Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst
Abstract
:1. Introduction
2. Results
2.1. Characterization of Catalysts
2.2. Catalytic Activity Evaluation
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalyst Activity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gholami, Z.; Luo, G. Low-Temperature Selective Catalytic Reduction of NO by CO in the Presence of O2 over Cu:Ce Catalysts Supported by Multiwalled Carbon Nanotubes. Ind. Eng. Chem. Res. 2018, 57, 8871–8883. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G.; Gholami, F. The influence of support composition on the activity of Cu:Ce catalysts for selective catalytic reduction of NO by CO in the presence of excess oxygen. New J. Chem. 2020, 44, 709–718. [Google Scholar] [CrossRef]
- Gholami, F.; Tomas, M.; Gholami, Z.; Vakili, M. Technologies for the nitrogen oxides reduction from flue gas: A review. Sci. Total. Environ. 2020, 714, 136712. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, S.; Niaei, A.; Illán-Gómez, M.J.; Tarjomannejad, A.; Mousavi, S.M.; Albaladejo-Fuentes, V. Catalytic reduction of NO by CO over CeO2-MOx (0.25) (M = Mn, Fe and Cu) mixed oxides—Modeling and optimization of catalyst preparation by hybrid ANN-GA. J. Environ. Chem. Eng. 2017, 5, 4937–4947. [Google Scholar] [CrossRef]
- Dai, X.; Jiang, W.; Wang, W.; Weng, X.L.; Shang, Y.; Xue, Y.; Wu, Z. Supercritical water syntheses of transition metal-doped CeO2 nano-catalysts for selective catalytic reduction of NO by CO: An in situ diffuse reflectance Fourier transform infrared spectroscopy study. Chin. J. Catal. 2018, 39, 728–735. [Google Scholar] [CrossRef]
- Li, J.; Luo, G.; Chu, Y.; Wei, F. Experimental and modeling analysis of NO reduction by CO for a FCC regeneration process. Chem. Eng. J. 2012, 184, 168–175. [Google Scholar] [CrossRef]
- Sierra-Pereira, C.A.; Urquieta-González, E.A. Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam. Fuel 2014, 118, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yao, X.; Lu, Y.; Sun, C.; Tang, C.; Gao, F.; Dong, L. Effect of precursors on the structure and activity of CuO-CoOx/γ-Al2O3 catalysts for NO reduction by CO. J. Colloid Interface Sci. 2018, 509, 334–345. [Google Scholar] [CrossRef]
- Du, X.; Yao, T.-L.; Wei, Q.; Zhang, H.; Huang, Y. Investigation of Fe-Ni Mixed-Oxide Catalysts for the Reduction of NO by CO: Physicochemical Properties and Catalytic Performance. Chem. Asian J. 2019, 14, 2966–2978. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Liu, J.; Liu, H.; Wang, Y.; Sun, B. Effects of temperature on NOx removal with Mn-Cu/ZSM5 catalysts assisted by plasma. Appl. Therm. Eng. 2018, 130, 1224–1232. [Google Scholar] [CrossRef]
- Tarjomannejad, A.; Farzi, A.; Niaei, A.; Salari, D. NO reduction by CO over LaB0.5B′0.5O3 (B = Fe, Mn, B′ = Fe, Mn, Co, Cu) perovskite catalysts, an experimental and kinetic study. J. Taiwan Inst. Chem. Eng. 2017, 78, 200–211. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Maeda, N.; Baiker, A. Striking activity enhancement of gold supported on Al-Ti mixed oxide by promotion with ceria in the reduction of NO with CO. Appl. Catal. B Environ. 2017, 209, 62–68. [Google Scholar] [CrossRef]
- Ilieva, L.; Pantaleo, G.; Velinov, N.; Tabakova, T.; Petrova, P.; Ivanov, I.; Avdeev, G.; Paneva, D.; Venezia, A. NO reduction by CO over gold catalysts supported on Fe-loaded ceria. Appl. Catal. B Environ. 2015, 174, 176–184. [Google Scholar] [CrossRef]
