Ultrasonic-Assisted Michael Addition of Arylhalide to Activated Olefins Utilizing Nanosized CoMgAl-Layered Double Hydroxide Catalysts
Abstract
:1. Introduction
2. Results
2.1. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2. Thermal Gravimetric Analysis (TGA)
2.3. X-ray Diffraction (XRD)
2.4. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy (SEM–EDS)
2.5. N2 Physisorption
2.6. Temperature-Programmed Desorption (TPD-CO2)
2.7. Catalytic Test Reaction
3. Materials and Methods
3.1. Materials
3.2. Preparation of Catalysts
3.3. Measurements and Characterization
3.4. Typical Procedure for Conjugate Addition Reaction
3.4.1. Conventional Condition
3.4.2. Ultrasonic Condition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis, 1st ed.; Pergamon Press: Oxford, UK, 1992. [Google Scholar]
- Muriel, A.; Gosmini, C.; Périchon, J. CoBr2(Bpy): An Efficient Catalyst for the Direct Conjugate Addition of Aryl Halides or Triflates onto Activated Olefins. J. Org. Chem. 2006, 71, 6130–6134. [Google Scholar]
- Tucker, C.E.; Majid, T.N.; Knochel, P. Preparation of highly functionalized magnesium, zinc, and copper aryl and alkenyl organometallics via the corresponding organolithiums. J. Am. Chem. Soc. 1992, 114, 3983–3985. [Google Scholar] [CrossRef]
- Varchi, G.; Ricci, A.; Cahiez, G.; Knochel, P. Copper Catalyzed Conjugate Addition of Highly Functionalized Arylmagnesium Compounds to Enones. Tetrahedron 2000, 56, 2727–2731. [Google Scholar] [CrossRef]
- Klement, I.; Stadtmüller, H.; Knochel, P.; Cahiez, G. Preparation and reactivity of functionalized aryl and alkenylmanganese halides. Tetrahedron Lett. 1997, 38, 1927–1930. [Google Scholar] [CrossRef]
- Lu, X.; Lin, S. Pd(II)-Bipyridine Catalyzed Conjugate Addition of Arylboronic Acid to α,β-Unsaturated Carbonyl Compounds. J. Org. Chem. 2005, 70, 9651–9653. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yang, Z.; Ni, Y.; Song, K.; Shen, K.; Lin, S.; Pan, Q. Pd(II)/Bipyridine-Catalyzed Conjugate Addition of Arylboronic Acids to α,β-Unsaturated Carboxylic Acids. Synthesis of β-Quaternary Carbons Substituted Carboxylic Acids. J. Org. Chem. 2017, 82, 8023–8030. [Google Scholar] [CrossRef] [PubMed]
- Vautravers, N.R.; Breit, B. Rhodium(I)-Catalyzed 1,4-Addition of Arylboronic Acids to Acrylic Acid in Water: One-Step Preparation of 3-Arylpropionic Acids. Synlett 2011, 17, 2517–2520. [Google Scholar] [CrossRef]
- Kamikawa, K.; Tseng, Y.-Y.; Jian, J.-H.; Takahashi, T.; Ogasawara, M. Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity. J. Am. Chem. Soc. 2017, 139, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yue, G.; Nielsen, C.D.-T.; Xu, K.; Hirao, H.; Zhou, J. Asymmetric Conjugate Addition of Organoboron Reagents to Common Enones Using Copper Catalysts. J. Am. Chem. Soc. 2016, 138, 742–745. [Google Scholar] [CrossRef] [PubMed]
- Lerebours, R.; Wolf, C. Palladium(II)-Catalyzed Conjugate Addition of Arylsiloxanes in Water. Org. Lett. 2007, 9, 2737–2740. [Google Scholar] [CrossRef] [PubMed]
- Westermann, J.; Imberg, U.; Nguyen, A.T.; Nickisch, K. Nickel-Catalysed 1,4-Addition of Aryl Groups to Enones Using Aryldialkylaluminum Compounds. Eur. J. Inorg. Chem. 1998, 295, 295–298. [Google Scholar] [CrossRef]
