Helical Polycarbenes Bearing D-Prolinol Ester Pendants: An Efficient Catalyst for Asymmetric Michael Addition Reaction
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Synthesis of Monomer 1
3.2. Typical Polymerization Procedure for Poly-1ms
3.3. Typical Procedure for Poly-1m-As
3.4. General Procedure for Michael Addition Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MacMillan, D.W.C. The advent and development of organocatalysis. Nature 2008, 455, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Bartók, M. Unexpected Inversions in Asymmetric Reactions: Reactions with Chiral Metal Complexes, Chiral Organocatalysts, and Heterogeneous Chiral Catalysts. Chem. Rev. 2010, 110, 1663–1705. [Google Scholar] [CrossRef]
- Yujiro, H.; Masashi, T.; Naoki, M. Three-Pot Synthesis of Chiral Anti-1,3-diols through Asymmetric Organocatalytic Aldol and Wittig Reactions Followed by Epoxidation and Reductive Opening of the Epoxide. Org. Lett. 2021, 23, 5896–5900. [Google Scholar]
- Pan, Q.-B.; Zou, B.-L.; Wang, Y.-J.; Ma, D.-W. Diastereoselective Aldol Reaction of N,N-Dibenzyl-γ-amino Aldehydes with Ketones Catalyzed by Proline. Org. Lett. 2004, 6, 1009–1012. [Google Scholar] [CrossRef] [PubMed]
- Jasmine, S.; Shafer, S.; Christopher, N.B. Enamine Organocatalysts for the Thiol-Michael Addition Reaction and Cross-Linking Polymerizations. Macromolecules 2021, 54, 1693–1701. [Google Scholar]
- Dalko, P.I.; Moisan, L. The Golden Age of Organocatalysis. Angew. Chem. Int. Ed. 2004, 43, 5138–5175. [Google Scholar] [CrossRef] [PubMed]
- Zayas, H.A.; Lu, A.; Valade, D.; Amir, F.; Jia, Z.-F.; O’Reilly, R.K.; Monteiro, M.J. Thermoresponsive Polymer-Supported L-Proline Micelle Catalysts for the Direct Asymmetric Aldol Reaction in Water. ACS Macro Lett. 2013, 2, 327–331. [Google Scholar] [CrossRef]
- Ikai, T.; Ando, M.; Ito, M.; Ishidate, R.; Suzuki, N.; Maeda, K.; Yashima, E. Emergence of Highly Enantioselective Catalytic Activity in a Helical Polymer Mediated by Deracemization of Racemic Pendants. J. Am. Chem. Soc. 2021, 143, 12725–12735. [Google Scholar] [CrossRef]
- Miyabe, T.; Hase, Y.; Iida, H.; Maeda, K.; Yashima, E. Synthesis of functional poly(phenyl isocyanide)s with macromolecular helicity memory and their use as asymmetric organocatalysts. Chirality 2008, 21, 44–50. [Google Scholar] [CrossRef]
- Lee, W.-S.; Li, L.; Kim, B.M. SuFEx-Click Approach for the Synthesis of Soluble Polymer-Bound MacMillan Catalysts for the Asymmetric Diels-Alder Reaction. Catalysts 2021, 11, 1044. [Google Scholar] [CrossRef]
- Wang, X.; Han, X.; Ren, F.; Xu, R.; Bai, Y. Porous Organic Polymers-Supported Metallocene Catalysts for Ethylene/1-Hexene Copolymerization. Catalysts 2018, 8, 146. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-Y.; Ren, C.-L.; Yang, W.-T.; Deng, J.-P. Helical Polymer as Mimetic Enzyme Catalyzing Asymmetric Aldol Reaction. Macromol. Rapid Commun. 2012, 33, 652–657. [Google Scholar] [CrossRef]
- Wang, H.; Li, N.; Yan, Z.-J.; Zhang, J.; Wan, X.-H. Synthesis and Properties of Novel Helical 3-Vinylpyridine Polymers Containing Proline Moieties for Asymmetric Aldol Reaction. RSC Adv. 2015, 5, 52410–52419. [Google Scholar] [CrossRef]
