Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review
Abstract
1. Introduction
2. Catalysts in Catalytic Fast Pyrolysis
2.1. Traditional Zeolite Catalysts
2.2. Metal Modified Zeolite Catalysts
2.3. Other Metal Catalysts
2.4. Deactivation and Regeneration of Zeolite Catalyst
3. Catalytic Co-Pyrolysis
3.1. Co-Reactants in CCP
3.2. Mechanism of Catalyst in CCP
4. Microwave-Assisted Pyrolysis Technology
5. Conclusions
Funding
Conflicts of Interest
References
- Apak, S.; Atay, E.; Tuncer, G. Renewable hydrogen energy and energy efficiency in Turkey in the 21st century. Int. J. Hydrogen Energy 2017, 42, 2446–2452. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Reddy, M.; Subramanyam, M.D.; Kishore, N. A review on the upgradation techniques of pyrolysis oil. Renew. Sustain. Energy Rev. 2016, 58, 1543–1568. [Google Scholar] [CrossRef]
- Uzoejinwa, B.B.; He, X.; Wang, S.; Abomohra, A.E.-F.; Hu, Y.; Wang, Q. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Convers. Manag. 2018, 163, 468–492. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, H.; Liu, C.; Xiao, R. Comparison of Acids and Sulfates for Producing Levoglucosan and Levoglucosenone by Selective Catalytic Fast Pyrolysis of Cellulose Using Py-GC/MS. Energy Fuels 2016, 30, 8369–8376. [Google Scholar] [CrossRef]
- Lu, Q.; Ye, X.-N.; Zhang, Z.-B.; Cui, M.-S.; Guo, H.-Q.; Qi, W.; Dong, C.-Q.; Yang, Y.-P. Catalytic Fast Pyrolysis of Bagasse Using Activated Carbon Catalyst to Selectively Produce 4-Ethyl Phenol. Energy Fuels 2016, 30, 10618–10626. [Google Scholar] [CrossRef]
- Yang, S.I.; Wu, M.S.; Wu, C.Y. Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products. Energy 2014, 66, 162–171. [Google Scholar] [CrossRef]
- Al Arni, S. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 2018, 124, 197–201. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Fan, L.; Dai, L.; Duan, D.; Liu, Y.; Ruan, R.; Zhao, Y.; Yu, Z.; Hu, Y. Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production. J. Anal. Appl. Pyrolysis 2017, 124, 35–41. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, C.; Ma, W.; Yan, B.; Zhang, J. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review. Renew. Sustain. Energy Rev. 2017, 71, 296–308. [Google Scholar] [CrossRef]
- Dabros, T.M.H.; Stummann, M.Z.; Hoj, M.; Jensen, P.A.; Grunwaldt, J.-D.; Gabrielsen, J.; Mortensen, P.M.; Jensen, A.D. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Prog. Energy Combust. Sci. 2018, 68, 268–309. [Google Scholar] [CrossRef]
- Chandler, D.S.; Resende, F.L.P. Comparison between Catalytic Fast Pyrolysis and Catalytic Fast Hydropyrolysis for the Production of Liquid Fuels in a Fluidized Bed Reactor. Energy Fuels 2019, 33, 3199–3209. [Google Scholar] [CrossRef]
- Rahman, M.M.; Liu, R.; Cai, J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil—A review. Fuel Process. Technol. 2018, 180, 32–46. [Google Scholar] [CrossRef]
- Galadima, A.; Muraza, O. In Situ Fast Pyrolysis of Biomass with Zeolite Catalysts for Bioaromatics/Gasoline Production: A Review. Energy Convers. Manag. 2015, 105, 338–354. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Dai, L.; Yu, Z.; Liu, Y.; Ruan, R.; Fu, G.; Zhou, Y.; Fan, L.; Duan, D.; et al. Microwave-assisted catalytic co-pyrolysis of soybean straw and soapstock for bio-oil production using SiC ceramic foam catalyst. J. Anal. Appl. Pyrolysis 2018, 133, 76–81. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Li, B.; Xie, G. Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production: A Review of the Operation Parameters. J. Energy Resour. Technol. Trans. ASME 2018, 140. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, H.; Chen, S.; Wu, J. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review. Green Chem. 2016, 18, 4145–4169. [Google Scholar] [CrossRef]
- Du, Z.; Hu, B.; Ma, X.; Cheng, Y.; Liu, Y.; Lin, X.; Wan, Y.; Lei, H.; Chen, P.; Ruan, R. Catalytic pyrolysis of microalgae and their three major components: Carbohydrates, proteins, and lipids. Bioresour. Technol. 2013, 130, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Vichaphund, S.; Sricharoenchaikul, V.; Atong, D. Selective aromatic formation from catalytic fast pyrolysis of Jatropha residues using ZSM-5 prepared by microwave-assisted synthesis. J. Anal. Appl. Pyrolysis 2019, 141. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Y.; Liu, Y.; Ruan, R.; Duan, D.; Zhao, Y.; Yu, Z.; Jiang, L. Catalytic fast pyrolysis of torrefied corn cob to aromatic hydrocarbons over Ni-modified hierarchical ZSM-5 catalyst. Bioresour. Technol. 2019, 272, 407–414. [Google Scholar] [CrossRef]
- Lazaridis, P.A.; Fotopoulos, A.P.; Karakoulia, S.A.; Triantafyllidis, K.S. Catalytic Fast Pyrolysis of Kraft Lignin with Conventional, Mesoporous and Nanosized ZSM-5 Zeolite for the Production of Alkyl-Phenols and Aromatics. Front. Chem. 2018, 6. [Google Scholar] [CrossRef]
- Paysepar, H.; Rao, K.T.V.; Yuan, Z.; Shui, H.; Xu, C. Improving activity of ZSM-5 zeolite catalyst for the production of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis. Appl. Catal. A Gen. 2018, 563, 154–162. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Zhong, Z.; Zhang, Y.; Song, M.; Wang, X.; Ding, K.; Ruan, R. Conversion of poultry litter into bio-oil by microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst. J. Anal. Appl. Pyrolysis 2018, 130, 233–240. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.; Chen, L.; Zhao, B.; Yang, S.; Xie, X. Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts. J. Anal. Appl. Pyrolysis 2016, 121, 342–346. [Google Scholar] [CrossRef]
- Rahman, M.M.; Chai, M.; Sarker, M.; Nishu; Liu, R. Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: Analytical Py-GC/MS study. J. Energy Inst. 2020, 93, 425–435. [Google Scholar] [CrossRef]
- Wang, J.-X.; Cao, J.-P.; Zhao, X.-Y.; Liu, S.-N.; Huang, X.; Liu, T.-L.; Wei, X.-Y. Comprehensive research of in situ upgrading of sawdust fast pyrolysis vapors over HZSM-5 catalyst for producing renewable light aromatics. J. Energy Inst. 2020, 93, 15–24. [Google Scholar] [CrossRef]
