Abatement of Toluene by Reverse-Flow Nonthermal Plasma Reactor Coupled with Catalyst
Abstract
1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Degradation of Toluene in DBD and DDBD Reactor
2.3. Toluene Degradation in Reverse-Flow DBD-Catalyst Reactor
2.3.1. Effect of Flow Reversing Cycle Time
2.3.2. Effect of Residence Time
2.4. Gas-Phase Product Analysis
2.4.1. CO2
2.4.2. NO2
2.4.3. Organic By-Products
2.5. Reaction Mechanism
3. Experimental
3.1. Reaction Process
3.2. Flow-Reversal Device
3.3. Filling Materials
3.3.1. Catalyst Preparation
3.3.2. Catalyst Characterization
3.4. Testing Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mizuno, A. Generation of non-thermal plasma combined with catalysts and their application in environmental technology. Catal. Today 2013, 211, 2–8. [Google Scholar] [CrossRef]
- Lu, W.J.; Abbas, Y.; Mustafa, M.F.; Pan, C.; Wang, H. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds. Front. Environ. Sci. Eng. 2019, 13, 30. [Google Scholar]
- Zhang, H.; Ying, D.; Wang, Y.; Sun, T.; Jia, J. In plasma catalytic oxidation of toluene using monolith CuO foam as a catalyst in a wedged high voltage electrode dielectric barrier discharge reactor: Influence of reaction parameters and byproduct control. Int. J. Environ. Res. Public Health 2019, 16, 711. [Google Scholar]
- Wang, B.F.; Xu, X.X.; Xu, W.C.; Wang, N.; Xiao, H.L.; Sun, Y.H.; Hang, X.M.; Yu, L.; Fu, M.L.; Wu, J.L.; et al. The mechanism of non-thermal plasma catalysis on volatile organic compounds removal. Catal. Surv. Asia 2018, 22, 73–94. [Google Scholar]
- Preis, S.; Klauson, D.; Gregor, A. Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. J. Environ. Manag. 2013, 114, 125–138. [Google Scholar] [CrossRef]
- Brandenburg, R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Nitsche, T.; Unger, C.; Weidner, E. Plasma catalytical reactors for atmospheric gas conversions. Chem. Ing. Tech. 2018, 90, 1453–1464. [Google Scholar] [CrossRef]
- Neyts, E.C.; Ostrikov, K.; Sunkara, M.K.; Bogaerts, A. Plasma catalysis: Synergistic effects at the nanoscale. Chem. Rev. 2015, 115, 767. [Google Scholar] [CrossRef]
- Shi, Y.; Shao, Z.; Shou, T.; Tian, R.; Jiang, J.; He, Y. Abatement of gaseous xylene using double dielectric barrier discharge plasma with in situ UV light: Operating parameters and byproduct analysis. Plasma Chem. Plasma Process. 2016, 36, 1501–1515. [Google Scholar] [CrossRef]
- Zhou, W.; Guan, Z.; Zhao, M.; Li, J. Characteristics and mechanism of toluene removal from gas by novelty array double dielectric barrier discharge combined with TiO2/Al2O3 catalyst. Chemosphere 2019, 226, 766–773. [Google Scholar] [CrossRef]
- Tang, X.L.; Gao, F.Y.; Wang, J.G.; Yi, H.H.; Zhao, S.Z.; Zhan, B.W.; Zuo, Y.R.; Wang, Z.X. Comparative study between single- and double-dielectric barrier discharge reactor for nitric oxide removal. Ind. Eng. Chem. Res. 2014, 53, 6197–6203. [Google Scholar] [CrossRef]
- Li, S.J.; Yu, X.; Dang, X.Q.; Guo, H.; Liu, P.; Qin, C.H. Using non-thermal plasma for decomposition of toluene adsorbed on γ-Al2O3 and ZSM-5: Configuration and optimization of a double dielectric barrier discharge reactor. Chem. Eng. J. 2019, 375, 122027. [Google Scholar] [CrossRef]
- Zhang, H.B.; Li, K.; Shu, C.H.; Lou, Z.Y.; Sun, T.H.; Jia, J.P. Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor. Chem. Eng. J. 2014, 256, 107–118. [Google Scholar] [CrossRef]