- Subburaj, K.; Montgomry, J. A New Catalytic Conjugate Addition/Aldol Strategy That Avoids Preformed Metalated Nucleophiles. J. Am. Chem. Soc. 2003, 125, 11210–11211. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.; Gosmini, C.; Nédélec, J.Y.; Périchon, J. Electrochemical vinylation of aryl and vinyl halides with acrylate esters catalyzed by cobalt bromide. Tetrahedron Lett. 2002, 43, 5901–5903. [Google Scholar] [CrossRef]
- Amatore, M.; Gosmini, C.; Périchon, J. Process for Forming Carbon-Carbon Bonds by a Coupling Reaction between Unsaturated Compounds in the Presence of a Cobalt-Based Catalyst. Centre National de la Recherche Scientifique CNRS Rhodia Chimie SAS. Patent FR2865203, 22 July 2005. [Google Scholar]
- Ahmed, N.S.; Menzel, R.; Wang, Y.; Garcia-Gallastegui, A.; Bawaked, S.M.; Obaid, A.Y.; Basahel, S.N.; Mokhtar, M. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction. J. Solid State Chem. 2017, 246, 130–137. [Google Scholar] [CrossRef]
- Mokhtar, M.; Inayat, A.; Ofili, J.; Schwieger, W. Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide: A comparative study. Appl. Clay Sci. 2010, 50, 176–181. [Google Scholar] [CrossRef]
- Mokhtar, M.; Saleh, T.S.; Ahmed, N.S.; Al-Thabaiti, S.A.; Al-Shareef, R.A. An eco-friendly N-sulfonylation of amines using stable and reusable Zn–Al–hydrotalcite solid base catalyst under ultrasound irradiation. Ultrason. Sonochem. 2011, 18, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, M.; Saleh, T.S.; Basahel, S.N. Mg–Al hydrotalcites as efficient catalysts for aza-Michael addition reaction: A green protocol. J. Mol. Catal. A Chem. 2012, 353–354, 122–131. [Google Scholar] [CrossRef]
- Narasimharao, K.; Al-Sabban, E.; Saleh, S.T.; Garcia-Gallastegui, A.; Sanfiz, A.C.; Basahel, S.; Al-Thabaiti, S.; Alyoubi, A.; Obaid, A.; Mokhtar, M. Microwave assisted efficient protocol for the classic Ullmann homocoupling reaction using Cu–Mg–Al hydrotalcite catalysts. J. Mol. Catal. A Chem. 2013, 379, 152–162. [Google Scholar] [CrossRef]
- Abdellattif, M.; Mokhtar, H.M. MgAl-Layered Double Hydroxide Solid Base Catalysts for Henry Reaction: A Green Protocol. Catalysts 2018, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Alzhrani, G.; Ahmed, N.S.; Aazam, E.S.; Saleh, T.S.; Mokhtar, M. Novel Efficient Pd-Free Ni-Layered Double Hydroxide Catalysts for a Suzuki C–C Coupling Reaction. Chem. Select 2019, 4, 7904–7911. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Akhbari, K.; Morsali, A. Dense coating of surface mounted CuBTC metal–organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason. Sonochem. 2012, 19, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Safarifard, V.; Morsali, A. Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coord. Chem. Rev. 2015, 292, 1–14. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Qiu, L.-G.; Wang, W.; Xu, T.; Wu, Y.; Jiang, X. Fabrication of nanosheets of a fluorescent metal–organic framework [Zn(BDC)(H2O)]n (BDC= 1,4-benzenedicarboxylate): Ultrasonic synthesis and sensing of ethylamine. Inorg. Chem. Commun. 2008, 11, 1375–1377. [Google Scholar] [CrossRef]
- Abdollahi, N.; Masoomi, M.Y.; Morsali, A.; Junk, P.C.; Wang, J. Sonochemical synthesis and structural characterization of a new Zn(II) nanoplate metal–organic framework with removal efficiency of Sudan red and Congo red. Ultrason. Sonochem. 2018, 45, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Eghbali-Arani, M.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Pourmasoud, S. Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for 20 enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 2018, 43, 120–135. [Google Scholar] [CrossRef]