- Xue, X.; Liu, Y.; Wu, L.; Pan, X.; Liang, J.; Sun, Y. Catalytic fast pyrolysis of maize straw with a core-shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons. Bioresour. Technol. 2019, 289. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Kumar, J.; Bhaskar, T. Catalytic pyrolysis of soda lignin over zeolites using pyrolysis gas chromatography-mass spectrometry. Bioresour. Technol. 2019, 291. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, Z.; Yao, Q.; Zhang, Y.; Fu, Y. Catalytic fast pyrolysis of corn cob in ammonia with Ga/HZSM-5 catalyst for selective production of acetonitrile. Bioresour. Technol. 2019, 290. [Google Scholar] [CrossRef]
- Xu, L.; Yao, O.; Zhang, Y.; Fu, Y. Integrated Production of Aromatic Amines and N-Doped Carbon from Lignin via ex Situ Catalytic Fast Pyrolysis in the Presence of Ammonia over Zeolites. ACS Sustain. Chem. Eng. 2017, 5, 2960–2969. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, M.; Shao, J.; Yang, H.; Zeng, K.; Chen, Y.; Luo, J.; Agblevor, F.A.; Chen, H. The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters. Sci. Total Environ. 2018, 628–629, 350–357. [Google Scholar] [CrossRef]
- Wise, H.G.; Dichiara, A.B.; Resende, F.L.P. Ex-situ catalytic fast pyrolysis of Beetle-killed lodgepole pine in a novel ablative reactor. Fuel 2019, 241, 933–940. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, H.; Chen, H.; Chen, K.; Lu, X.; Ouyang, P.; Fu, J. Enhancement in the aromatic yield from the catalytic fast pyrolysis of rice straw over hexadecyl trimethyl ammonium bromide modified hierarchical HZSM-5. Bioresour. Technol. 2018, 256, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, J.; Carre, V.; Jia, L.; Mackay, C.L.; Pinard, L.; Dufour, A.; Masek, O.; Aubriet, F. Catalytic Fast Pyrolysis of Biomass over Microporous and Hierarchical Zeolites: Characterization of Heavy Products. ACS Sustain. Chem. Eng. 2018, 6, 4717–4728. [Google Scholar] [CrossRef]
- Hernando, H.; Fermoso, J.; Ochoa-Hernandez, C.; Opanasenko, M.; Pizarro, P.; Coronado, J.M.; Cejka, J.; Serrano, D.P. Performance of MCM-22 zeolite for the catalytic fast-pyrolysis of acid-washed wheat straw. Catal. Today 2018, 304, 30–38. [Google Scholar] [CrossRef]
- Bi, Y.; Lei, X.; Xu, G.; Chen, H.; Hu, J. Catalytic Fast Pyrolysis of Kraft Lignin over Hierarchical HZSM-5 and H beta Zeolites. Catalysts 2018, 18, 82. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, M.-X.; Li, W.-T.; Wang, X.; Cui, M.-S.; Yang, Y.-P. Catalytic fast pyrolysis of biomass with noble metal-like catalysts to produce high-grade bio-oil: Analytical Py-GC/MS study. Catal. Today 2018, 302, 169–179. [Google Scholar] [CrossRef]
- Yang, M.; Shao, J.; Yang, Z.; Yang, H.; Wang, X.; Wu, Z.; Chen, H. Conversion of lignin into light olefins and aromatics over Fe/ZSM-5 catalytic fast pyrolysis: Significance of Fe contents and temperature. J. Anal. Appl. Pyrolysis 2019, 137, 259–265. [Google Scholar] [CrossRef]
- Hernando, H.; Moreno, I.; Fermoso, J.; Ochoa-Hernandez, C.; Pizarro, P.; Coronado, J.M.; Cejka, J.; Serrano, D.P. Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Convers. Biorefinery 2017, 7, 289–304. [Google Scholar] [CrossRef]
- Saracoglu, E.; Uzun, B.B.; Apaydin-Varol, E. Upgrading of fast pyrolysis bio-oil over Fe modified ZSM-5 catalyst to enhance the formation of phenolic compounds. Int. J. Hydrogen Energy 2017, 42, 21476–21486. [Google Scholar] [CrossRef]
- Che, Q.; Yang, M.; Wang, X.; Chen, X.; Chen, W.; Yang, Q.; Yang, H.; Chen, H. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust. Fuel Process. Technol. 2019, 188, 146–152. [Google Scholar] [CrossRef]
- Che, Q.; Yang, M.; Wang, X.; Yang, Q.; Williams, L.R.; Yang, H.; Zou, J.; Zeng, K.; Zhu, Y.; Chen, Y.; et al. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis. Bioresour. Technol. 2019, 278, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cheng, H.; Zhou, F.; Chen, K.; Qiao, K.; Lu, X.; Ouyang, P.; Fu, J. Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification. J. Anal. Appl. Pyrolysis 2018, 131, 76–84. [Google Scholar] [CrossRef]
- Liang, J.; Morgan, H.M., Jr.; Liu, Y.; Shi, A.; Lei, H.; Mao, H.; Bu, Q. Enhancement of bio-oil yield and selectivity and kinetic study of catalytic pyrolysis of rice straw over transition metal modified ZSM-5 catalyst. J. Anal. Appl. Pyrolysis 2017, 128, 324–334. [Google Scholar] [CrossRef]
- Gu, B.; Cao, J.-P.; Wei, F.; Zhao, X.-Y.; Ren, X.-Y.; Zhu, C.; Guo, Z.-X.; Bai, J.; Shen, W.-Z.; Wei, X.-Y. Nitrogen migration mechanism and formation of aromatics during catalytic fast pyrolysis of sewage sludge over metal-loaded HZSM-5. Fuel 2019, 244, 151–158. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A. Production of Aromatic Hydrocarbons via Catalytic Pyrolysis of Biomass over Fe-Modified HZSM-5 Zeolites. ACS Sustain. Chem. Eng. 2015, 3, 1623–1631. [Google Scholar] [CrossRef]
- Cai, Y.; Fan, Y.; Li, X.; Chen, L.; Wang, J. Preparation of refined bio-oil by catalytic transformation of vapors derived from vacuum pyrolysis of rape straw over modified HZSM-5. Energy 2016, 102, 95–105. [Google Scholar] [CrossRef]
- Lu, Q.; Guo, H.-Q.; Zhou, M.-X.; Cui, M.-S.; Dong, C.-Q.; Yang, Y.-P. Selective preparation of monocyclic aromatic hydrocarbons from catalytic cracking of biomass fast pyrolysis vapors over Mo2N/HZSM-5 catalyst. Fuel Process. Technol. 2018, 173, 134–142. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, Z.-x.; Guo, H.-q.; Li, K.; Zhang, Z.-X.; Cui, M.-S.; Yang, Y.-P. Selective preparation of monocyclic aromatic hydrocarbons from ex-situ catalytic fast pyrolysis of pine over Ti(SO4)2–Mo2N/HZSM-5 catalyst. Fuel 2019, 243, 88–96. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, Z.; Ding, K.; Deng, A.; Hao, N.; Meng, X.; Ben, H.; Ruan, R.; Ragauskas, A.J. Catalytic fast pyrolysis of bamboo sawdust via a two-step bench scale bubbling fluidized bed/fixed bed reactor: Study on synergistic effect of alkali metal oxides and HZSM-5. Energy Convers. Manag. 2018, 176, 287–298. [Google Scholar] [CrossRef]