- Boningari, T.; Pavani, S.M.; Ettireddy, P.R.; Chuang, S.S.; Smirniotis, P.G. Mechanistic investigations on NO reduction with CO over Mn/TiO2 catalyst at low temperatures. Mol. Catal. 2018, 451, 33–42. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, C.; Cheng, X.; Wang, Z. Performance of Fe-Ba/ZSM-5 catalysts in NO + O2 adsorption and NO + CO reduction. Int. J. Hydrogen Energy 2017, 42, 7077–7088. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, X.; Wang, Z.; Ma, C.; Qin, Y. Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO. Appl. Catal. B Environ. 2017, 201, 636–651. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, B.; Sun, Y.; Yin, S.; Zhu, Z.; Li, J. Investigation of Low-Temperature Selective Catalytic Reduction of NOx with Ammonia over Mn-Modified Fe2O3/AC Catalysts. J. Braz. Chem. Soc. 2017, 29, 79–87. [Google Scholar] [CrossRef]
- Xiong, Z.-B.; Wu, C.; Hu, Q.; Wang, Y.-Z.; Jin, J.; Lu, C.-M.; Guo, D.-X. Promotional effect of microwave hydrothermal treatment on the low-temperature NH3-SCR activity over iron-based catalyst. Chem. Eng. J. 2016, 286, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Chu, B.; Wang, F.; Wei, X.; Teng, L.; Fan, M.; Li, B.; Dong, L.; Dong, L. Mn-Modified CuO, CuFe2O4, and γ-Fe2O3 Three-Phase Strong Synergistic Coexistence Catalyst System for NO Reduction by CO with a Wider Active Window. ACS Appl. Mater. Interfaces 2018, 10, 40509–40522. [Google Scholar] [CrossRef]
- Chang, H.; Bjørgum, E.; Mihai, O.; Yang, J.; Lein, H.L.; Grande, T.; Raaen, S.; Zhu, Y.-A.; Holmen, A.; Chen, D. Effects of Oxygen Mobility in La-Fe-Based Perovskites on the Catalytic Activity and Selectivity of Methane Oxidation. ACS Catal. 2020, 10, 3707–3719. [Google Scholar] [CrossRef]
- Mihai, O.; Chen, D.; Holmen, A. Chemical looping methane partial oxidation: The effect of the crystal size and O content of LaFeO3. J. Catal. 2012, 293, 175–185. [Google Scholar] [CrossRef]
- Wu, M.; Chen, S.; Xiang, W. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chem. Eng. J. 2020, 387, 124101. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G.; Gholami, F.; Yang, F. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: A review. Catal. Rev. 2020, 1–52. [Google Scholar] [CrossRef]
- Gholami, Z.; Tišler, Z.; Rubáš, V. Recent advances in Fischer-Tropsch synthesis using cobalt-based catalysts: A review on supports, promoters, and reactors. Catal. Rev. 2020, 1–84. [Google Scholar] [CrossRef]
- Lu, J.; Li, X.; He, S.; Han, C.; Wan, G.; Lei, Y.; Chen, R.; Liu, P.; Chen, K.; Zhang, L.; et al. Hydrogen production via methanol steam reforming over Ni-based catalysts: Influences of Lanthanum (La) addition and supports. Int. J. Hydrogen Energy 2017, 42, 3647–3657. [Google Scholar] [CrossRef]
- Lu, J.; Hao, H.; Zhang, L.; Xu, Z.; Zhong, L.; Zhao, Y.; He, D.; Liu, J.; Chen, D.; Pu, H.; et al. The investigation of the role of basic lanthanum (La) species on the improvement of catalytic activity and stability of HZSM-5 material for eliminating methanethiol-(CH3SH). Appl. Catal. B Environ. 2018, 237, 185–197. [Google Scholar] [CrossRef]
- Ramana, C.V.; Vemuri, R.S.; Kaichev, V.V.; Kochubey, V.A.; Saraev, A.A.; Atuchin, V.V. X-ray Photoelectron Spectroscopy Depth Profiling of La2O3/Si Thin Films Deposited by Reactive Magnetron Sputtering. ACS Appl. Mater. Interfaces 2011, 3, 4370–4373. [Google Scholar] [CrossRef]
