Fe(III) Complexes in Cyclohexane Oxidation: Comparison of Catalytic Activities under Different Energy Stimuli
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Peroxidative Oxidation of Cyclohexane
3. Experimental
3.1. General Materials and Procedures
3.2. Synthesis of the Pro-Ligand H2L
3.3. Syntheses of Fe(III) Complexes of Nʹ-acetylpyrazine-2-carbohydrazide
3.3.1. [Fe(HL)(H2O)2(NO3)]NO3 (1)
3.3.2. [Fe(HL)Cl2] (2) and [Fe(HL)Cl(µ-OMe)]2 (3)
3.4. X-ray Measurements
3.5. Catalytic Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pombeiro, A.J.L.; Guedes da Silva, M.F.C. (Eds.) Alkane Functionalization; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Pombeiro, A.J.L. Alkane Functionalization: Introduction and overview. In Alkane Functionalization; Pombeiro, A.J.L., Guedes da Silva, M.F.C., Eds.; Wiley: Hoboken, NJ, USA, 2019; Chapter 1; pp. 1–15. [Google Scholar]
- Shilov, A.E.; Shul’pin, G.B. Activation of C-H bonds by metal complexes. Chem. Rev. 1997, 97, 2879–2932. [Google Scholar] [CrossRef] [PubMed]
- Shul’pin, G.B. Selectivity enhancement in functionalization of C-H bonds: A review. Org. Biomol. Chem. 2010, 8, 4217–4228. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, M.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Vanadium complexes: Recent progress in oxidation catalysis. Coord. Chem. Rev. 2015, 301, 200–239. [Google Scholar] [CrossRef]
- Shul’pin, G.B. Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: New York, NY, USA, 2004; Volume 2, Chapter 2; pp. 215–242. [Google Scholar]
- Shilov, A.E.; Shul’pin, G.B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Crabtree, R.H. Alkane C-H activation and functionalization with homogeneous transition metal catalysts: A century of progress—A new millennium in prospect. J. Chem. Soc. Dalton Trans. 2001, 17, 2437–2450. [Google Scholar] [CrossRef]
- Derouane, E.G.; Haber, J.; Lemos, F.; Ribeiro, F.R.; Guinet, M. (Eds.) Catalytic Activation and Functionalization of Light Alkanes; NATO ASI Series; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1998; Volume 44. [Google Scholar]
- Retcher, B.; Sánchez Costa, J.; Tang, J.; Hage, R.; Gamez, P.; Reedijk, J. Unexpected high oxidation of cyclohexane by Fe salts and dihydrogen peroxide in acetonitrile. J. Mol. Catal. A Chem. 2008, 286, 1–5. [Google Scholar] [CrossRef]
- Antony, R.; Manickam, T.S.; Kollu, P.; Chandrasekar, P.V.; Karuppasamy, K.; Balakumar, S. Highly dispersed Cu(II), Co(II) and Ni(II) catalysts covalently immobilized on imine-modified silica for cyclohexane oxidation with hydrogen peroxide. RSC Adv. 2014, 4, 24820–24830. [Google Scholar] [CrossRef]
- Rahman, A.; Mupa, M.; Mahamadi, C. A mini review on new emerging trends for the synthesis of adipic acid from metal-nano heterogeneous catalysts. Catal. Lett. 2016, 146, 788–799. [Google Scholar] [CrossRef]
- Guo, X.; Xu, M.; She, M.; Zhu, Y.; Shi, T.; Chen, Z.; Peng, L.; Guo, X.; Lin, M.; Ding, W. Morphology-reserved synthesis of discrete nanosheets of CuO@SAPO-34 and pore mouth catalysis for one-pot oxidation of cyclohexane. Angew. Chem. Int. Ed. Engl. 2020, 59, 2606–2611. [Google Scholar] [CrossRef]
- Schuchardt, U.; Cardoso, D.; Sercheli, R.; Pereira, R.; Cruz, R.S.; Guerreiro, M.C.; Pires, E.L. Cyclohexane oxidation continues to be a challenge. Appl. Catal. A Gen. 2001, 211, 1–17. [Google Scholar] [CrossRef]
- Pokutsa, A.; Le Bras, J. Muzart, Glyoxal-promoted homogeneous catalytic oxygenation of cyclohexane with hydrogen peroxide in the presence of V and Co compounds. J. Russ. Chem. Bull. Int. Ed. 2005, 54, 312–315. [Google Scholar] [CrossRef]
- Pombeiro, A.J.L. (Ed.) Advances in Organometallic Chemistry and Catalysis, The Silver/Gold Jubilee ICOMC Celebratory Book; J.Wiley & Sons: New York, NY, USA, 2014. [Google Scholar]
- Shul’pin, G.B. Hydrocarbon oxygenations with peroxides catalyzed by metal compounds. Mini Rev. Org. Chem. 2009, 6, 95–104. [Google Scholar] [CrossRef]
