Facile Synthesis of N-Doped WS2 Nanosheets as an Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Procedure
3.1. Synthesis of W18O49 Nanowires
3.2. Synthesis of Hex-WO3 Nanowires
3.3. Synthesis of Hex-WS2 Nanosheets
3.4. Structural and Chemical Characterizations
3.5. Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Faisal, F.; Stumm, C.; Bertram, M.; Waidhas, F.; Lykhach, Y.; Cherevko, S.; Xiang, F.; Ammon, M.; Vorokhta, M.; Šmíd, B.; et al. Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nat. Mater. 2018, 17, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Stamenkovic, V.R.; Strmcnik, D.; Lopes, P.P.; Markovic, N.M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2016, 16, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2016, 16, 16–22. [Google Scholar] [CrossRef]
- Han, H.; Choi, H.; Mhin, S.; Hong, Y.-R.; Kim, K.M.; Kwon, J.; Ali, G.; Chung, K.Y.; Je, M.; Umh, H.N.; et al. Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443–2454. [Google Scholar] [CrossRef]
- Han, H.; Nayak, A.K.; Choi, H.; Ali, G.; Kwon, J.; Choi, S.G.; Paik, U.; Song, T. Partial Dehydration in Hydrated Tungsten Oxide Nanoplates Leads to Excellent and Robust Bifunctional Oxygen Reduction and Hydrogen Evolution Reactions in Acidic Media. ACS Sustain. Chem. Eng. 2020, 8, 9507–9518. [Google Scholar] [CrossRef]
- Cheng, N.; Stambula, S.; Wang, D.; Banis, M.N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T.-K.; Liu, L.-M.; et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638. [Google Scholar] [CrossRef]
- Song, S.; Guo, M.; Zhang, S.; Zhan, K.; Yan, Y.; Yang, J.; Zhao, B.; Xu, M. Plasma-assisted synthesis of hierarchical NiCoxPy nanosheets as robust and stable electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Electrochim. Acta 2020, 331, 135431. [Google Scholar] [CrossRef]
- Ma, B.; Yang, Z.; Chen, Y.; Yuan, Z.-H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2018, 12, 375–380. [Google Scholar] [CrossRef]
- Shan, S.J.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Transition-Metal-Doped RuIr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. Adv. Mater. 2019, 31, e1900510. [Google Scholar] [CrossRef]
- Xu, K.; Wang, F.; Wang, Z.; Zhan, X.; Wang, Q.; Cheng, Z.; Safdar, M.; He, J. Component-Controllable WS2(1–x)Se2x Nanotubes for Efficient Hydrogen Evolution Reaction. Acs Nano 2014, 8, 8468–8476. [Google Scholar] [CrossRef]
- Lukowski, M.A.; Daniel, A.S.; English, C.R.; Meng, F.; Forticaux, A.; Hamers, R.J.; Jin, S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 2014, 7, 2608–2613. [Google Scholar] [CrossRef]
- Tsai, C.; Chan, K.; Abild-Pedersen, F.; Nørskov, J.K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 13156–13164. [Google Scholar] [CrossRef]
- Tan, S.M.; Pumera, M. Bottom-up Electrosynthesis of Highly Active Tungsten Sulfide (WS3–x) Films for Hydrogen Evolution. Acs Appl. Mater. Interfaces 2016, 8, 3948–3957. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, J.; Ma, J.; Liu, P.; Gao, D.; Tao, K.; Xue, D. N-doped WS2 nanosheets: A high-performance electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 11234–11238. [Google Scholar] [CrossRef]
- Anurupa, M.; Suneel, K.S. Sulphur edge and vacancy assisted nitrogen–phosphorus co-doped exfoliated tungsten disulfide: A superior electrocatalyst for hydrogen evolution reaction. J. Mater. Chem A 2018, 6, 19712–19726. [Google Scholar]
- Bai, S.; Zhang, K.; Wang, L.; Sun, J.; Luo, R.; Li, D.; Chen, A. Synthesis mechanism and gas-sensing application of nanosheet-assembled tungsten oxide microspheres. J. Mater. Chem. A 2014, 2, 7927–7934. [Google Scholar] [CrossRef]
- Bin Yang, H.; Miao, J.; Hung, S.-F.; Chen, J.; Tao, H.B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H.M.; et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122. [Google Scholar] [CrossRef]
- Van-Truong, N.; Yang, T.-Y.; Le, P.A.; Yen, P.-J.; Chueh, Y.-L.; Wei, K.-H. New Simultaneous Exfoliation and Doping Process for Generating MX2 Nanosheets for Electrocatalytic Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces. 2019, 11, 14786–14795. [Google Scholar]
- Amirohossein, H.; Nguyen, T.P.; Tekalgne, M.; Le, Q.V.; Choi, K.S.; Lee, T.H.; Park, T.J.; Kim, S.Y.; Jang, H.W. The role of metal dopants in WS2 nanoflowers in enhancing the hydrogen evolution reaction. Appl. Catal. A Gen. 2018, 567, 73–79. [Google Scholar]
- Anning, J.; Zhang, B.; Li, Z.; Jin, G.; Hao, J. Vanadium-Doped WS2 Nanosheets Grown on Carbon Cloth as a Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chem. Asian J. 2018, 13, 1438–1446. [Google Scholar]
- Pan, Y.; Zheng, F.; Wang, X.; Qin, H.; Liu, E.; Sha, J.; Zhao, N.; Zhang, P.; Ma, L. Enhanced electrochemical hydrogen evolution performance of WS2 nanosheets by Te doping. J. Catal. 2020, 382, 204–211. [Google Scholar] [CrossRef]
Materials | Overpotential (mV) | Tafel Slope (mV dec−1) | Reference |
---|---|---|---|
WS2 (cysteine 1:2) | 130 @ 10 mA cm−2 | 45 | This work |
N-WS2-H2 | 197 @ 100 mA cm−2 | 69 | 15 |
N-doped MoS2 | 164 @ 10 mA cm−2 | 71 | 19 |
Pd-WS2 NF | 175 @ 10 mA cm−2 | 54 | 20 |
V0.0065-WS2/CC | 148 @ 10 mA cm−2 | 72 | 21 |
Te-doped WS2 | 213 @ 10 mA cm−2 | 94 | 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayak, A.K.; Enhtuwshin, E.; Kim, S.J.; Han, H. Facile Synthesis of N-Doped WS2 Nanosheets as an Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. Catalysts 2020, 10, 1238. https://doi.org/10.3390/catal10111238
Nayak AK, Enhtuwshin E, Kim SJ, Han H. Facile Synthesis of N-Doped WS2 Nanosheets as an Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. Catalysts. 2020; 10(11):1238. https://doi.org/10.3390/catal10111238
Chicago/Turabian StyleNayak, Arpan Kumar, Enhbayar Enhtuwshin, So Jung Kim, and HyukSu Han. 2020. "Facile Synthesis of N-Doped WS2 Nanosheets as an Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media" Catalysts 10, no. 11: 1238. https://doi.org/10.3390/catal10111238
APA StyleNayak, A. K., Enhtuwshin, E., Kim, S. J., & Han, H. (2020). Facile Synthesis of N-Doped WS2 Nanosheets as an Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. Catalysts, 10(11), 1238. https://doi.org/10.3390/catal10111238