Dispersion of Defects in TiO2 Semiconductor: Oxygen Vacancies in the Bulk and Surface of Rutile and Anatase
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. O-Vacancy in the Bulk Structure of Rutile and Anatase
3.2. O-Vacancy on the Surface of Rutile and Anatase
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Padervand, M.; Salari, H.; Ahmadvand, S.; Gholami, M.R. Removal of an organic pollutant from waste water by photocatalytic behavior of AgX/TiO2 loaded on mordenite nanocrystals. Res. Chem. Intermed. 2012, 38, 1975–1985. [Google Scholar] [CrossRef]
- Sadrian, M.R.; Calvin, W.; Engelbrecht, J. Determination of Dust Particles Mineral Percentages by Semiquantitative Analysis Using X-Ray Powder Diffraction and Linear Spectral Unmixing. AGU Fall Meeting, San Francisco, CA, USA, 9–13 December 2019. [Google Scholar]
- Zahiri, A.H.; Chakraborty, P.; Wang, Y.; Cao, L. Strong strain hardening in ultrafast melt-quenched nanocrystalline Cu: The role of fivefold twins. J. Appl. Phys. 2019, 126, 075103. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Xu, L.; Meng, C.; Zhu, W. Ag/TiO2 nanofiber heterostructures: Highly enhanced photocatalysts under visible light. J. Appl. Phys. 2013, 113, 174311. [Google Scholar] [CrossRef]
- Divya, S.; Thankappan, A.; Vallabhan, C.P.G.; Nampoori, V.P.N.; Radhakrishnan, P.; Mujeeb, A. Electrolyte/photoanode engineered performance of TiO2 based dye sensitised solar cells. J. Appl. Phys. 2014, 115, 64501. [Google Scholar] [CrossRef]
- Salaoru, I.; Prodromakis, T.; Khiat, A.; Toumazou, C. Resistive switching of oxygen enhanced TiO2 thin-film devices. Appl. Phys. Lett. 2013, 102, 13506. [Google Scholar] [CrossRef]
- Elahifard, M.R.; Rahimnejad, S.; Pourbaba, R.; Hghighi, S.; Gholami, M.R. Photocatalytic mechanism of action of apatite-coated Ag /AgBr/TiO2 on phenol and Escherichia coli and Bacillus subtilis bacteria under various conditions. Prog. React. Kinet. Mech. 2011, 36, 38–52. [Google Scholar] [CrossRef]
- Sadrian, M.R.; Calvin, W.; Engelbrecht, J. Characterization of Mineral Dust using XRD and Infrared Spectroscopy. In Proceedings of the 99th American Meteorological Society Annual Meeting, Phoenix, AZ, USA, 6–10 January 2019. [Google Scholar]
- Elahifard, M.; Heydari, H.; Behjatmanesh-Ardakani, R.; Peik, B.; Ahmadvand, S. A computational study on the effect of Ni impurity and O-vacancy on the adsorption and dissociation of water molecules on the surface of anatase (101). J. Phys. Chem. Solids 2020, 136, 109176. [Google Scholar] [CrossRef]
- Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc. 2011, 133, 16414. [Google Scholar] [CrossRef]
- Bikondoa, O.; Pang, C.L.; Ithnin, R.; Muryn, C.A.; Onishi, H.; Thornton, G. Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 2006, 5, 189–192. [Google Scholar] [CrossRef]
- Minato, T.; Sainoo, Y.; Kim, Y.; Kato, H.S.; Aika, K.; Kawai, M.; Zhao, J.; Petek, H.; Huang, T.; He, W.; et al. The electronic structure of oxygen atom vacancy and hydroxyl impurity defects on titanium dioxide (110) surface. J. Chem. Phys. 2009, 130, 124502. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Liu, Y.; Zhao, Z.; Miao, M.; Wu, T.; Wang, Q. Reactivity of the Defective Rutile TiO2 (110) Surfaces with Two Bridging-Oxygen Vacancies: Water Molecule as a Probe. J. Phys. Chem. C 2014, 118, 20257–20263. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Banfield, J.F. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 1998, 8, 2073–2076. [Google Scholar] [CrossRef]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 63, 155409. [Google Scholar] [CrossRef]