- Qi, X.; Fan, W. Selective Production of Aromatics by Catalytic Fast Pyrolysis of Furan with In Situ Dehydrogenation of Propane. ACS Catalysis 2019, 9, 2626–2632. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Z.; Hu, B.; Deng, J.; Yao, Q.; Zhang, X.; Liu, X.; Fu, Y.; Lu, Q. Direct conversion of cellulose and raw biomass to acetonitrile by catalytic fast pyrolysis in ammonia. Green Chem. 2019, 21, 812–820. [Google Scholar] [CrossRef]
- Tan, Y.L.; Abdullah, A.Z.; Hameed, B.H. Product distribution of the thermal and catalytic fast pyrolysis of karanja (Pongamia pinnata) fruit hulls over a reusable silica-alumina catalyst. Fuel 2019, 245, 89–95. [Google Scholar] [CrossRef]
- Kar, T.; Keles, S. Characterisation of bio-oil and its sub-fractions from catalytic fast pyrolysis of biomass mixture. Waste Manag. Res. 2019, 37, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Vinu, R. Non-catalytic fast pyrolysis and catalytic fast pyrolysis of Nannochloropsis oculata using Co-Mo/gamma-Al2O3 catalyst for valuable chemicals. Algal Res. Biomass Biofuels Bioprod. 2018, 34, 12–24. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.; Li, T.; Xue, Z.; Ruan, R. Bio-oil production from sequential two-step microwave-assisted catalytic fast pyrolysis of water hyacinth using Ce-doped gamma-Al2O3/ZrO2 composite mesoporous catalyst. J. Anal. Appl. Pyrolysis 2018, 132, 143–150. [Google Scholar] [CrossRef]
- Navarro, R.M.; Guil-Lopez, R.; Fierro, J.L.G.; Mota, N.; Jimenez, S.; Pizarro, P.; Coronado, J.M.; Serrano, D.P. Catalytic fast pyrolysis of biomass over Mg-Al mixed oxides derived from hydrotalcite-like precursors: Influence of Mg/Al ratio. J. Anal. Appl. Pyrolysis 2018, 134, 362–370. [Google Scholar] [CrossRef]
- Wang, W.; Shi, Y.; Cui, Y.; Li, X. Catalytic fast pyrolysis of cellulose for increasing contents of furans and aromatics in biofuel production. J. Anal. Appl. Pyrolysis 2018, 131, 93–100. [Google Scholar] [CrossRef]
- Dong, C.-Q.; Zhang, Z.-F.; Lu, Q.; Yang, Y.-P. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Convers. Manag. 2012, 57, 49–59. [Google Scholar] [CrossRef]
- Wu, L.; Khalil, F.; Smith, G.M.; Yilmaz, B.; McGuire, R., Jr. Effect of solvent on the impregnation of contaminant nickel for laboratory deactivation of FCC catalysts. Microporous Mesoporous Mater. 2015, 207, 195–199. [Google Scholar] [CrossRef]
- Qiao, Q.; Wang, R.; Gou, M.; Yang, X. Catalytic performance of boron and aluminium incorporated ZSM-5 zeolites for isomerization of styrene oxide to phenylacetaldehyde. Microporous Mesoporous Mater. 2014, 195, 250–257. [Google Scholar] [CrossRef]
- Stanton, A.R.; Iisa, K.; Mukarakate, C.; Nimlos, M.R. Role of Biopolymers in the Deactivation of ZSM-5 during Catalytic Fast Pyrolysis of Biomass. ACS Sustain. Chem. Eng. 2018, 6, 10030–10038. [Google Scholar] [CrossRef]
- Zheng, J.-L.; Kong, Y.-P. Spray combustion properties of fast pyrolysis bio-oil produced from rice husk. Energy Convers. Manag. 2010, 51, 182–188. [Google Scholar] [CrossRef]
- Mihalcik, D.J.; Mullen, C.A.; Boateng, A.A. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J. Anal. Appl. Pyrolysis 2011, 92, 224–232. [Google Scholar] [CrossRef]
- Guisnet, M.; Costa, L.; Ribeiro, F.R. Prevention of zeolite deactivation by coking. J. Mol. Catal. A Chem. 2009, 305, 69–83. [Google Scholar] [CrossRef]
- Olsbye, U.; Svelle, S.; Bjorgen, M.; Beato, P.; Janssens, T.V.W.; Joensen, F.; Bordiga, S.; Lillerud, K.P. Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angew. Chem. Int. Ed. 2012, 51, 5810–5831. [Google Scholar] [CrossRef]
- Wang, Y.; Mourant, D.; Hu, X.; Zhang, S.; Lievens, C.; Li, C.-Z. Formation of coke during the pyrolysis of bio-oil. Fuel 2013, 108, 439–444. [Google Scholar] [CrossRef]
- Garcia-Perez, M.; Wang, S.; Shen, J.; Rhodes, M.; Lee, W.J.; Li, C.-Z. Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass. Energy Fuels 2008, 22, 2022–2032. [Google Scholar] [CrossRef]
- Ma, Z.; Ghosh, A.; Asthana, N.; van Bokhoven, J. Visualization of Structural Changes During Deactivation and Regeneration of FAU Zeolite for Catalytic Fast Pyrolysis of Lignin Using NMR and Electron Microscopy Techniques. ChemCatChem 2018, 10, 4431–4437. [Google Scholar] [CrossRef]
- Jong, S.-J.; Pradhan, A.R.; Wu, J.-F.; Tsai, T.-C.; Liu, S.-B. On the Regeneration of Coked H-ZSM-5 Catalysts. J. Catal. 1998, 174, 210–218. [Google Scholar] [CrossRef]
- Eschenbacher, A.; Jensen, P.A.; Henriksen, U.B.; Ahrenfeldt, J.; Ndoni, S.; Li, C.; Duus, J.O.; Mentzel, U.V.; Jensen, A.D. Catalytic deoxygenation of vapors obtained from ablative fast pyrolysis of wheat straw using mesoporous HZSM-5. Fuel Process. Technol. 2019, 194. [Google Scholar] [CrossRef]
- Griffin, M.B.; Iisa, K.; Wang, H.; Dutta, A.; Orton, K.A.; French, R.J.; Santosa, D.M.; Wilson, N.; Christensen, E.; Nash, C.; et al. Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration. Energy Environ. Sci. 2018, 11, 2904–2918. [Google Scholar] [CrossRef]
- Jae, J.; Coolman, R.; Mountziaris, T.J.; Huber, G.W. Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal. Chem. Eng. Sci. 2014, 108, 33–46. [Google Scholar] [CrossRef]
- Ye, X.-N.; Lu, Q.; Wang, X.; Guo, H.-Q.; Cui, M.-S.; Dong, C.-Q.; Yang, Y.-P. Catalytic Fast Pyrolysis of Cellulose and Biomass to Selectively Produce Levoglucosenone Using Activated Carbon Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10815–10825. [Google Scholar] [CrossRef]
- Carlson, T.R.; Cheng, Y.-T.; Jae, J.; Huber, G.W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ. Sci. 2011, 4, 145–161. [Google Scholar] [CrossRef]
- Yildiz, G.; Lathouwers, T.; Toraman, H.E.; van Geem, K.M.; Marin, G.B.; Ronsse, F.; van Duren, R.; Kersten, S.R.A.; Prins, W. Catalytic Fast Pyrolysis of Pine Wood: Effect of Successive Catalyst Regeneration. Energy Fuels 2014, 28, 4560–4572. [Google Scholar] [CrossRef]
- Yung, M.M.; Starace, A.K.; Griffin, M.B.; Wells, J.D.; Patalano, R.E.; Smith, K.R.; Schaidle, J.A. Restoring ZSM-5 performance for catalytic fast pyrolysis of biomass: Effect of regeneration temperature. Catal. Today 2019, 323, 76–85. [Google Scholar] [CrossRef]
- Paasikallio, V.; Lindfors, C.; Lehto, J.; Oasmaa, A.; Reinikainen, M. Short Vapour Residence Time Catalytic Pyrolysis of Spruce Sawdust in a Bubbling Fluidized-Bed Reactor with HZSM-5 Catalysts. Top. Catal. 2013, 56, 800–812. [Google Scholar] [CrossRef]