- Li, J.J. (Ed.) C-H Bond Activation in Organic Synthesis; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Pérez, P.J. (Ed.) Alkane C-H Activation by Single-Site Metal Catalysis; Springer: Berlin, Germany, 2012. [Google Scholar]
- Bäckvall, J.-E. Modern Oxidation Methods; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- White, M.C. Chemistry. Adding aliphatic C-H bond oxidations to synthesis. Science 2012, 335, 807–809. [Google Scholar] [CrossRef] [PubMed]
- Newhouse, T.; Baran, P.S. If C-H bonds could talk: Selective C-H bond oxidation. Angew. Chem. Int. Ed. Engl. 2011, 123, 3422–3435. [Google Scholar] [CrossRef]
- Olah, G.A.; Molnar, A.; Surya Prakash, G.K. Hydrocarbon Chemistry, 3rd ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Sutradhar, M.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Liu, C.-M.; Pombeiro, A.J.L. Trinuclear Cu(II) structural isomers: Coordination, magnetism, electrochemistry and catalytic activity toward oxidation of alkanes. Eur. J. Inorg. Chem. 2015, 2015, 3959–3969. [Google Scholar] [CrossRef]
- Sutradhar, M.; Roy Barman, T.; Alegria, E.C.B.A.; Guedes da Silva, M.F.C.; Liu, C.-M.; Kou, H.-Z.; Pombeiro, A.J.L. Cu(II) complexes of N-rich aroylhydrazone: Magnetism and catalytic activity towards microwave-assisted oxidation of xylenes. Dalton Trans. 2019, 48, 12839–12849. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, M.; Alegria, E.C.B.A.; Guedes da Silva, M.F.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Aroylhydrazone Cu(II) complexes in keto form: Structural characterization and catalytic activity towards cyclohexane oxidation. Molecules 2016, 21, 425. [Google Scholar] [CrossRef] [Green Version]
- Sutradhar, M.; Alegria, E.C.B.A.; Guedes da Silva, M.F.C.; Liu, C.-M.; Pombeiro, A.J.L. Peroxidative oxidation of alkanes and alcohols under mild conditions by di- and tetranuclear copper(II) complexes of bis(2-hydroxybenzylidene)isophthalohydrazide. Molecules 2018, 23, 2699. [Google Scholar] [CrossRef] [Green Version]
- Bonchio, M.; Carraro, M.; Scorrano, G.; Kortz, U. Microwave-assisted fast cyclohexane oxygenation catalyzed by iron-substituted polyoxotungstates. Adv. Synth. Catal. 2005, 347, 1909–1912. [Google Scholar] [CrossRef]
- Carvalho, N.M.; Alvarez, H.M.; Horn, A., Jr.; Antunes, O.A. Influence of microwave irradiation in the cyclohexane oxidation catalyzed by Fe(III) complexes. Catal. Today 2008, 133, 689–694. [Google Scholar] [CrossRef]
- Fernandes, R.; Lasri, J.; Guedes da Silva, M.F.C.; da Silva, J.A.L.; Pombeiro, A.J.L. Bis- and tris-pyridyl amino and imino thioether Cu and Fe complexes. Thermal and microwave-assisted peroxidative oxidations of 1-phenylethanol and cyclohexane in the presence of various N-based additives. J. Mol. Catal. A Chem. 2011, 351, 100–111. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.M.D.R.S.; Kuznetsov, M.L.; Pombeiro, A.J.L. Tuning cyclohexane oxidation: Combination of microwave irradiation and ionic liquid with the C-scorpionate [FeCl2(Tpm)] catalyst. Organometallics 2017, 36, 192–198. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.M.D.R.S.; Carabineiro, S.A.C.; Buijnsters, J.G.; Figueiredo, J.L.; Pombeiro, A.J.L. Heterogenised C-scorpionate iron(II) complex on nanostructured carbon materials as catalysts for microwave-assisted oxidation reactions. ChemCatChem 2018, 10, 1821–1828. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Matias, I.A.S.; Alegria, E.C.B.A.; Ferraria, A.M.; Botelho do Rego, A.M.; Pombeiro, A.J.L.; Martins, L.M.D.R.S. New trendy magnetic C-scorpionate iron catalyst and its performance towards cyclohexane oxidation. Catalysts 2018, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Sutradhar, M.; Kirillova, M.V.; Guedes da Silva, M.F.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. A hexanuclear mixed-valence oxovanadium(IV,V) complex as a highly efficient alkane oxidation catalyst. Inorg. Chem. 2012, 51, 11229–11231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutradhar, M.; Martins, L.M.; Roy, B.T.; Kuznetsov, M.L.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Vanadium complexes of different nuclearities in the catalytic oxidation of cyclohexane and cyclohexanol—An experimental and theoretical investigation. New. J. Chem. 2019, 43, 17557–17570. [Google Scholar] [CrossRef]