- Mustafa, M.F.; Fu, X.; Liu, Y.; Abbas, Y.; Wang, H.; Lu, W. Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor. J. Hazard. Mater. 2018, 347, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Eko, Y.; Andi, W.K. Development of DDBD and plasma jet reactors for production reactive species plasma chemistry. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012086. [Google Scholar]
- Qin, C.H.; Dang, X.Q.; Huang, J.Y.; Teng, J.; Huang, X.M. Plasma-catalytic oxidation of adsorbed toluene on Ag–Mn/γ-Al2O3: Comparison of gas flow-through and gas circulation treatment. Chem. Eng. J. 2016, 299, 85–92. [Google Scholar] [CrossRef]
- Zhu, X.B.; Gao, X.; Yu, X.N.; Zheng, C.H.; Tu, X. Catalyst screening for acetone removal in a single-stage plasma-catalysis system. Catal. Today 2015, 256, 108–114. [Google Scholar] [CrossRef]
- Jiang, N.; Hu, J.; Li, J. Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Appl. Catal. B 2016, 184, 355. [Google Scholar] [CrossRef]
- Zhu, X.B.; Gao, X.; Qin, R.; Zeng, Y.X.; Qu, R.Y.; Zheng, C.H.; Tu, X. Plasma-catalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor. Appl. Catal. B 2015, 293, 170–171. [Google Scholar] [CrossRef]
- Vandenbroucke, A.M.; Morent, R.; Geyter, N.D.; Leys, C. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Hazard. Mater. 2011, 195, 30–54. [Google Scholar] [CrossRef]
- Liang, W.J.; Guo, S.Q.; Ren, S.D.; Li, Q.L.; Li, J. Decompositon of toluene using non-thermal plasma coupled with Mn-Ce/La/cordierite honeycomb catalysts. Fresenius Environ. Bull. 2020, 29, 473–480. [Google Scholar]
- Kim, H.H.; Teramoto, Y.; Negishi, N.; Ogata, A.A. multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catal. Today 2015, 256, 13–22. [Google Scholar] [CrossRef]
- Savita, V.; Christophe, L.; Nathalie, D.G.; Rino, M. Abatement of VOCs using packed bed non-thermal plasma reactors: A review. Catalysts 2017, 7, 113. [Google Scholar]
- Siddharth, G.; Gu, S. Influence of catalyst packing configuration on the discharge characteristics of dielectric barrier discharge reactors: A numerical investigation. Phys. Plasmas 2015, 25, 063513. [Google Scholar]
- Nader, R.; Shayan, H.; Somaiyeh, A. Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries. J. Clean. Prod. 2019, 232, 1134–1147. [Google Scholar]
- Zhu, B.; Zhang, L.Y.; Li, M.; Yan, Y. High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nano-catalysts. Chem. Eng. J. 2020, 381, 122599. [Google Scholar] [CrossRef]
- Christopher, W.J. Plasma-catalysis: Is it just a question of scale. Chem. Sci. Eng. 2019, 13, 264–273. [Google Scholar]
- Hu, J.; Jiang, N.; Li, J.; Shang, K.; Lu, N.; Wu, Y. Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2–TiO2/zeolite catalyst. Chem. Eng. J. 2016, 293, 216–224. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Chen, G.; Li, X.B. Resonance response of reverse flow reactors: A numerical simulation. Ind. Eng. Chem. Res. 2015, 54, 5885–5893. [Google Scholar] [CrossRef]
- Qin, Z.F.; Zhao, Y.J.; Yi, Q. Methanation of coke oven gas over Ni-Ce/γ-Al2O3 catalyst using a tubular heat exchange reactor: Pilot-scale test and process optimization. Energy Convers. Manag. 2020, 204, 112302. [Google Scholar] [CrossRef]
- Edouard, D.; Hammouri, H.; Zhou, X.G. Control of a reverse flow reactor for VOC combustion. Chem. Eng. Sci. 2005, 60, 1661–1672. [Google Scholar] [CrossRef]
- Krzysztof, G.; Anna, P.K. Aerodynamic CFD simulations of experimental and industrial thermal flow reversal reactors. Chem. Eng. J. 2019, 373, 1367–1379. [Google Scholar]