- Ma, Z.; van Bokhoven, J.A. Deactivation and Regeneration of H-USY Zeolite during Lignin Catalytic Fast Pyrolysis. ChemCatChem 2012, 4, 2036–2044. [Google Scholar] [CrossRef]
- Kalogiannis, K.G.; Stefanidis, S.D.; Lappas, A.A. Catalyst deactivation, ash accumulation and bio-oil deoxygenation during ex situ catalytic fast pyrolysis of biomass in a cascade thermal-catalytic reactor system. Fuel Process. Technol. 2019, 186, 99–109. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.; Chen, P.; Ruan, R. Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5. J. Anal. Appl. Pyrolysis 2017, 127, 246–257. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, X.; Zeng, Z.; Dai, L.; Zhang, S.; Jiang, L.; Wu, Q.; Yang, X.; Liu, Y.; Zhang, B.; et al. Catalytic co-pyrolysis of Alternanthera philoxeroides and peanut soapstock via a new continuous fast microwave pyrolysis system. Waste Manag. 2019, 88, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, Y.; Jiang, L.; Yang, Q.; Ke, L.; Peng, Y.; Yang, S.; Dai, L.; Liu, Y.; Ruan, R. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of soapstock and straw in a downdraft reactor. Bioresour. Technol. 2020, 299. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Xia, Z.; Wang, S.; Abomohra, A.E.-F.; Cai, N.; Hu, Y.; Yuan, C.; Qian, L.; Liu, L.; Liu, X.; et al. A study on catalytic co-pyrolysis of cellulose with seaweeds polysaccharides over ZSM-5: Towards high-quality biofuel production. J. Anal. Appl. Pyrolysis 2018, 134, 526–535. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Duan, D.; Ruan, R.; Liu, Y.; Dai, L.; Zhou, Y.; Zhao, Y.; Zhang, S.; Zeng, Z.; et al. Ex-Situ Catalytic Upgrading of Vapors from Fast Microwave-Assisted Co-Pyrolysis of Chromolaena odorata and Soybean Soapstock. Bioresour. Technol. 2018, 261, 306–312. [Google Scholar] [CrossRef]
- Yu, D.; Hui, H.; Li, S. Two-step catalytic co-pyrolysis of walnut shell and LDPE for aromatic-rich oil. Energy Convers. Manag. 2019, 198. [Google Scholar] [CrossRef]
- Chattopadhyay, J.; Pathak, T.S.; Srivastava, R.; Singh, A.C. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis. Energy 2016, 103, 513–521. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Wang, X.; Wang, R.; Wang, K.; Pang, S.; Zhong, Z.; Sun, Y.; Ruan, R.; Ragauskas, A.J. Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis. J. Hazard. Mater. 2020, 386. [Google Scholar] [CrossRef]
- Tang, F.; Yu, Z.; Li, Y.; Chen, L.; Ma, X. Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and Chlorella vulgaris. Bioresour. Technol. 2020, 299. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, L.; Fan, L.; Duan, D.; Liu, Y.; Ruan, R.; Yu, Z.; Liu, Y.; Jiang, L. Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production. J. Anal. Appl. Pyrolysis 2017, 123, 224–228. [Google Scholar] [CrossRef]
- Xue, Y.; Kelkar, A.; Bai, X. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer. Fuel 2016, 166, 227–236. [Google Scholar] [CrossRef]
- Fan, L.; Chen, P.; Zhang, Y.; Liu, S.; Liu, Y.; Wang, Y.; Dai, L.; Ruan, R. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality. Bioresour. Technol. 2017, 225, 199–205. [Google Scholar] [CrossRef]
- Ding, K.; He, A.; Zhong, D.; Fan, L.; Liu, S.; Wang, Y.; Liu, Y.; Chen, P.; Lei, H.; Ruan, R. Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis. Bioresour. Technol. 2018, 268, 1–8. [Google Scholar] [CrossRef]
- Morgan, H.M., Jr.; Liang, J.; Chen, K.; Yan, L.; Wang, K.; Mao, H.; Bu, Q. Bio-oil production via catalytic microwave co-pyrolysis of lignin and low density polyethylene using zinc modified lignin-based char as a catalyst. J. Anal. Appl. Pyrolysis 2018, 133, 107–116. [Google Scholar] [CrossRef]
- Ryu, H.W.; Tsang, Y.F.; Lee, H.W.; Jae, J.; Jung, S.-C.; Lam, S.S.; Park, E.D.; Park, Y.-K. Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties. Chem. Eng. J. 2019, 373, 375–381. [Google Scholar] [CrossRef]
- Hassan, H.; Lim, J.K.; Hameed, B.H. Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite. Bioresour. Technol. 2019, 284, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Mullen, C.A.; Dorado, C.; Boateng, A.A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: Catalyst deactivation and coke formation. J. Anal. Appl. Pyrolysis 2018, 129, 195–203. [Google Scholar] [CrossRef]
- Duan, D.; Wang, Y.; Dai, L.; Ruan, R.; Zhao, Y.; Fan, L.; Tayier, M.; Liu, Y. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating. Bioresour. Technol. 2017, 241, 207–213. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Duan, D.; Ruan, R.; Fan, L.; Zhou, Y.; Dai, L.; Lv, J.; Liu, Y. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production. Bioresour. Technol. 2018, 249, 69–75. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Lee, H.W.; Choi, S.J.; Jeon, J.-K.; Park, S.H.; Jung, S.-C.; Kim, S.C.; Park, Y.-K. Catalytic co-pyrolysis of polypropylene and Laminaria japonica over zeolitic materials. Int. J. Hydrogen Energy 2017, 42, 18434–18441. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Vinu, R.; Shukla, A.; Haldar, S. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation. Bioresour. Technol. 2020, 302. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, Y.-M.; Jae, J.; Jeon, J.-K.; Jung, S.-C.; Kim, S.C.; Park, Y.-K. Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene. Energy Convers. Manag. 2016, 129, 81–88. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, R.; Nie, J.; Jin, B.; Shao, S.; Xiao, G. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor. Bioresour. Technol. 2015, 192, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Zhou, G.; Feng, Y.; Wang, Y.; Yu, G.; Deng, S.; Huang, J.; Wang, B. Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites. Appl. Catal. A Gen. 2014, 481, 173–182. [Google Scholar] [CrossRef]
- Sanahuja-Parejo, O.; Veses, A.; Lopez, J.M.; Murillo, R.; Soledad Callen, M.; Garcia, T. Ca-based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres. Catalysts 2019, 19, 992. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, Z.; Ding, K.; Li, M.; Hao, N.; Meng, X.; Ruan, R.; Ragauskas, A.J. Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system. Energy Convers. Manag. 2019, 180, 60–71. [Google Scholar] [CrossRef]
