2021, 306, 121588. [Google Scholar] [CrossRef]
- Ahmed, M.; Batalha, N.; Al-Othman, Z.; Yamauchi, Y.; Kaneti, Y.; Konarova, M. Transforming Red Mud into an Efficient Acid-Base Catalyst by Hybridization with Mesoporous ZSM-5 for Co-pyrolysis of Biomass and Plastics. Chem. Eng. J. 2021, 430, 132965. [Google Scholar] [CrossRef]
- Arrabito, G.; Domenico, B.; Aurelio, P.; Giuseppe, O.; Andrea, M.; Alessio, M.; Eugenio, P.; Bruno, M.; Pier, G. Layered Double Hydroxides: A Toolbox for Chemistry and Biology. Crystals 2019, 9, 361. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhang, J.; Shanks, B.; Brown, R. Catalytic conversion of carbohydrate-derived oxygenates over HZSM-5 in a tandem micro-reactor system. Green Chem. 2014, 17, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Ben, H.; Wu, F.; Wu, Z.; Han, G.; Jiang, W.; Ragauskas, A. A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks. Polymers 2019, 11, 1387. [Google Scholar] [CrossRef] [Green Version]
- Anoop, E.; Ajayghosh, V.; Nijil, J.; Cm, J. Evaluation of pulp wood quality of selected tropical pines raised in the high ranges of Idukki District, Kerala. J. Trop. Agric. 2014, 52, 59–66. [Google Scholar]
- Chen, X.; Zhang, K.; Xiao, L.; Sun, R.; Song, G. Total utilization of lignin and carbohydrates in Eucalyptus grandis: An integrated biorefinery strategy towards phenolics, levulinic acid, and furfural. Biotechnol. Biofuels 2020, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maree, D.C.; Heydenrych, M. Development of a Mesoporous Silica-Supported Layered Double Hydroxide Catalyst for the Reduction of Oxygenated Compounds in E. grandis Fast Pyrolysis Oils. Catalysts 2021, 11, 1527. https://doi.org/10.3390/catal11121527
Maree DC, Heydenrych M. Development of a Mesoporous Silica-Supported Layered Double Hydroxide Catalyst for the Reduction of Oxygenated Compounds in E. grandis Fast Pyrolysis Oils. Catalysts. 2021; 11(12):1527. https://doi.org/10.3390/catal11121527
Chicago/Turabian StyleMaree, Danya Carla, and Mike Heydenrych. 2021. "Development of a Mesoporous Silica-Supported Layered Double Hydroxide Catalyst for the Reduction of Oxygenated Compounds in E. grandis Fast Pyrolysis Oils" Catalysts 11, no. 12: 1527. https://doi.org/10.3390/catal11121527
APA StyleMaree, D. C., & Heydenrych, M. (2021). Development of a Mesoporous Silica-Supported Layered Double Hydroxide Catalyst for the Reduction of Oxygenated Compounds in E. grandis Fast Pyrolysis Oils. Catalysts, 11(12), 1527. https://doi.org/10.3390/catal11121527