- Fang, J.; Sun, Y.; Ma, T.; Chen, G.; Wang, L. Preparation of Mn-Ce/TiO2 Catalysts and its Selective Catalytic Reduction of NO at Low-temperature. IOP Conf. Series Mater. Sci. Eng. 2018, 423, 012179. [Google Scholar] [CrossRef]
- Huang, J.; Huang, H.; Liu, L.; Jiang, H. Revisit the effect of manganese oxidation state on activity in low-temperature NO-SCR. Mol. Catal. 2018, 446, 49–57. [Google Scholar] [CrossRef]
- Andreoli, S.P.; Deorsola, F.A.; Galletti, C.; Pirone, R. Nanostructured MnO catalysts for low-temperature NO SCR. Chem. Eng. J. 2015, 278, 174–182. [Google Scholar] [CrossRef]
- Andreoli, S.; Deorsola, F.A.; Pirone, R. MnOx-CeO2 catalysts synthesized by solution combustion synthesis for the low-temperature NH3-SCR. Catal. Today 2015, 253, 199–206. [Google Scholar] [CrossRef]
- Xiao, P.; Xuelian, X.; Wang, S.; Zhu, J.; Zhu, Y. One-pot synthesis of LaFeO3@C composites for catalytic transfer hydrogenation reactions: Effects of carbon precursors. Appl. Catal. A Gen. 2020, 603, 117742. [Google Scholar] [CrossRef]
- Su, Y.; Fan, B.; Wang, L.; Liu, Y.; Huang, B.; Fu, M.; Chen, L.; Ye, D. MnOx supported on carbon nanotubes by different methods for the SCR of NO with NH3. Catal. Today 2013, 201, 115–121. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, L.; Xia, H.; Peng, J. Characterization and adsorption properties of La and Fe modified activated carbon for dye wastewater treatment. Green Process. Synth. 2017, 6, 487–498. [Google Scholar] [CrossRef]
- Yin, S.; Zhu, B.; Sun, Y.; Zi, Z.; Fang, Q.; Li, G.; Chen, C.; Xu, T.; Li, J. Effect of Mn addition on the low-temperature NH3 -selective catalytic reduction of NOx over Fe2O3/activated coke catalysts: Experiment and mechanism. Asia Pac. J. Chem. Eng. 2018, 13, e2231. [Google Scholar] [CrossRef]
- Eyssler, A.; Winkler, A.; Safonova, O.; Nachtegaal, M.; Matam, S.K.; Hug, P.; Weidenkaff, A.; Ferri, D. On the State of Pd in Perovskite-Type Oxidation Catalysts of Composition A(B,Pd)O3 ± δ (A = La, Y; B = Mn, Fe, Co). Chem. Mater. 2012, 24, 1864–1875. [Google Scholar] [CrossRef]
- Li, Z.; Lv, L.; Wang, J.; Ao, X.; Ruan, Y.; Zha, D.; Hong, G.; Wu, Q.; Lan, Y.; Wang, C.; et al. Engineering phosphorus-doped LaFeO3 − δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 2018, 47, 199–209. [Google Scholar] [CrossRef]
- Hou, X.; Qian, J.; Li, L.; Wang, F.; Li, B.; He, F.; Fan, M.; Tong, Z.; Dong, L.; Dong, L. Preparation and Investigation of Iron–Cerium Oxide Compounds for NOx Reduction. Ind. Eng. Chem. Res. 2018, 57, 16675–16683. [Google Scholar] [CrossRef]
- Leelavathi, A.; Madras, G.; Ravishankar, N. Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods. Phys. Chem. Chem. Phys. 2013, 15, 10795. [Google Scholar] [CrossRef]
- Jeong, H.-Y.; Lee, B.-Y.; Lee, Y.-J.; Lee, J.-I.; Yang, M.-S.; Kang, I.-B.; Mativenga, M.; Jang, J. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer. Appl. Phys. Lett. 2014, 104, 022115. [Google Scholar] [CrossRef]
- Sonsupap, S.; Kidkhunthod, P.; Chanlek, N.; Pinitsoontorn, S.; Maensiri, S. Fabrication, structure, and magnetic properties of electrospun Ce0.96Fe0.04O2 nanofibers. Appl. Surf. Sci. 2016, 380, 16–22. [Google Scholar] [CrossRef]