- Ding, K.; Zhong, Z.; Wang, J.; Zhang, B.; Fan, L.; Liu, S.; Wang, Y.; Liu, Y.; Zhong, D.; Chen, P.; et al. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5. Bioresour. Technol. 2018, 261, 86–92. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, H.; Zhu, L.; Zhu, X.; Qian, M.; Yadavalli, G.; Wu, J.; Chen, S. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresour. Technol. 2016, 220, 233–238. [Google Scholar] [CrossRef]
- Garba, M.U.; Inalegwu, A.; Musa, U.; Aboje, A.A.; Kovo, A.S.; Adeniyi, D.O. Thermogravimetric characteristic and kinetic of catalytic co-pyrolysis of biomass with low- and high-density polyethylenes. Biomass Convers. Biorefinery 2018, 8, 143–150. [Google Scholar] [CrossRef]
- Xue, X.; Pan, Z.; Zhang, C.; Wang, D.; Xie, Y.; Zhang, R. Segmented catalytic co-pyrolysis of biomass and high-density polyethylene for aromatics production with MgCl2 and HZSM-5. J. Anal. Appl. Pyrolysis 2018, 134, 209–217. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, L.; Fan, L.; Cao, L.; Zhou, Y.; Zhao, Y.; Liu, Y.; Ruan, R. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production. Waste Manag. 2017, 61, 276–282. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Jae, J.; Kim, B.-S.; Hong, Y.; Jung, S.-C.; Park, Y.-K. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts. Energy Convers. Manag. 2017, 149, 966–973. [Google Scholar] [CrossRef]
- Qi, P.; Chang, G.; Wang, H.; Zhang, X.; Guo, Q. Production of aromatic hydrocarbons by catalytic co-pyrolysis of microalgae and polypropylene using HZSM-5. J. Anal. Appl. Pyrolysis 2018, 136, 178–185. [Google Scholar] [CrossRef]
- Chi, Y.; Xue, J.; Zhuo, J.; Zhang, D.; Liu, M.; Yao, Q. Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41. Sci. Total Environ. 2018, 633, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.P.; Srinivas, S. Catalytic Co-pyrolysis of Biomass and Plastics (Polypropylene and Polystyrene) Using Spent FCC Catalyst. Energy Fuels 2020, 34, 460–473. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.; Yu, Z.; Deng, T.; Chen, X.; Chen, L.; Dai, M. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS. Bioresour. Technol. 2019, 289. [Google Scholar] [CrossRef] [PubMed]
- Sanahuja-Parejo, O.; Veses, A.; Navarro, M.V.; Lopez, J.M.; Murillo, R.; Callen, M.S.; Garcia, T. Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels. Energy Convers. Manag. 2018, 171, 1202–1212. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, Z.; Ding, K.; Zhang, B.; Deng, A.; Min, M.; Chen, P.; Ruan, R. Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5. Energy 2017, 133, 90–98. [Google Scholar] [CrossRef]
- Rezaei, P.S.; Oh, D.; Hong, Y.; Kim, Y.-M.; Jae, J.; Jung, S.-C.; Jeon, J.-K.; Park, Y.-K. In-Situ Catalytic Co-Pyrolysis of Yellow Poplar and High-Density Polyethylene Over Mesoporous Catalysts. Energy Convers. Manag. 2017, 151, 116–122. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Lee, H.W.; Jae, J.; Bin Jung, K.; Jung, S.-C.; Watanabe, A.; Park, Y.-K. Catalytic co-pyrolysis of biomass carbohydrates with LLDPE over Al-SBA-15 and mesoporous ZSM-5. Catal. Today 2017, 298, 46–52. [Google Scholar] [CrossRef]
- Iftikhar, H.; Zeeshan, M.; Iqbal, S.; Muneer, B.; Razzaq, M. Co-pyrolysis of sugarcane bagasse and polystyrene with ex-situ catalytic bed of metal oxides/HZSM-5 with focus on liquid yield. Bioresour. Technol. 2019, 289. [Google Scholar] [CrossRef]
- Luo, H.; Bao, L.-W.; Kong, L.-Z.; Sun, Y.-H. Revealing low temperature microwave-assisted pyrolysis kinetic behaviors and dielectric properties of biomass components. AIChE J. 2018, 64, 2124–2134. [Google Scholar] [CrossRef]
- Villota, E.M.; Lei, H.; Qian, M.; Yang, Z.; Villota, S.M.A.; Zhang, Y.; Yadavalli, G. Optimizing Microwave-Assisted Pyrolysis of Phosphoric Acid-Activated Biomass: Impact of Concentration on Heating Rate and Carbonization Time. ACS Sustain. Chem. Eng. 2018, 6, 1318–1326. [Google Scholar] [CrossRef]
- Parvez, A.M.; Wu, T.; Afzal, M.T.; Mareta, S.; He, T.; Zhai, M. Conventional and microwave-assisted pyrolysis of gumwood: A comparison study using thermodynamic evaluation and hydrogen production. Fuel Process. Technol. 2019, 184, 1–11. [Google Scholar] [CrossRef]
- Feng, Y.; Li, G.; Li, X.; Zhu, N.; Xiao, B.; Li, J.; Wang, Y. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment. Bioresour. Technol. 2016, 214, 520–527. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Y.; Liu, Y.; Ruan, R. Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production. Environ. Res. 2020, 182. [Google Scholar] [CrossRef]
- Duan, D.; Ruan, R.; Wang, Y.; Liu, Y.; Dai, L.; Zhao, Y.; Zhou, Y.; Wu, Q. Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior. Bioresour. Technol. 2018, 251, 57–62. [Google Scholar] [CrossRef]
- Duan, D.; Ruan, R.; Lei, H.; Liu, Y.; Wang, Y.; Zhang, Y.; Zhao, Y.; Dai, L.; Wu, Q.; Zhang, S. Microwave-assisted co-pyrolysis of pretreated lignin and soapstock for upgrading liquid oil: Effect of pretreatment parameters on pyrolysis behavior. Bioresour. Technol. 2018, 258, 98–104. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Duan, D.; Zhang, Y.; Ruan, R.; Liu, Y.; Fu, G.; Zhang, S.; Zhao, Y.; Dai, L.; et al. Co-pyrolysis of microwave-assisted acid pretreated bamboo sawdust and soapstock. Bioresour. Technol. 2018, 265, 33–38. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, D.; Liu, Y.; Ruan, R.; Fu, G.; Dai, L.; Zhou, Y.; Yu, Z.; Wu, Q.; Zeng, Z. Properties and pyrolysis behavior of moso bamboo sawdust after microwave-assisted acid pretreatment. J. Anal. Appl. Pyrolysis 2018, 129, 86–92. [Google Scholar] [CrossRef]
- Zheng, A.; Zhao, K.; Jiang, L.; Zhao, Z.; Sun, J.; Huang, Z.; Wei, G.; He, F.; Li, H. Bridging the Gap between Pyrolysis and Fermentation: Improving Anhydrosugar Production from Fast Pyrolysis of Agriculture and Forest Residues by Microwave-Assisted Organosolv Pretreatment. ACS Sustain. Chem. Eng. 2016, 4, 5033–5040. [Google Scholar] [CrossRef]