- Liang, W.J.; Liu, H.; Li, J. Ventilation air methane combustion in a flow reversal catalyst reactor effect sf catalyst, reactor properties and humidity. Fresenius Environ. Bull. 2017, 26, 2302–2313. [Google Scholar]
- Liang, W.J.; Sun, H.P.; Zhu, Y.X.; Li, J. Removal of toluene with a reverse flow non-thermal plasma-catalytic reaction system. China Environ. Sci. 2019, 39, 4974–4981. (In Chinese) [Google Scholar]
- Liang, W.J.; Wu, H.M.; Li, J. Removal of VOCs and heat distribution in a flow reversal plasma reaction system. J. Environ. Eng. Technol. 2018, 8, 373–380. (In Chinese) [Google Scholar]
- Asilevi, P.J.; Yi, C.W.; Li, J. Decomposition of formaldehyde in strong ionization non-thermal plasma at atmospheric pressure. Int. J. Environ. Sci. Technol. 2020, 17, 765–776. [Google Scholar] [CrossRef]
- Faisal, S.; Zhang, K.; Adam, P.H. Decomposition of benzene as a tar analogue in CO2 and H2 carrier gases, using a non-thermal plasma. Chem. Eng. J. 2019, 360, 714–720. [Google Scholar]
- Chen, X.; Zhao, Z.L.; Liu, S.; Huang, J.X.; Xie, J.; Zhou, Y.; Pan, Z.Y.; Lu, H.F. Ce-Fe-Mn ternary mixed-oxide catalysts for catalytic decomposition of ozone at ambient temperatures. J. Rare Earths 2020, 38, 175–181. [Google Scholar] [CrossRef]
- Kwon, D.W.; Kim, G.J.; Won, J.M.; Hong, S.C. Influence of Mn valence state and characteristic of TiO2 on the performance of Mn-Ti catalysts in ozone decomposition. Environ. Technol. 2017, 38, 2785–2792. [Google Scholar] [CrossRef]
- Pablo, M.; Salvador, O.; Fernando, V.D. Procedures for heat recovery in the catalytic combustion of lean methane—Air mixtures in a reverse flow reactor. Chem. Eng. J. 2009, 147, 356–365. [Google Scholar]
- Zhang, J.J.; Lei, Z.G.; Li, J.W. Simulation of a reverse flow reactor for the catalytic combustion of lean methane emissions. Chin. J. Chem. Eng. Engl. Edit. 2014, 22, 843–853. [Google Scholar] [CrossRef]
- Li, Z.K.; Wu, Z.W.; Qin, Z.F.; Zhu, H.Q.; Wu, J.B.; Wang, R.Y.; Lei, L.J.; Chen, J.G.; Dong, M.; Fan, W.B.; et al. Demonstration of mitigation and utilization of ventilation air methane in a pilot scale catalytic reverse flow reactor. Fuel Process. Technol. 2017, 160, 102–108. [Google Scholar] [CrossRef]
- Ershov, B.G.; Panich, N.M. The solubility and decomposition of ozone in solutions of sulfuric and perchloric acids in the temperature range from 25 to −70 °C. Dokl. Phys. Chem. 2015, 465, 279–282. [Google Scholar] [CrossRef]
- Chang, C.L.; Lin, Y.C.; Bai, H.L. Applying spray pyrolysis to synthesize MnOx for decomposing isopropyl alcohol in ozone- and thermal-catalytic oxidation. Korean J. Chem. Eng. 2009, 26, 1047–1052. [Google Scholar] [CrossRef]
- Zhao, X.L.; Liu, X.; Liu, J.Q. The effect of ionization energy and hydrogen weight fraction on the non-thermal plasma volatile organic compounds removal efficiency. J. Phys. D Appl. Phys. 2019, 52, 145201. [Google Scholar] [CrossRef]
- Penetrantey, B.M.; Hsiaoy, M.C.; Bardsleyy, J.N.; Merritty, B.T.; Vogtliny, G.E.; Kuthiz, A.; Burkhartz, C.P.; Baylessz, J.R. Identification of mechanisms for decomposition of air pollutants by non-thermal plasma processing. Plasma Sources Sci. Technol. 1997, 6, 251–259. [Google Scholar] [CrossRef]
- Huang, H.B.; Ye, D.Q.; Dennis, Y.C.L.; Feng, F.D.; Guan, X.J. By products and pathways of toluene destruction via plasma-catalysis. J. Mol. Catal. A Chem. 2011, 336, 87–93. [Google Scholar] [CrossRef]
- Wang, T.; Chen, S.; Wang, H.Q.; Liu, Z.; Wu, Z. In-plasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism. Chin. J. Catal. Engl. Edit. 2017, 38, 793–804. [Google Scholar] [CrossRef]