- Kim, H.J.; Tak, Y.J.; Park, S.P.; Na, J.W.; Kim, Y.-G.; Hong, S.; Kim, P.H.; Kim, G.T.; Kim, B.K.; Kim, H.J. The self-activated radical doping effects on the catalyzed surface of amorphous metal oxide films. Sci. Rep. 2017, 7, 12469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyeon, M.; Ruoko, T.-P.; LeDuc, J.; Gönüllü, Y.; Deo, M.; Tkachenko, N.V.; Mathur, S. Critical role and modification of surface states in hematite films for enhancing oxygen evolution activity. J. Mater. Res. 2018, 33, 455–466. [Google Scholar] [CrossRef]
- Li, B.; Raj, A.; Croiset, E.; Wen, J.Z. Reactive Fe-O-Ce Sites in Ceria Catalysts for Soot Oxidation. Catalysts 2019, 9, 815. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wan, Z.; Yang, X.; Zhang, X.; Niu, X.; Sun, B. Promotional effect of iron modification on the catalytic properties of Mn-Fe/ZSM-5 catalysts in the Fast SCR reaction. Fuel Process. Technol. 2018, 169, 112–121. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, F.; Zhu, M.; Dan, J.; Wang, X.; Zhang, J.; Dai, B. Enhanced Low Temperature NO Reduction Performance via MnOx-Fe2O3/Vermiculite Monolithic Honeycomb Catalysts. Catalysts 2018, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Tang, C.; Ji, Z.; Dai, Y.; Cao, Y.; Gao, F.; Dong, L.; Chen, Y. Investigation of the physicochemical properties and catalytic activities of Ce0.67M0.33O2(M = Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO. Catal. Sci. Technol. 2013, 3, 688–698. [Google Scholar] [CrossRef]
- Deng, C.; Li, B.; Dong, L.; Zhang, F.; Fan, M.; Jin, G.; Gao, J.; Gao, L.; Zhang, F.; Zhou, X. NO reduction by CO over CuO supported on CeO2-doped TiO2: The effect of the amount of a few CeO2. Phys. Chem. Chem. Phys. 2015, 17, 16092–16109. [Google Scholar] [CrossRef]
- Bai, Y.; Bian, X.; Wu, W. Catalytic properties of CuO/CeO2-Al2O3 catalysts for low concentration NO reduction with CO. Appl. Surf. Sci. 2019, 463, 435–444. [Google Scholar] [CrossRef]
- Rosas, J.; Ruiz-Rosas, R.; Rodríguez-Mirasol, J.; Cordero, T. Kinetic study of NO reduction on carbon-supported chromium catalysts. Catal. Today 2012, 187, 201–211. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, H.; Tian, S.; Tsubaki, N.; Han, Y.; Tan, Y. Isobutanol synthesis from syngas over K–Cu/ZrO2–La2O3(x) catalysts: Effect of La-loading. J. Mol. Catal. A Chem. 2015, 396, 254–260. [Google Scholar] [CrossRef]
- Liu, T.; Qian, J.; Yao, Y.; Shi, Z.; Han, L.; Liang, C.; Li, B.; Dong, L.; Fan, M.; Zhang, L. Research on SCR of NO with CO over the Cu0.1La0.1Ce0.8O mixed-oxide catalysts: Effect of the grinding. Mol. Catal. 2017, 430, 43–53. [Google Scholar] [CrossRef]
- Milt, V.G.; Pissarello, M.; Miró, E.; Querini, C. Abatement of diesel-exhaust pollutants: NOx storage and soot combustion on K/La2O3 catalysts. Appl. Catal. B Environ. 2003, 41, 397–414. [Google Scholar] [CrossRef]
- Peralta, M.A.; Zanuttini, M.S.; Ulla, M.; Querini, C. Diesel soot and NOx abatement on K/La2O3 catalyst: Influence of K precursor on soot combustion. Appl. Catal. A Gen. 2011, 399, 161–171. [Google Scholar] [CrossRef]
- Lu, P.; Li, C.; Zeng, G.; He, L.; Peng, D.; Cui, H.; Li, S.; Zhai, Y. Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria. Appl. Catal. B Environ. 2010, 96, 157–161. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, L.; Wang, Z.; Zhang, M.; Ma, C. Catalytic Performance of NO Reduction by CO over Activated Semicoke Supported Fe/Co Catalysts. Ind. Eng. Chem. Res. 2016, 55, 12710–12722. [Google Scholar] [CrossRef]