- Jiang, L.-Q.; Wu, Y.-X.; Wu, N.-N.; Zhong, H.-Q.; Zhang, Y.-C.; Zhao, Z.-L.; Li, H.-B.; Zhang, F. Selective saccharification of microwave-assisted glycerol pretreated corncobs via fast pyrolysis and enzymatic hydrolysis. Fuel 2020, 265. [Google Scholar] [CrossRef]
- Bu, Q.; Liu, Y.; Liang, J.; Morgan, H.M., Jr.; Yan, L.; Xu, F.; Mao, H. Microwave-assisted co-pyrolysis of microwave torrefied biomass with waste plastics using ZSM-5 as a catalyst for high quality bio-oil. J. Anal. Appl. Pyrolysis 2018, 134, 536–543. [Google Scholar] [CrossRef]
- Ellison, C.R.; Hoff, R.; Marculescu, C.; Boldor, D. Investigation of microwave-assisted pyrolysis of biomass with char in a rectangular waveguide applicator with built-in phase-shifting. Appl. Energy 2020, 259. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M. Production of bio-oils and bio-char from Arundo donax through microwave assisted pyrolysis in a multimode batch reactor. J. Anal. Appl. Pyrolysis 2016, 122, 479–489. [Google Scholar] [CrossRef]
- Martin, M.T.; Sanz, A.B.; Nozal, L.; Castro, F.; Alonso, R.; Aguirre, J.L.; Gonzalez, S.D.; Paz Matia, M.; Novella, J.L.; Peinado, M.; et al. Microwave-assisted pyrolysis of Mediterranean forest biomass waste: Bioproduct characterization. J. Anal. Appl. Pyrolysis 2017, 127, 278–285. [Google Scholar] [CrossRef]
- Zou, R.; Wang, Y.; Jiang, L.; Yu, Z.; Zhao, Y.; Wu, Q.; Dai, L.; Ke, L.; Liu, Y.; Ruan, R. Microwave-assisted co-pyrolysis of lignin and waste oil catalyzed by hierarchical ZSM-5/MCM-41 catalyst to produce aromatic hydrocarbons. Bioresour. Technol. 2019, 289. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, H.; Zhang, X.; Zhao, Y.; Sun, S.; Qiao, J. Less defective graphene aerogel and its application in microwave-assisted biomass pyrolysis to prepare H-2-rich gas. J. Mater. Chem. A 2019, 7, 27236–27240. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Y.; Liu, S.; Fan, L.; Zhou, N.; Peng, P.; Wang, Y.; Guo, F.; Min, M.; Cheng, Y.; et al. Fast microwave-assisted pyrolysis of wastes for biofuels production—A review. Bioresour. Technol. 2020, 297. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, L.; Wang, R.; Fan, L.; Liu, Y.; Xie, Q.; Ruan, R. Hydrocarbon fuel production from soapstock through fast microwave-assisted pyrolysis using microwave absorbent. J. Anal. Appl. Pyrolysis 2016, 119, 251–258. [Google Scholar] [CrossRef]
- Mamaeva, A.; Tahmasebi, A.; Tian, L.; Yu, J. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Bioresour. Technol. 2016, 211, 382–389. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Z.; Xu, H.; Wan, K.; Liao, Y.; Ma, X. Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives. Bioresour. Technol. 2019, 273, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, B.A.; Kim, C.S.; Ellis, N.; Bi, X. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresour. Technol. 2016, 201, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Fan, L.; Liu, Y.; Ruan, R.; Wang, Y.; Zhou, Y.; Zhao, Y.; Yu, Z. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Bioresour. Technol. 2017, 225, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X. Microwave-assisted catalytic biomass pyrolysis: Effects of catalyst mixtures. Appl. Catal. B Environ. 2019, 253, 226–234. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.; Li, T.; Xue, Z.; Wang, X.; Ruan, R. Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst. J. Anal. Appl. Pyrolysis 2018, 130, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Liu, S.; Peng, P.; Min, M.; Cheng, Y.; Anderson, E.; Zhou, N.; Fan, L.; Liu, C.; et al. Effects of feedstock characteristics on microwave-assisted pyrolysis—A review. Bioresour. Technol. 2017, 230, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, B.; Wu, S.; Kong, X.; Fang, Y.; Liu, J. Optimizing the Conditions for the Microwave-Assisted Pyrolysis of Cotton Stalk for Bio-Oil Production Using Response Surface Methodology. Waste Biomass Valorization 2017, 8, 1361–1369. [Google Scholar] [CrossRef]
- Reddy, B.R.; Vinu, R. Microwave assisted pyrolysis of Indian and Indonesian coals and product characterization. Fuel Process. Technol. 2016, 154, 96–103. [Google Scholar] [CrossRef]
- Reddy, B.R.; Vinu, R. Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: Product characterization and evidence of interactions. Fuel Process. Technol. 2018, 178, 41–52. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Yang, S.; Yang, Q.; Wu, J.; Ma, Z.; Jiang, L.; Yu, Z.; Dai, L.; Liu, Y.; et al. Microwave-assisted catalytic fast pyrolysis coupled with microwave-absorbent of soapstock for bio-oil in a downdraft reactor. Energy Convers. Manag. 2019, 185, 11–20. [Google Scholar] [CrossRef]
- Ding, K.; Liu, S.; Huang, Y.; Liu, S.; Zhou, N.; Peng, P.; Wang, Y.; Chen, P.; Ruan, R. Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Convers. Manag. 2019, 196, 1316–1325. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, Y.; Liu, S.; Zhou, N.; Chen, P.; Liu, Y.; Wang, Y.; Peng, P.; Cheng, Y.; Addy, M.; et al. Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Convers. Manag. 2017, 149, 432–441. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Z.; Ao, W.; Li, J.; Liu, G.; Fu, J.; Ran, C.; Mao, X.; Kang, Q.; Liu, Y.; et al. Microwave-assisted pyrolysis of textile dyeing sludge using different additives. J. Anal. Appl. Pyrolysis 2017, 127, 140–149. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, Z.; Song, Z.; Ding, K.; Deng, A. Modification and regeneration of HZSM-5 catalyst in microwave assisted catalytic fast pyrolysis of mushroom waste. Energy Convers. Manag. 2016, 123, 29–34. [Google Scholar] [CrossRef]
- Zhou, N.; Liu, S.; Zhang, Y.; Fan, L.; Cheng, Y.; Wang, Y.; Liu, Y.; Chen, P.; Ruan, R. Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass. Bioresour. Technol. 2018, 267, 257–264. [Google Scholar] [CrossRef]
- State, R.N.; Volceanov, A.; Muley, P.; Boldor, D. A review of catalysts used in microwave assisted pyrolysis and gasification. Bioresour. Technol. 2019, 277, 179–194. [Google Scholar] [CrossRef]