- Choudhary, B.M.; Lakshmi, K.M.; Neeraja, V.; Koteswara, R.K.; Figueras, F.; Delmotte, L. Layered double hydroxide fluoride: A novel solid base catalyst for C-C bond formation. Green Chem. 2001, 3, 257–260. [Google Scholar] [CrossRef]
- Kantam, M.L.; Ravindra, A.; Reddy, C.V.; Sreedhar, B.; Choudary, B.M. Layered Double Hydroxides-Supported Diisopropylamide: Synthesis, Characterization and Application in Organic Reactions. Adv. Synth. Catal. 2006, 348, 569–578. [Google Scholar] [CrossRef]
- Varga, G.; Kozma, V.; Kolcsár, V.J.; Kukovecz, Á.; Kónya, Z.; Sipos, P.; Szὅllὅsi, G. β-Isocupreidinate‒CaAl-layered double hydroxide composites—Heterogenized catalysts for asymmetric Michael addition. Mol. Catal. 2019, 482, 110675. [Google Scholar] [CrossRef]
- El-bendary, M.M.; Saleh, T.S.; Al-Bogami, A.S. Ultrasound Assisted High-Throughput Synthesis of 1,2,3-Triazoles Libraries: A New Strategy for “Click” Copper-Catalyzed Azide-Alkyne Cycloaddition Using Copper(I/II) as a Catalyst. Catal. Lett. 2018, 148, 3797–3810. [Google Scholar] [CrossRef]
- Al-Bogami, A.S.; Saleh, T.S.; Moussa, T.A.A. Green synthesis, antimicrobial activity and cytotoxicity of novel fused pyrimidine derivatives possessing a trifluoromethyl moiety. Chemistryselect 2018, 3, 8306–8311. [Google Scholar] [CrossRef]
- Saleh, T.S.; Narasimharao, K.; Ahmed, N.S.; Basahel, S.N.; Al-Thabaiti, S.A.; Mokhtar, M. Mg–Al hydrotalcite as an efficient catalyst for microwave assisted regioselective 1,3-dipolar cycloaddition of nitrilimines with the enaminone derivatives: A green protocol. J. Mol. Catal. A Chem. 2013, 367, 12–22. [Google Scholar] [CrossRef]
- Mokhtar, M.; Saleh, T.S.; Ahmed, N.S.; Al-Bogami, A.S. A Green Mechanochemical One-Pot Three-Component Domino Reaction Synthesis of Polysubstituted Azoloazines Containing Benzofuran Moiety: Cytotoxic Activity against HePG2 Cell Lines. Polycycl. Aromat. Compd. 2018, 1–15. [Google Scholar]
- Béres, A.; Palinko, I.; Kiricsi, I.; Nagy, J.B.; Kiyozumi, Y.; Mizukami, F. Layered double hydroxides and their pillared derivatives—Materials for solid base catalysis; synthesis and characterization. Appl. Catal. A 1999, 182, 237–247. [Google Scholar] [CrossRef]
- Velu, S.; Shah, N.; Jyothi, T.M.; Sivasanker, S. Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg–Al layered double hydroxides. Microporous Mesoporous Mater. 1999, 33, 61–75. [Google Scholar]
- Di Cosimo, J.I.; Díez, V.K.; Xu, M.; Iglesia, E.; Apesteguía, C.R. Structure and surface and catalytic properties of Mg–Al basic oxides. J. Catal. 1998, 178, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Tichit, D.; Naciri Bennani, M.; Figueras, F.; Ruiz, J.R. Decomposition processes and characterization of the surface basicity of Cl- and CO32− hydrotalcites. Langmuir 1998, 14, 2086–2091. [Google Scholar] [CrossRef]
- Rocha, J.; del Arco, M.; Rives, V.; Ulibarri, M.A. Reconstruction of layered double hydroxides from calcined precursors: A powder XRD and 27Al MAS NMR study. J. Mater. Chem. 1999, 9, 2499–2503. [Google Scholar] [CrossRef]