- Watson, J.D.; Crick, F.H.C. Genetical Implications of the Structure of Deoxyribonucleic Acid. Nature 1953, 171, 964–967. [Google Scholar] [CrossRef] [PubMed]
- Pauling, L.; Corey, R.B.; Branson, H.R. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields. Proc. Natl. Acad. Sci. USA 1951, 378, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem. Rev. 2016, 116, 13752–13990. [Google Scholar] [CrossRef]
- Green, M.M.; Andreola, C.; Munoz, B.; Reidy, M.P.; Zero, K. Macromolecular stereochemistry: A cooperative deuterium isotope effect leading to a large optical rotation. J. Am. Chem. Soc. 1988, 110, 4063–4065. [Google Scholar] [CrossRef]
- Fujiki, M. Optically Active Polysilylenes: State-of-the-Art Chiroptical Polymers. Macromol. Rapid Commun. 2001, 22, 539–563. [Google Scholar] [CrossRef]
- Maeda, K.; Yashima, E. Dynamic Helical Structures: Detection and Amplification of Chirality. Top. Curr. Chem. 2006, 265, 47–88. [Google Scholar]
- Liu, N.; Ma, C.-H.; Sun, R.-W.; Huang, J.; Li, C.-L.; Wu, Z.-Q. Facile Synthesis and Chiral Recognition of Block and Star Copolymers Containing Stereoregular Helical Poly(phenyl isocyanide) and Polyethylene Glycol Blocks. Polym. Chem. 2017, 8, 2152–2163. [Google Scholar] [CrossRef]
- Huang, H.-J.; Yuan, Y.-B.; Deng, J.-P. Helix-Sense-Selective Precipitation Polymerization of Achiral Monomer for Preparing Optically Active Helical Polymer Particles. Macromolecules 2015, 48, 3406–3413. [Google Scholar] [CrossRef]
- Yang, L.; Tang, Y.; Liu, N.; Liu, C.-H.; Ding, Y.-S.; Wu, Z.-Q. Facile Synthesis of Hybrid Silica Nanoparticles Grafted with Helical Poly(phenyl isocyanide)s and Their Enantioselective Crystallization Ability. Macromolecules 2016, 49, 7692–7702. [Google Scholar] [CrossRef]
- Zhang, C.-H.; Wang, H.-L.; Geng, Q.-Q.; Yang, T.-T.; Liu, L.-J.; Sakai, R.; Satoh, T.; Kakuchi, T.; Okamoto, Y. Synthesis of Helical Poly(phenylacetylene)s with Amide Linkage Bearing L-Phenylalanine and L-Phenylglycine Ethyl Ester Pendants and Their Applications as Chiral Stationary Phases for HPLC. Macromolecules 2013, 46, 8406–8415. [Google Scholar] [CrossRef]
- Nagata, Y.; Nishikawa, T.; Suginome, M. Solvent Effect on the Sergeants-and-Soldiers Effect Leading to Bidirectional Induction of Single-Handed Helical Sense of Poly(quinoxaline-2,3-diyl)s Copolymers in Aromatic Solvents. ACS Macro Lett. 2016, 5, 519–522. [Google Scholar] [CrossRef]
- Tang, Z.-L.; Iida, H.; Hu, H.-Y.; Yashima, E. Remarkable Enhancement of the Enantioselectivity of an Organocatalyzed Asymmetric Henry Reaction Assisted by Helical Poly- (phenylacetylene)s Bearing Cinchona Alkaloid Pendants via an Amide Linkage. ACS Macro Lett. 2012, 1, 261–265. [Google Scholar] [CrossRef]
- Cheerla, R.; Krishnan, M. Molecular Origins of Polymer Coupled Helical Motion of Ions in a Crystalline Polymer Electrolyte. Macromolecules 2016, 49, 700–707. [Google Scholar] [CrossRef]
- Akagi, K. Helical Polyacetylene: Asymmetric Polymerization in a Chiral Liquid-Crystal Field. Chem. Rev. 2009, 109, 5354–5401. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chu, B.-F.; Xu, X.-Y.; Xu, L.; Liu, N.; Wu, Z.-Q. Significant Improvement on Enantioselectivity and Diastereoselectivity of Organocatalyzed Asymmetric Aldol Reaction Using Helical Polyisocyanides Bearing Proline Pendants. ACS Macro Lett. 2017, 6, 824–829. [Google Scholar] [CrossRef]