- Fan, L.; Chen, P.; Zhou, N.; Liu, S.; Zhang, Y.; Liu, Y.; Wang, Y.; Omar, M.M.; Peng, P.; Addy, M.; et al. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin. Bioresour. Technol. 2018, 247, 851–858. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Fan, L.; Zhou, N.; Omar, M.M.; Peng, P.; Anderson, E.; Addy, M.; Cheng, Y.; Liu, Y.; et al. Oil production from microwave-assisted pyrolysis of a low rank American brown coal. Energy Convers. Manag. 2018, 159, 76–84. [Google Scholar] [CrossRef]
- Li, H.; Shi, S.; Lin, B.; Lu, J.; Ye, Q.; Lu, Y.; Wang, Z.; Hong, Y.; Zhu, X. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy 2019, 187. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Huang, J.; Tang, N.; Dang, Z.; Shi, Y.; Zhaohe, M. Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production. J. Energy Inst. 2019, 92, 1997–2003. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Batchu, S.; Jayasurya, S.; Vinu, R. Selective production of phenolics from waste printed circuit boards via microwave assisted pyrolysis. J. Clean. Prod. 2018, 197, 525–533. [Google Scholar] [CrossRef]
- Li, X.; Zhai, J.; Li, H.; Gao, X. An integration recycling process for cascade utilization of waste engine oil by distillation and microwave-assisted pyrolysis. Fuel Process. Technol. 2020, 199. [Google Scholar] [CrossRef]
- Anderson, E.; Zhou, J.; Fan, L.; Liu, S.; Zhou, N.; Peng, P.; Cheng, Y.; Chen, P.; Ruan, R. Microwave-Assisted Pyrolysis as an Alternative to Vacuum Distillation for Methyl Ester Recovery from Biodiesel Vacuum Distillation Bottoms. ACS Sustain. Chem. Eng. 2018, 6, 14348–14355. [Google Scholar] [CrossRef]
- Dong, Q.; Niu, M.; Bi, D.; Liu, W.; Gu, X.; Lu, C. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production. Bioresour. Technol. 2018, 256, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Yan, J.; Angel Menendez, J.; Luo, X.; Yang, G.; Chen, Y.; Lester, E.; Wu, T. Production of H-2-Rich Syngas from Lignocellulosic Biomass Using Microwave-Assisted Pyrolysis Coupled With Activated Carbon Enabled Reforming. Front. Chem. 2020, 8. [Google Scholar] [CrossRef]
- Dos Reis, G.S.; Adebayo, M.A.; Sampaio, C.H.; Lima, E.C.; Thue, P.S.; de Brum, I.A.S.; Dias, S.L.P.; Pavan, F.A. Removal of Phenolic Compounds from Aqueous Solutions Using Sludge-Based Activated Carbons Prepared by Conventional Heating and Microwave-Assisted Pyrolysis. Water Air Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Wong, Y.M.; Yek, P.N.Y.; Ma, N.L.; Lee, C.L.; Chase, H.A. Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J. Clean. Prod. 2017, 162, 1376–1387. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X.; Emam, A.E.-R. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil. Sci. Total Environ. 2016, 566, 387–397. [Google Scholar] [CrossRef]
Biomass | Catalyst | Reaction Conditions | Reactor | Major Product | Ref. | |||
---|---|---|---|---|---|---|---|---|
Feedstock/Catalyst (Weight) | Temp. (°C) | Acidity | Operating Mode | |||||
Jatropha residues | HZSM-5 | 1:1 | 500 | 40 | - | Pyroprobe pyrolyzer | Aliphatics, aromatics, Phenols, Ketones | [18] |
Corn cob | ZSM-5 | 1:2 | 550 | 27 | In situ | Double-shot pyrolyzer | Aromatic hydrocarbons | [19] |
Corn cob | HZSM-5 | 1:2 | 550 | 27 | In situ | Double-shot pyrolyzer | Aromatic hydrocarbons | [19] |
Kraft lignin | ZSM-5 | 1:2 | 600 | 11.5 | Ex situ | Fixed-bed reactor | Alkyl-Phenols, aromatics | [20] |
Kraft lignin | ZSM-5 | 1:2 | 600 | 25 | Ex situ | Fixed-bed reactor | Alkyl-Phenols, aromatics | [20] |
Kraft lignin | ZSM-5 | 1:2 | 600 | 40 | Ex situ | Fixed-bed reactor | Alkyl-Phenols, aromatics | [20] |
Lignin | ZSM-5 | 1:1 | 450 | 80 | In situ | Fixed bed reactor | Monomeric aromatics, Phenolics | [21] |
Poultry litter | ZSM-5/MCM-41 | 10:1 | 500 | - | Ex situ | Microwave oven | Toluene, xylene, PAHs, benzene | [22] |
Wood sawdust | ZSM-5 | 10:1 | 600 | 17.3 | Ex situ | CDS Pyroprobe 5200HP pyrolyser | Aromatic hydrocarbons, phenols | [23] |
Pinewood sawdust | ZSM-5 | 0.25:1~2:1 | 500 | 46 | - | CDS Pyroprobe 5200 HP pyrolyzer | Aromatic hydrocarbons, phenolics | [24] |
Sawdust | HZSM-5 | - | 400~600 | 25 | In situ | Drop tube quartz reactor | Aromatics, olefins | [25] |
Sawdust | HZSM-5 | - | 400~600 | 50 | In situ | Drop tube quartz reactor | Aromatics, olefins | [25] |
Sawdust | HZSM-5 | - | 400~600 | 80 | In situ | Drop tube quartz reactor | Aromatics, olefins | [25] |
Maize straw | ZSM-5@SBA-15 | 1:2~2:1 | 400~700 | - | In situ | Fixed-bed | Phenols, hydrocarbons | [26] |
Soda lignin | ZSM-5 | 1:2 | 500~900 | 30~40 | - | CDS Pyroprobe 5200HPR | Aromatics, phenol, catechol | [27] |
Soda lignin | Y-Zeolite | 1:2 | 500~900 | 8~9 | - | CDS Pyroprobe 5200HPR | Aromatics, phenol, catechol | [27] |
Corn cob | HZSM-5 | 1:2 | 700 | 25 | - | - | Acetonitrile, aromatics, pyridines | [28] |
Corn cob | MCM-41 | 1:2 | 700 | - | - | - | Acetonitrile, aromatics | [28] |
Corn cob | HY | 1:2 | 700 | - | - | - | Acetonitrile, aromatics | [28] |
Corn cob | Hβ | 1:2 | 700 | 25 | - | - | Acetonitrile, pyrroles | [28] |
Lignin | MCM-41 | 1:2 | 600 | - | Ex situ | Fixed bed | Aromatic amines, N-doped carbon | [29] |
Lignin | β-Zeolite | 1:2 | 600 | 50 | Ex situ | Fixed bed | Aromatic amines, N-doped carbon | [29] |
Lignin | HZSM-5 | 1:2 | 600 | 50 | Ex situ | Fixed bed | Aromatic amines, N-doped carbon | [29] |
Lignin | HY | 1:2 | 600 | 7.5 | Ex situ | Fixed bed | Aromatic amines, N-doped carbon | [29] |
Cellulose | ZSM-5 | 2:1~1:4 | 600 | 25 | In situ | Fixed bed | Light olefins (C2H4, C3H6) | [30] |
Biomass | Catalyst | Reaction Conditions | Reactor | Target Product | Ref. | |||
---|---|---|---|---|---|---|---|---|
Biomass/Catalyst (Weight) | Temp. (°C) | Sweeping Gas (N2) Rate (mL/min) | Si/Al | |||||
Alkali ligniin | Fe/ZSM-5 | 1:2 | 400–700 | 100 | 25 | Quartz reactor | Light olefins, aromatics | [37] |
Corn cob | Ni/HZSM-5 | 1:2 | 550 | 1 | 27 | Double-shot pyrolyzer | Aromatic hydrocarbons | [19] |
Lignin | Ni/ZSM-5 | 1:1 | 450 | 97 | 80 | Fixed bed reactor | Monomeric aromatics Phenolics | [21] |
woodchips | MgO/HZSM-5 | 5:1 | 500 | 100 | - | Fixed bed | Bio-oils, char | [38] |
woodchips | MgO/H-Beta | 5:1 | 500 | 100 | - | Fixed bed | Bio-oils, char | [38] |