- Sutradhar, M.; Martins, L.M.D.R.S.; Carabineiro, S.A.C.; Guedes da Silva, M.F.C.; Buijnsters, J.G.; Figueiredo, J.L.; Pombeiro, A.J.L. Oxidovanadium(V) complexes anchored on carbon materials as catalysts for the oxidation of 1-phenylethanol. ChemCatChem 2016, 8, 2254–2266. [Google Scholar] [CrossRef]
- Sutradhar, M.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Alegria, E.C.B.A.; Liu, C.-M.; Pombeiro, A.J.L. Mn(II,II) complexes: Magnetic properties and microwave assisted oxidation of alcohols. Dalton Trans. 2014, 43, 3966–3977. [Google Scholar] [CrossRef]
- Sutradhar, M.; Roy Barman, T.; Pombeiro, A.J.L.; Martins, L.M.D.R.S. Catalytic activity of polynuclear vs. dinuclear aroylhydrazone Cu(II) complexes in microwave-assisted oxidation of neat aliphatic and aromatic hydrocarbons. Molecules 2019, 24, 47. [Google Scholar] [CrossRef] [Green Version]
- Sutradhar, M.; Alegria, E.C.B.A.; Mahmudov, K.T.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Iron(III) and cobalt(III) complexes with both tautomeric (keto and enol) forms of aroylhydrazone ligands: Catalysts for the microwave assisted oxidation of alcohols. RSC Adv. 2016, 6, 8079–8088. [Google Scholar] [CrossRef]
- Zaltariov, M.-F.; Alexandru, M.; Cazacu, M.; Shova, S.; Novitchi, G.; Train, C.; Dobrov, A.; Kirillova, M.V.; Alegria, E.C.B.A.; Pombeiro, A.J.L.; et al. Tetranuclear copper(II) complexes with macrocyclic and open-chain disiloxane ligands as catalyst precursors for hydrocarboxylation and oxidation of alkanes and 1-phenylethanol. Eur. J. Inorg. Chem. 2014, 29, 4946–4956. [Google Scholar] [CrossRef]
- Dobrov, A.; Darvasiová, D.; Zalibera, M.; Bučinský, L.; Puškárová, I.; Rapta, P.; Martins, L.M.D.R.S.; Pombeiro, A.J.L.; Arion, V.B. Nickel(II) complexes with redox noninnocent octaazamacrocycles as catalysts in oxidation reactions. Inorg. Chem. 2019, 58, 11133–11145. [Google Scholar] [CrossRef]
- Dragancea, D.; Talmaci, N.; Shova, S.; Novitchi, G.; Darvasiová, D.; Rapta, P.; Breza, M.; Galanski, M.; Kožıšek, J.; Martins, N.M.R.; et al. Vanadium(V) complexes with substituted 1,5-bis(2-hydroxybenzaldehyde)carbohydrazones and their use as catalyst precursors in oxidation of cyclohexane. Inorg. Chem. 2016, 55, 9187–9203. [Google Scholar] [CrossRef] [PubMed]
- Arion, V.B.; Platzer, S.; Rapta, P.; Machata, P.; Breza, M.; Vegh, D.; Dunsch, L.; Telser, J.; Shova, S.; Mac Leod, T.; et al. Marked stabilization of redox states and enhanced catalytic activity in galactose oxidase models based on transition metal S-methylisothiosemicarbazonates with—SR group in ortho-position to the phenolic oxygen. Inorg. Chem. 2013, 52, 7524–7540. [Google Scholar] [CrossRef] [PubMed]
- Dobrov, A.; Fesenko, A.; Yankov, A.; Stepanenko, I.; Darvasiová, D.; Breza, M.; Rapta, P.; Martins, L.M.D.R.S.; Pombeiro, A.J.L.; Shutalev, A.; et al. Nickel(II), Copper(II) and Palladium(II) complexes with Bis-Semicarbazide hexaazamacrocycles: Redox-noninnocent behavior and catalytic activity in oxidation and C-C coupling reactions. Inorg. Chem. 2020, 59, 10650–10664. [Google Scholar] [CrossRef] [PubMed]
- Roy Barman, T.; Sutradhar, M.; Alegria, E.C.B.A.; Guedes da Silva, M.F.C.; Kuznetsov, M.L.; Pombeiro, A.J.L. Efficient Solvent-Free Friedel-Crafts Benzoylation and Acylation of m-Xylene Catalyzed by N-acetylpyrazine-2-carb hydrazide-Fe(III)-chloro Complexes. Chem. Select 2018, 3, 8349–8355. [Google Scholar]
- Dudley, G.B.; Richert, R.; Stiegman, A.E. On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem. Sci. 2015, 6, 2144–2152. [Google Scholar] [CrossRef]