- Thomas, A.G.; Flavell, W.R.; Mallick, A.K.; Kumarasinghe, A.R.; Tsoutsou, D.; Khan, N.; Chatwin, C.; Rayner, S.; Smith, G.C.; Stockbauer, R.L.; et al. Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy. Phys. Rev. B 2007, 75, 035105. [Google Scholar] [CrossRef]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Wendt, S.; Schaub, R.; Matthiesen, J.; Vestergaard, E.K.; Wahlström, E.; Rasmussen, M.D.; Thostrup, P.; Molina, L.M.; Lægsgaard, E.; Stensgaard, I.; et al. Oxygen vacancies on TiO2 (1 1 0) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf. Sci. 2005, 598, 226–245. [Google Scholar] [CrossRef]
- Deskins, N.R.; Rouseau, R.; Dupuis, M. Distribution of Ti3+ Surface Sites in Reduced TiO2. J. Phys. Chem. C 2011, 115, 7562–7572. [Google Scholar] [CrossRef]
- Yan, J.; Wu, G.; Guan, N.; Li, L.; Li, Z.; Caob, X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Phys. Chem. Chem. Phys. 2013, 15, 10978–10988. [Google Scholar] [CrossRef]
- Ranade, M.R.; Navrotsky, A.; Zhang, H.Z.; Banfield, J.F.; Elder, S.H.; Zaban, A.; Borse, P.H.; Kulkarni, S.K.; Doran, G.S.; Whitfield, H.J. Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. USA 2002, 99, 6476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.; Selloni, A. Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys. Rev. B 2009, 79, 092101. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Robertson, J. Calculation of TiO2 Surface and Subsurface Oxygen Vacancy by the Screened Exchange Functional. J. Phys. Chem. C 2015, 119, 18160–18166. [Google Scholar] [CrossRef]
- Scheiber, P.; Fidler, M.; Dulub, O.; Schmid, M.; Diebold, U.; Hou, W.; Aschauer, U.; Selloni, A. (Sub)Surface Mobility of Oxygen Vacancies at the TiO2 Anatase (101) Surface. Phys. Rev. Lett. 2012, 109, 136103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, G.; Hu, S.; Yan, S.; Mei, L. Oxygen vacancy induced ferromagnetism in rutile TiO2–x. Phys. Status Solidi RRL 2009, 3, 148–150. [Google Scholar] [CrossRef]
- Navas, J.; Sánchez-Coronilla, A.; Aguilar, T.; Hernández, N.C.; Santos, D.M.; Sánchez-Márquez, J.; Zorrilla, D.; Fernández-Lorenzo, C.; Alcántara, R.; Martín-Calleja, J. Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2. Phys. Chem. Chem. Phys. 2014, 16, 3835–3845. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Clark, S.J.; Robertson, J. Calculation of point defects in rutile TiO2 by the screened-exchange hybrid functional. Phys. Rev. B 2012, 86, 75209. [Google Scholar] [CrossRef] [Green Version]
- Janotti, A.; Varley, J.B.; Rinke, P.; Umezawa, N.; Kresse, G.; Van de Walle, C.G. Hybrid functional studies of the oxygen vacancy in TiO2. Phys. Rev. B 2010, 81, 085212. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, A.C.; Beglitis, N.S.; Pang, C.L.; Teobaldi, G.; Cabailh, G.; Chen, Q.; Fisher, A.J.; Hofer, W.A.; Thornton, G. Electron traps and their effect on the surface chemistry of TiO2 (110). Proc. Natl. Acad. Sci. USA 2010, 107, 2391–2396. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Čižmár, E.; Potzger, K.; Krause, M.; Talut, G.; Helm, M.; Fassbender, J.; Zvyagin, S.A.; Wosnitza, J.; Schmidt, H. Origin of magnetic moments in defective TiO2 single crystals. Phys. Rev. B 2009, 79, 113201. [Google Scholar] [CrossRef] [Green Version]
- Shao, G. Red Shift in Manganese-and Iron-Doped TiO2: A DFT+U Analysis. J. Phys. Chem. C 2009, 113, 6800–6808. [Google Scholar] [CrossRef]
- Di Valentin, C.; Pacchioni, G.; Selloni, A. Reduced and n-Type Doped TiO2: Nature of Ti3+ Species. J. Phys. Chem. C 2009, 113, 20543–20552. [Google Scholar] [CrossRef]
- Stausholm-Møller, J.; Kristoffersen, H.H.; Hinnemann, B.; Madsen, G.K.H.; Hammer, B. DFT+U study of defects in bulk rutile TiO2. J. Chem. Phys. 2010, 133, 144708. [Google Scholar] [CrossRef] [PubMed]
- Deskins, N.A.; Rousseau, R.; Dupuis, M. Defining the Role of Excess Electrons in the Surface Chemistry of TiO2. J. Phys. Chem. C 2010, 114, 5891–5897. [Google Scholar] [CrossRef]
- Crespillo, M.L.; Graham, J.T.; Agulló-López, F.; Zhang, Y.; Weber, W.J. Correlation between Cr3+luminescence and oxygen vacancy disorder in strontium titanate under MeV Ion Irradiation. J. Phys. Chem. C 2017, 121, 19758–19766. [Google Scholar] [CrossRef]