woodchips | ZnO/HZSM-5 | 5:1 | 500 | 100 | - | Fixed bed | Bio-oils, char | [38] |
woodchips | ZnO/H-Beta | 5:1 | 500 | 100 | - | Fixed bed | Bio-oils, char | [38] |
Beech sawdust | Fe/ZSM-5 | 10:1 | 500 | 400 | 80 | Fixed bed | Phenolic compounds | [39] |
Wood sawdust | Fe/ZSM-5 | 10:1 | 500–800 | - | 16.6 | CDS Pyroprobe 5200HP pyrolyser | Aromatic hydrocarbons | [23] |
Wood sawdust | CaO/ZSM-5 | 1:5 | 600 | - | 38 | CDS Pyroprobe 5250HP pyrolyser | Aromatics (xylene, toluene, benzene) | [40] |
Wood sawdust | Al2O3/ZSM-5 | 1:5 | 600 | - | 38 | CDS Pyroprobe 5250HP pyrolyser | Aromatics (xylene, toluene, benzene) | [40] |
Wood sawdust | ZnO/ZSM-5 | 1:5 | 600 | - | 38 | CDS Pyroprobe 5250HP pyrolyser | Aromatics (xylene, toluene, benzene) | [40] |
Corn cob | Ga/HZSM-5 | 1:2 | 550~700 | 80 a | 25 | - | Acetonitrile, Aromatics | [28] |
Wheat straw | ZnO/HZSM-5 | - | 600 | - | 50 | fixed bed | Aromatic amines N-doped carbon | [29] |
Wheat straw | ZnO/HY | - | 600 | - | 7.5 | fixed bed | Aromatic amines N-doped carbon | [29] |
Cellulose | Fe/ZSM-5 | 2:1~1:4 | 600 | 100 | 25 | Fixed bed | Light olefins (C2H4, C3H6) | [30] |
Sawdust | Zn/ZSM-5 | 1:4 | - | 38 | CDS Pyroprobe 5250 pyrolyser | Benzene, toluene, xylene | [41] | |
Sawdust | Fe/ZSM-5 | 1:4 | - | 38 | CDS Pyroprobe 5250 pyrolyser | Benzene, toluene, xylene | [41] | |
Sawdust | Ca/ZSM-5 | 1:4 | - | 38 | CDS Pyroprobe 5250 pyrolyser | Benzene, toluene, xylene | [41] | |
Sawdust | Ce/ZSM-5 | 1:4 | - | 38 | CDS Pyroprobe 5250 pyrolyser | Benzene, toluene, xylene | [41] | |
Sawdust | La/ZSM-5 | 1:4 | - | 38 | CDS Pyroprobe 5250 pyrolyser | Benzene, toluene, xylene | [41] |
Types of Materials | Reaction Conditions | Results | Ref. | ||||
---|---|---|---|---|---|---|---|
Biomass | Co-Reactant | Catalyst | Biomass to Co-Reactant Ratio | Temp. (°C) | Reactor | Mainly Compounds | |
Lignin | LDPE | MgO/HZSM-5 | 1:0 | 550 | Microwave oven | Phenolic compounds | [91] |
Lignin | LDPE | MgO/HZSM-5 | 2:1 | 550 | Microwave oven | Phenolic compounds, aromatics | [91] |
Lignin | LDPE | MgO/HZSM-5 | 1:1 | 550 | Microwave oven | Aromatics, phenolic compounds | [91] |
Lignin | LDPE | MgO/HZSM-5 | 1:2 | 550 | Microwave oven | Aromatics | [91] |
Corn stover | LDPE | CeO2/HZSM-5 | 1:1 | 600 | Tandem catalytic bed | Aliphatics, aromatics | [103] |
Lignin | LDPE | Zn/lignin-char | - | 500 | Microwave oven | hydrocarbons, ketones, phenols | [104] |
Cellulose | LLDPE | Non-Catalyst | 1:1 | 600 | Semi-batch | Hydrocarbons, sugars | [105] |
Cellulose | LLDPE | MgO | 1:1 | 600 | Semi-batch | Hydrocarbons | [105] |
Cellulose | LLDPE | MgO/C | 1:1 | 600 | Semi-batch | Hydrocarbons, MAHs | [105] |
Cellulose | LLDPE | MgO/Al2O3 | 1:1 | 600 | Semi-batch | Hydrocarbons | [105] |
Cellulose | LLDPE | MgO/ZrO2 | 1:1 | 600 | Semi-batch | Hydrocarbons, oxygenate | [105] |
Sugarcane bagasse | HDPE | FAU-EAFS | 3:2 | 400 | Fixed-bed | Hydrocarbons, aromatic, alcohol | [106] |
Sugarcane bagasse | HDPE | FAU-EAFS | 3:2 | 500 | Fixed-bed | Hydrocarbons, alcohol | [106] |
Sugarcane bagasse | HDPE | FAU-EAFS | 3:2 | 600 | Fixed-bed | Hydrocarbons, acid, alcohol | [106] |
Switchgrass | PE | HZSM-5 | 1:1 | 500 | - | Aromatic, hydrocarbons, Alkyl benzenes | [107] |
Lignin | PP | HZSM-5 | 1:1 | 200 | Microwave reactor | Aromatics, alkenes, cycloalkanes | [108] |
Lignin | PP | HZSM-5 | 1:1 | 250 | Microwave reactor | Cycloalkanes, aromatics, alkenes | [108] |
Lignin | PP | HZSM-5 | 1:1 | 300 | Microwave reactor | Aromatics, cycloalkanes, alkenes | [108] |
Lignin | PP | HZSM-5 | 1:1 | 350 | Microwave reactor | Alkenes, aromatics, cycloalkanes | [108] |
Bamboo | PP | HZSM-5 | 1:0 | 250 | Microwave oven | Oxygen-cont. aromatics, Oxygen-cont. aliphatics | [109] |
Bamboo | PP | HZSM-5 | 2:1 | 250 | Microwave oven | Aliphatics hydrocarbons, aromatics | [109] |
Bamboo | PP | HZSM-5 | 1:1 | 250 | Microwave oven | Aliphatics hydrocarbons, aromatics | [109] |
Bamboo | PP | HZSM-5 | 1:2 | 250 | Microwave oven | Aliphatics hydrocarbons | [109] |
Bamboo | PP | HZSM-5 | 0:1 | 250 | Microwave oven | Aliphatics hydrocarbons, aromatics | [109] |
Laminaria japonica | PP | HZSM-5 | 1:1 | 600 | Fixed-bed | MAHs, other hydrocarbons, PAHs | [110] |
Laminaria japonica | PP | Pt/Meso MFI | 1:1 | 600 | Fixed-bed | MAHs, PAHs, Other hydrocarbons | [110] |
Laminaria japonica | PP | Meso MFI | 1:1 | 600 | Fixed-bed | MAHs, PAHs, Other hydrocarbons | [110] |
Laminaria japonica | PP | Al-SBA-16 | 1:1 | 600 | Fixed-bed | Other hydrocarbons, MAHs, PAH, oxygenates | [110] |
Rice straw | PP | HZSM-5 | 1:1 | 500 | Microwave oven | Aliphatic HCs, MAHs | [111] |
Bagasse | PP | HZSM-5 | 1:1 | 500 | Microwave oven | Aliphatic HCs | [111] |
Rice straw | PS | HZSM-5 | 1:1 | 500 | Microwave oven | MAHs | [111] |
Bagasse | PS | HZSM-5 | 1:1 | 500 | Microwave oven | MAHs, PAHs | [111] |
Cellulose | PP | HZSM-5 | 1:1 | 500 | Microwave oven | BTEXs, Light olefins | [112] |
Lignin | PS | Spent FCC | 1:1 | 600 | Continuous fluidized bed | Styrene | [113] |
Cellulose | PS | HZSM-5 | 2:1 | 550 | Pyroprobe pyrolyzer | Benzene, polyaromatics | [114] |
Grape seeds | Waste tires | Ca-based-1 | 5:1 | - | Auger reactor | Aromatics, cyclic HC, olefin | [115] |
Bamboo sawdust | Waste tires | HZSM-5/MgO | 2:3 | 550 | A tandem reactor | Aromatics hydrocarbons, olefins | [116] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Hou, Q.; Ju, M.; Ji, P.; Sun, Q.; Li, W. Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review. Catalysts 2020, 10, 742. https://doi.org/10.3390/catal10070742
Liu J, Hou Q, Ju M, Ji P, Sun Q, Li W. Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review. Catalysts. 2020; 10(7):742. https://doi.org/10.3390/catal10070742
Chicago/Turabian StyleLiu, Junjian, Qidong Hou, Meiting Ju, Peng Ji, Qingmei Sun, and Weizun Li. 2020. "Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review" Catalysts 10, no. 7: 742. https://doi.org/10.3390/catal10070742
APA StyleLiu, J., Hou, Q., Ju, M., Ji, P., Sun, Q., & Li, W. (2020). Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review. Catalysts, 10(7), 742. https://doi.org/10.3390/catal10070742