- Liao, H.; Jia, Y.; Wang, L.; Yin, Q.; Han, J.; Sun, X.; Wei, M. Size Effect of Layered Double Hydroxide Platelets on the Crystallization Behavior of Isotactic Polypropylene. ACS Omega 2017, 2, 4253–4260. [Google Scholar]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Bergada, O.; Vicente, I.; Salagre, P.; Cesteros, Y.; Medina, F.; Sueiras, J.E. Microwave effect during aging on the porosity and basic properties of hydrotalcites. Microporous Mesoporous Mater. 2007, 101, 363–373. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Prinetto, F.; Ghiotti, G.; Graffin, P.; Tichit, D. Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. Microporous Mesoporous Mater. 2000, 39, 229–247. [Google Scholar] [CrossRef]
- Amatore, M.; Gosmini, C.; Pe´richon, J. Cobalt-Catalyzed Vinylation of Functionalized Aryl Halides with Vinyl Acetates. J. Eur. J. Org. Chem. 2005, 2005, 989–992. [Google Scholar] [CrossRef]
- Mason, T.J.; Tiehm, A. Advances in Sonochemistry: Ultrasound in Environmental Protection, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Shah, Y.T.; Pandit, A.B.; Moholkar, V.S. Cavitation Reaction Engineering, 1st ed.; Springer Science & Business Media, LLC: New York, NY, USA, 1999. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
Sample | OK | MgK | AlK | CoK | ||||
---|---|---|---|---|---|---|---|---|
wt.% | at.% | wt.% | at.% | wt.% | at.% | wt.% | at.% | |
MgAl-LDH | 67.47 | 74.85 | 25.15 | 19.44 | 07.38 | 05.71 | - | - |
CoMgAl-LDH | 52.95 | 72.09 | 10.45 | 09.36 | 11.37 | 09.18 | 25.23 | 09.36 |
CoAl-LDH | 50.33 | 74.64 | - | - | 11.07 | 09.74 | 38.06 | 15.61 |
Entry | Catalyst | Conventional Heating | Ultrasonic Irradiation | ||
---|---|---|---|---|---|
Time (h) | Yield (%) | Time (min) | Yield (%) | ||
1 | Catalyst-free | 12 | - | 120 | - |
2 | MgAl-LDH | 12 | - | 120 | - |
3 | CoMgAl-LDH | 6 | 71 | 45 | 85 |
4 | CoAl-LDH | 8 | 58 | 60 | 72 |
Entry | Catalyst Weight (g) | Solvent | Time (min) | Yield (%) |
---|---|---|---|---|
1 | 0.3 | EtOH | 45 | 82 |
2 | 0.35 | EtOH | 45 | 85 |
3 | 0.4 | EtOH | 45 | 85 |
4 | 0.35 | DMF | 30 | 76 |
5 | 0.35 | Butanol | 15 | 81 |
6 | 0.35 | Methanol | 15 | 63 |
7 | 0.35 | Propanol | 25 | 76 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althabaiti, N.S.; Al-Nwaiser, F.M.; Saleh, T.S.; Mokhtar, M. Ultrasonic-Assisted Michael Addition of Arylhalide to Activated Olefins Utilizing Nanosized CoMgAl-Layered Double Hydroxide Catalysts. Catalysts 2020, 10, 220. https://doi.org/10.3390/catal10020220
Althabaiti NS, Al-Nwaiser FM, Saleh TS, Mokhtar M. Ultrasonic-Assisted Michael Addition of Arylhalide to Activated Olefins Utilizing Nanosized CoMgAl-Layered Double Hydroxide Catalysts. Catalysts. 2020; 10(2):220. https://doi.org/10.3390/catal10020220
Chicago/Turabian StyleAlthabaiti, Nada S., Fawzia M. Al-Nwaiser, Tamer S. Saleh, and Mohamed Mokhtar. 2020. "Ultrasonic-Assisted Michael Addition of Arylhalide to Activated Olefins Utilizing Nanosized CoMgAl-Layered Double Hydroxide Catalysts" Catalysts 10, no. 2: 220. https://doi.org/10.3390/catal10020220
APA StyleAlthabaiti, N. S., Al-Nwaiser, F. M., Saleh, T. S., & Mokhtar, M. (2020). Ultrasonic-Assisted Michael Addition of Arylhalide to Activated Olefins Utilizing Nanosized CoMgAl-Layered Double Hydroxide Catalysts. Catalysts, 10(2), 220. https://doi.org/10.3390/catal10020220