- Shen, L.; Xu, L.; Hou, X.-H.; Liu, N.; Wu, Z.-Q. Polymerization Amplified Stereoselectivity (PASS) of Asymmetric Michael Addition Reaction and Aldol Reaction Catalyzed by Helical Poly(phenyl isocyanide) Bearing Secondary Amine Pendants. Macromolecules 2018, 51, 9547–9554. [Google Scholar] [CrossRef]
- Yamamoto, T.; Suginome, M. Helical Poly(quinoxaline-2,3-diyl)s Bearing Metal-Binding Sites as Polymer-Based Chiral Ligands for Asymmetric Catalysis. Angew. Chem. Int. Ed. 2009, 48, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Tanaka, K.; Morino, K.; Yashima, E. Synthesis of Optically Active Helical Poly(phenylacetylene)s Bearing Oligopeptide Pendants and Their Use as Polymeric Organocatalysts for Asymmetric Epoxidation. Macromolecules 2007, 40, 6783–6785. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Yang, W.-T.; Deng, J.-P. Optically active helical polymers with pendent thiourea groups: Chiral organocatalyst for asymmetric michael addition reaction. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 1816–1823. [Google Scholar] [CrossRef]
- Wang, H.; Li, N.; Zhang, J.; Wan, X.-H. Synthesis and Properties of a Novel Pyridineoxazoline Containing Optically Active Helical Polymer as a Catalyst Ligand for Asymmetric Diels–Alder Reaction. Chirality 2015, 27, 523–531. [Google Scholar] [CrossRef]
- Ihara, E.; Fujioka, M.; Haida, N.; Itoh, T.; Inoue, K. First Synthesis of Poly(acylmethylene)s via Palladium-Mediated Polymerization of Diazoketones. Macromolecules 2005, 38, 2101–2108. [Google Scholar] [CrossRef]
- Ihara, E.; Nakada, A.; Itoh, T.; Inoue, K. Transition Metal-Mediated Copolymerization of Diazocarbonyl Compounds with Alkyne and Isocyanide. Macromolecules 2006, 39, 6440–6444. [Google Scholar] [CrossRef]
- Hetterscheid, D.G.H.; Hendriksen, C.; Dzik, W.I.; Smits, J.M.M.; van Eck, E.R.H.; Rowan, A.E.; Busico, V.; Vacatello, M.; VanAxel Castelli, V.; Segre, A.; et al. Rhodium-Mediated Stereoselective Polymerization of “Carbenes”. J. Am. Chem. Soc. 2006, 128, 9746–9752. [Google Scholar] [CrossRef] [Green Version]
- Shimomoto, H.; Kudo, T.; Tsunematsu, S.; Itoh, T.; Ihara, E. Fluorinated Poly(substituted methylene)s Prepared by Pd-Initiated Polymerization of Fluorine-Containing Alkyl and Phenyl Diazoacetates: Their Unique Solubility and Postpolymerization Modification. Macromolecules 2018, 51, 328–335. [Google Scholar] [CrossRef]
- Chu, J.-H.; Xu, X.-H.; Kang, S.-M.; Liu, N.; Wu, Z.-Q. Fast Living Polymerization and Helix-Sense-Selective Polymerization of Diazoacetates Using Air-Stable Palladium(II) Catalysts. J. Am. Chem. Soc. 2018, 140, 17773–17781. [Google Scholar] [CrossRef] [PubMed]
- Li, N.-N.; Li, X.-L.; Xu, L.; Liu, N.; Wu, Z.-Q. Highly Enantioselective and Helix-Sense-Controlled Synthesis of Stereoregular Helical Polycarbenes Using Chiral Palladium(II) Catalysts. Macromolecules 2019, 52, 7260–7266. [Google Scholar] [CrossRef]