- Spassova, I.; Khristova, M.S.; Panayotov, D.; Mehandjiev, D.R. Coprecipitated CuO-MnOx Catalysts for Low-Temperature CO–NO and CO–NO–O2 Reactions. J. Catal. 1999, 185, 43–57. [Google Scholar] [CrossRef]
- Jiang, X.-Y.; Zhou, R.; Pan, P.; Zhu, B.; Yuan, X.-X.; Zheng, X.-M. Effect of the addition of La2O3 on TPR and TPD of CuOγ-Al2O3 catalysts. Appl. Catal. A Gen. 1997, 150, 131–141. [Google Scholar] [CrossRef]
- Bîrjega, R.; Pavel, O.; Costentin, G.; Che, M.; Angelescu, E. Rare-earth elements modified hydrotalcites and corresponding mesoporous mixed oxides as basic solid catalysts. Appl. Catal. A Gen. 2005, 288, 185–193. [Google Scholar] [CrossRef]
- Greluk, M.; Rotko, M.; Turczyniak-Surdacka, S. Enhanced catalytic performance of La2O3 promoted Co/CeO2 and Ni/CeO2 catalysts for effective hydrogen production by ethanol steam reforming. Renew. Energy 2020, 155, 378–395. [Google Scholar] [CrossRef]
- Sun, C.; Tang, Y.; Gao, F.; Sun, J.; Ma, K.; Tang, C.; Dong, L. Effects of different manganese precursors as promoters on catalytic performance of CuO-MnOx/TiO2 catalysts for NO removal by CO. Phys. Chem. Chem. Phys. 2015, 17, 15996–16006. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Atomic Percentage (%) | a La:Fe | b La:Fe | c La:Fe | d Fe2+/Fe3+ | |||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | La | Fe | Ce | Mn | |||||
Fe/AC | 85.11 | 13 | 0 | 1.89 | 0 | 0 | 0:1 | 0:1 | 0:1 | 0.25 |
La1-Fe3/AC | 85.98 | 9.5 | 1.15 | 3.37 | 0 | 0 | 1:2.9 | 1:3.1 | 1:3 | 0.58 |
La1-Fe1/AC | 83.15 | 10.28 | 2.42 | 4.15 | 0 | 0 | 1:1.7 | 1:1.2 | 1:1 | 0.72 |
La3-Fe1/AC | 86.34 | 9.39 | 1.33 | 2.94 | 0 | 0 | 1:2.2 | 3:1 | 3:1 | 0.81 |
Ce@La3-Fe1/AC | 82.46 | 9.75 | 2.18 | 3.97 | 1.64 | 0 | 1:1.8 | 2.8:1 | 3:1 | 1.27 |
Mn@La3-Fe1/AC | 78.85 | 12.15 | 2.98 | 5.11 | 0 | 0.91 | 1:1.7 | 2.9:1 | 3:1 | 1.96 |
Catalyst | Area under the Graphs | Atomic Percentage (%) | ||
---|---|---|---|
Oβ | Oα | Oγ | |
Fe/AC | 3426.5 | 10.16 | 10,876.4 | 31.99 | 19,496.7 | 57.85 |
La1-Fe3/AC | 4090.1 | 13.20 | 17,665.6 | 57.04 | 7885.8 | 25.47 |
La1-Fe1/AC | 7230.8 | 20.08 | 17,922.5 | 49.79 | 9548.5 | 26.54 |
La3-Fe1/AC | 1860.4 |5.84 | 18,171.3 | 57.06 | 11,810.6 | 37.10 |
Ce@La3-Fe1/AC | 7280.4 | 22.88 | 19,004.2 | 59.75 | 4158.4 | 13.08 |
Mn@La3-Fe1/AC | 14,043.9 | 33.05 | 19,341.8 | 45.54 | 8165.2 | 19.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gholami, F.; Gholami, Z.; Tomas, M.; Vavrunkova, V.; Mirzaei, S.; Vakili, M. Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst. Catalysts 2020, 10, 1322. https://doi.org/10.3390/catal10111322
Gholami F, Gholami Z, Tomas M, Vavrunkova V, Mirzaei S, Vakili M. Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst. Catalysts. 2020; 10(11):1322. https://doi.org/10.3390/catal10111322
Chicago/Turabian StyleGholami, Fatemeh, Zahra Gholami, Martin Tomas, Veronika Vavrunkova, Somayeh Mirzaei, and Mohammadtaghi Vakili. 2020. "Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst" Catalysts 10, no. 11: 1322. https://doi.org/10.3390/catal10111322
APA StyleGholami, F., Gholami, Z., Tomas, M., Vavrunkova, V., Mirzaei, S., & Vakili, M. (2020). Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst. Catalysts, 10(11), 1322. https://doi.org/10.3390/catal10111322