- Erik, C.N. Atomistic simulations of plasma catalytic processes. Front. Chem. Sci. Eng. 2018, 12, 145–154. [Google Scholar]
- Liu, L.; Zheng, C.H.; Wu, S.H.; Gao, X.; Ni, M.; Cen, K. Manganese-cerium oxide catalysts prepared by non-thermal plasma for NO oxidation: Effect of O2 in discharge atmosphere. Appl. Surf. Sci. 2017, 416, 78–85. [Google Scholar] [CrossRef]
- Neyts, E.C.; Bogaerts, A. Understanding plasma catalysis through modelling and simulation—A review. J. Phys. D Appl. Phys. 2014, 47, 224010. [Google Scholar] [CrossRef]
- Ye, H.L.; Liu, Y.Q.; Chen, S.; Wang, H.Q.; Liu, Z.; Wu, Z.B. Synergetic effect between non-thermal plasma and photocatalytic oxidation on the degradation of gas-phase toluene: Role of ozone. Chin. J. Catal. Engl. Edit. 2019, 40, 681–690. [Google Scholar] [CrossRef]
- Alexander, P.; Wilfred, F.L.M.H.; Bert, E.J.M.V.H. Temperature-programmed plasma surface reaction: An approach to determine plasma-catalytic performance. Appl. Catal. B Environ. 2018, 239, 168–177. [Google Scholar]
- Wang, M.X.; Zhang, P.Y.; Li, J.G.; Jiang, C.J. The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon. Chin. J. Catal. 2014, 35, 335–341. [Google Scholar] [CrossRef]
- Rezaei, E.; Soltan, J.; Chen, N. Catalytic oxidation of toluene by ozone over alumina supported manganese oxides: Effect of catalyst loading. Appl. Catal. B Environ. 2013, 136, 239–247. [Google Scholar] [CrossRef]
- Wala, A.S.; Aymen, A.A.; Monia, G.; Adbelkrim, B.; Wael, A.; Abdelmottaleb, O.; Isabelle, S.; Dominique, W.; Sami, R. Study of synergetic effect, catalytic poisoning and regeneration using dielectric barrier discharge and photocatalysis in a continuous reactor: Abatement of pollutants in air mixture system. Appl. Catal. B 2017, 213, 53–61. [Google Scholar]
Catalysts | SBET (m2·g−1) | Pd (nm) | Pv (cm3·g−1) |
---|---|---|---|
Original cordierite | 1.5 | 17.7 | 0.0003 |
Cordierite (after pre-treatment) | 55.1 | 4.1 | 0.049 |
7.5 wt % Mn/cordierite catalyst | 24.2 | 8.3 | 0.047 |
Catalysts | Test Times | Element | Calculated Value (%) | Actual Value (%) |
---|---|---|---|---|
7.5 wt % Mn/cordierite catalyst | 1 | Mn | 7.5 | 7.2 |
2 | Mn | 7.5 | 6.8 | |
3 | Mn | 7.5 | 7.1 |
No. | Reactors | Main Products |
---|---|---|
I | DBD | acetone, butanone, ethyl acetate, valeric acid, acetyl methacrylate |
II | DBD-catalyst | butanone, ethyl acetate, methylstyrene |
III | DDBD | acetone, butanone, valeric acid, ethyl phenylacetate, decan-1-one |
IV | DDBD-catalyst | acetone, butanone, ethyl acetate, phenethyl alcohol |
V | Reverse-flow DBD-catalyst | butanone, heptanol |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Sun, H.; Shi, X.; Zhu, Y. Abatement of Toluene by Reverse-Flow Nonthermal Plasma Reactor Coupled with Catalyst. Catalysts 2020, 10, 511. https://doi.org/10.3390/catal10050511
Liang W, Sun H, Shi X, Zhu Y. Abatement of Toluene by Reverse-Flow Nonthermal Plasma Reactor Coupled with Catalyst. Catalysts. 2020; 10(5):511. https://doi.org/10.3390/catal10050511
Chicago/Turabian StyleLiang, Wenjun, Huipin Sun, Xiujuan Shi, and Yuxue Zhu. 2020. "Abatement of Toluene by Reverse-Flow Nonthermal Plasma Reactor Coupled with Catalyst" Catalysts 10, no. 5: 511. https://doi.org/10.3390/catal10050511
APA StyleLiang, W., Sun, H., Shi, X., & Zhu, Y. (2020). Abatement of Toluene by Reverse-Flow Nonthermal Plasma Reactor Coupled with Catalyst. Catalysts, 10(5), 511. https://doi.org/10.3390/catal10050511