- Shimomoto, H.; Hohsaki, R.; Hiramatsu, D.; Itoh, T.; Ihara, E. Pd-Initiated Polymerization of Dendron-Containing Diazoacetates to Afford Dendronized Poly(substituted methylene)s with Narrow Molecular Weight Distribution and Its Application to Synthesis of pH-Responsive Dendronized Polymers. Macromolecules 2020, 53, 6369–6379. [Google Scholar] [CrossRef]
- Guo, H.; Xing, F.; Du, G.-F.; Huang, K.-W.; Dai, B.; He, L. NHeterocyclic Carbene-Catalyzed Diastereoselective Vinylogous Michael Addition Reaction of γ-Substituted Deconjugated Butenolides. J. Org. Chem. 2015, 80, 12606–12613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, K.D.; Kutzscher, C.; Drache, F.; Senkovska, I.; Kaskel, S. Chiral Functionalization of a Zirconium Metal Organic Framework (DUT-67) as a Heterogeneous Catalyst in Asymmetric Michael Addition Reaction. Inorg. Chem. 2018, 57, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
Run | Polymer b | Mnc [kDa] | Mw/Mnc | Yield d [%] | g218e (×10−4) |
---|---|---|---|---|---|
1 | poly-150 | 15.8 | 1.24 | 83 | 4.24 |
2 | poly-150-A | 5.7 | 1.34 | 86 | 3.64 |
3 | poly-175 | 16.4 | 1.27 | 80 | 5.46 |
4 | poly-175-A | 6.8 | 1.33 | 88 | 4.24 |
5 | poly-1100 | 17.2 | 1.20 | 84 | 6.06 |
6 | poly-1100-A | 7.8 | 1.31 | 89 | 4.85 |
7 | poly-1125 | 18.0 | 1.23 | 82 | 7.58 |
8 | poly-1125-A | 8.7 | 1.33 | 85 | 5.15 |
9 | poly-1150 | 19.1 | 1.26 | 84 | 7.88 |
10 | poly-1150-A | 9.8 | 1.31 | 86 | 5.15 |
| |||||||
---|---|---|---|---|---|---|---|
Run | Catalyst | Solvent | X (%) | Temp (°C) | Syn/Anti b | ee (%) b | Yield (%) c |
1 d | D-prolinol | CH2Cl2 | 20 | r.t. | 68/32 | 18 | 71 |
2 | poly-175-A | CH2Cl2 | 20 | r.t. | 71/29 | 54 | 67 |
3 | poly-1100-A | CH2Cl2 | 20 | r.t. | 72/28 | 65 | 70 |
4 | poly-1125-A | CH2Cl2 | 20 | r.t. | 87/13 | 71 | 79 |
5 | poly-1150-A | CH2Cl2 | 20 | r.t. | 87/13 | 72 | 80 |
6 | poly-1150-A | THF | 20 | r.t. | 73/27 | 60 | 76 |
7 | poly-1150-A | CHCl3 | 20 | r.t. | 77/23 | 68 | 78 |
8 | poly-1150-A | MeOH | 20 | r.t. | 72/28 | 60 | 74 |
9 | poly-1150-A | Toluene | 20 | r.t. | -- | -- | n.d. e |
10 | poly-1150-A | CH2Cl2 | 30 | r.t. | 86/14 | 73 | 85 |
11 | poly-1150-A | CH2Cl2 | 10 | r.t. | 84/16 | 65 | 68 |
12 f | poly-1150-A | CH2Cl2 | 20 | 0 | 94/6 | 76 | 77 |
13 | poly-1150-A | CH2Cl2 | 20 | −10 | 93/7 | 78 | 45 |
14 | D-prolinol-derived PAA | CH2Cl2 | 20 | 0 | 72/28 | 57 | 71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Zhou, X.; Zhou, L.; Wu, Z. Helical Polycarbenes Bearing D-Prolinol Ester Pendants: An Efficient Catalyst for Asymmetric Michael Addition Reaction. Catalysts 2021, 11, 1369. https://doi.org/10.3390/catal11111369
Liu N, Zhou X, Zhou L, Wu Z. Helical Polycarbenes Bearing D-Prolinol Ester Pendants: An Efficient Catalyst for Asymmetric Michael Addition Reaction. Catalysts. 2021; 11(11):1369. https://doi.org/10.3390/catal11111369
Chicago/Turabian StyleLiu, Na, Xinyue Zhou, Li Zhou, and Zongquan Wu. 2021. "Helical Polycarbenes Bearing D-Prolinol Ester Pendants: An Efficient Catalyst for Asymmetric Michael Addition Reaction" Catalysts 11, no. 11: 1369. https://doi.org/10.3390/catal11111369
APA StyleLiu, N., Zhou, X., Zhou, L., & Wu, Z. (2021). Helical Polycarbenes Bearing D-Prolinol Ester Pendants: An Efficient Catalyst for Asymmetric Michael Addition Reaction. Catalysts, 11(11), 1369. https://doi.org/10.3390/catal11111369