- Finazzi, E.; Di Valentin, C.; Pacchioni, G.; Selloni, A. Excess electron states in reduced bulk anatase TiO2: Comparison of standard GGA, GGA+U, and hybrid DFT calculations. J. Chem. Phys. 2008, 129, 154113. [Google Scholar] [CrossRef]
- Calzado, C.J.; Hernández, N.C.; Sanz, J.F. Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 Surface. Phys. Rev. B 2008, 77, 45118. [Google Scholar] [CrossRef] [Green Version]
- Morgan, B.J.; Watson, G.W. A DFT + U description of oxygen vacancies at the TiO2 rutile (1 1 0) surface. Surf. Sci. 2007, 601, 5034–5041. [Google Scholar] [CrossRef]
- Li, D.X.; Li, R.Q.; Chen, Y.; Yang, J.; Guo, X.T. Electronic Structures and Magnetism of Rutile TiO2 with Vacancy Defects from First Principles: GGA + U Calculations. J. Supercond. Nov. Magn. 2017, 30, 243–249. [Google Scholar] [CrossRef]
- Lechermann, F.; Heckel, W.; Kristanovski, O.; Müller, S. Oxygen-vacancy driven electron localization and itinerancy in rutile-based TiO2. Phys. Rev. B 2017, 95, 195159. [Google Scholar] [CrossRef] [Green Version]
- Morgan, B.J.; Watson, G.W. Intrinsic n-type Defect Formation in TiO2: A Comparison of Rutile and Anatase from GGA+U Calculations. J. Phys. Chem. C 2010, 114, 2321–2328. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esfandfard, S.M.; Elahifard, M.R.; Behjatmanesh-Ardakani, R.; Kargar, H. DFT Study on Oxygen-Vacancy Stability in Rutile/Anatase TiO2: Effect of Cationic Substitutions. Phys. Chem. Res. 2018, 6, 547–563. [Google Scholar]
- Elahifard, M.; Padervand, M.; Yasini, S.; Fazeli, E. The effect of double impurity cluster of Ni and Co in TiO2 bulk; a DFT study. J. Electroceramics 2016, 37, 79–84. [Google Scholar] [CrossRef]
- Cococcioni, M.; De Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U Method. Phys. Rev. B 2005, 71, 35105. [Google Scholar] [CrossRef] [Green Version]
- Asahi, R.; Taga, Y.; Mannstadt, W.; Freeman, A. Electronic and optical properties of anatase TiO2. J. Phys. Rev. B 2000, 61, 7459. [Google Scholar] [CrossRef]
- Woicik, J.C.; Nelson, E.J.; Kronik, L.; Jain, M.; Chelikowsky, J.R.; Heskett, D.; Berman, L.E.; Herman, G.S. Hybridization and Bond-Orbital Components in Site-Specific X-Ray Photoelectron Spectra of Rutile TiO2. Phys. Rev. Lett. 2002, 89, 077401. [Google Scholar] [CrossRef] [Green Version]
Anatase Forms | Relative Energy (eV) | dO-O (Å) | Rutile Forms | Relative Energy (eV) | dO-O (Å) |
---|---|---|---|---|---|
Form 1 | +0.50 | 2.47 | Form 1 | +0.65 | 2.51 |
Form 2 | +0.45 | 2.80 | Form 2 | 0.0 | 2.78 |
Form 3 | +0.41 | 3.04 | Form 3 | +0.35 | 2.96 |
Form 4 | +0.0 | 3.79 | Form 4 | +0.35 | 3.32 |
Form 5 | +0.20 | 3.96 | Form 5 | +0.30 | 3.88 |
Form 6 | +0.30 | 4.21 | Form 6 | +1.06 | 3.98 |
Form 7 | +0.34 | 4.53 | Form 7 | +0.54 | 4.45 |
Form 8 | +0.36 | 4.88 | Form 8 | +0.69 | 4.59 |
Form 9 | +0.40 | 5.37 | Form 9 | +0.92 | 4.94 |
Form 10 | +0.33 | 5.47 | Form 10 | +0.65 | 5.46 |
Form 11 | +0.39 | 6.67 | Form 11 | +0.39 | 5.78 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elahifard, M.; Sadrian, M.R.; Mirzanejad, A.; Behjatmanesh-Ardakani, R.; Ahmadvand, S. Dispersion of Defects in TiO2 Semiconductor: Oxygen Vacancies in the Bulk and Surface of Rutile and Anatase. Catalysts 2020, 10, 397. https://doi.org/10.3390/catal10040397
Elahifard M, Sadrian MR, Mirzanejad A, Behjatmanesh-Ardakani R, Ahmadvand S. Dispersion of Defects in TiO2 Semiconductor: Oxygen Vacancies in the Bulk and Surface of Rutile and Anatase. Catalysts. 2020; 10(4):397. https://doi.org/10.3390/catal10040397
Chicago/Turabian StyleElahifard, Mohammadreza, Mohammad Reza Sadrian, Amir Mirzanejad, Reza Behjatmanesh-Ardakani, and Seyedsaeid Ahmadvand. 2020. "Dispersion of Defects in TiO2 Semiconductor: Oxygen Vacancies in the Bulk and Surface of Rutile and Anatase" Catalysts 10, no. 4: 397. https://doi.org/10.3390/catal10040397