- Varma, R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014, 16, 2027–2041. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Alegria, E.C.B.A.; Palavra, A.; Pombeiro, A.J.L. Alkane functionalization under unconventional conditions: In ionic liquid, in supercritical CO2 and microwave assisted. In Alkane Functionalization; Pombeiro, A.J.L., Guedes da Silva, M.F.C., Eds.; Wiley: Hoboken, NJ, USA, 2019; Chapter 24; pp. 523–537. [Google Scholar]
- Ribeiro, A.P.C.; Alegria, E.C.B.A.; Kopylovich, M.N.; Ferraria, A.M.; Botelho do Rego, A.M.; Pombeiro, A.J.L. On the comparison of microwave and mechanochemical energy inputs in catalytic oxidation of cyclohexane. Dalton Trans. 2018, 47, 8193–8198. [Google Scholar] [CrossRef]
- Perkas, N.; Wang, Y.; Koltypin, Y.; Gedanken, A.; Chandrasekaran, S. Mesoporous iron–titania catalyst for cyclohexane oxidation. Chem. Commun. 2001, 988–989. [Google Scholar] [CrossRef]
- Sutradhar, M.; Roy Barman, T.; Pombeiro, A.J.L.; Martins, L.M.D.R.S. Cu(II) and Fe(III) complexes derived from N-acetylpyrazine-2-carbohydrazide as efficient catalysts towards solvent-free microwave assisted oxidation of alcohols. Catalysts 2019, 9, 1053. [Google Scholar] [CrossRef] [Green Version]
- Sutradhar, M.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Synthesis and chemical reactivity of an Fe(III) metallacrown-6 towards N-donor Lewis bases. Inorg. Chem. Commun. 2013, 30, 42–45. [Google Scholar] [CrossRef]
- Sutradhar, M.; Guedes da Silva, M.F.C.; Nesterov, D.S.; Jezierska, J.; Pombeiro, A.J.L. 1D coordination polymer with octahedral and square-planar nickel(II) centers. Inorg. Chem. Commun. 2013, 29, 82–84. [Google Scholar] [CrossRef]
- Shul’pin, G.B.; Nizova, G.V. Formation of alkyl peroxides in oxidation of alkanes by H2O2 catalyzed by transition metal complexes React. Kinet. Catal. Lett. 1992, 48, 333–338. [Google Scholar] [CrossRef]
- Pokutsa, A.; Pawel Bloniarz, P.; Fliunt, O.; Kubaj, Y.; Zaborovskyia, A.; Paczeŝniakc, T. Sustainable oxidation of cyclohexane catalyzed by a VO(acac)2-oxalic acid tandem: The electrochemical motive of the process efficiency. RSC Adv. 2020, 10, 10959–10971. [Google Scholar] [CrossRef] [Green Version]
- Shul’pin, G.S.; Mishra, L.S.; Shul’pina, T.V.; Strelkova, A.J.L. Pombeiro. Oxidation of hydrocarbons with hydrogen peroxide catalysed by maltolato vanadium complexes covalently bonded to silica gel. Catal. Commun. 2007, 8, 1516–1520. [Google Scholar] [CrossRef]
- Sutradhar, M.; Alegria, E.C.B.A.; Barman, T.R.; Scorcelletti, F.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol with monomeric keto and polymeric enol aroylhydrazone Cu(II) complexes. Mol. Catal. 2017, 439, 224–232. [Google Scholar] [CrossRef]
- Días-Ortiz, Á.; Prieto, P.; de la Hoz, A. A critical overview on the effect of microwave irradiation in organic synthesis. Chem. Rec. 2019, 19, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.A.; Kremsner, J.M.; Kappe, C.O. Nonthermal microwave effects revisited: On the importance of internal temperature monitoring and agitation in microwave chemistry. J. Organomet. Chem. 2007, 73, 36–47. [Google Scholar] [CrossRef]
- Obermayer, D.; Kappe, C.O. On the importance of simultaneous infrared/fiber-optic temperature monitoring in the microwave-assisted synthesis of ionic liquids. Org. Biomol. Chem. 2010, 8, 114–121. [Google Scholar] [CrossRef]
- Piermattei, A.; Karthikeyan, S.; Sijbesma, R.P. Activating catalysts with mechanical force. Nat. Chem. 2009, 1, 133–137. [Google Scholar] [CrossRef]
- Shul’pin, G.B. Metal-catalysed hydrocarbon oxidations. C. R. Chim. 2003, 6, 163–178. [Google Scholar] [CrossRef]
- Bruker AXS Inc. Bruker, APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012. [Google Scholar]
- Sheldrick, G.M. SADABS. In Program for Empirical Absorption Correction; University of Göttingen: Göttingen, Germany, 2000. [Google Scholar]
- Sheldrick, G.M. SHELX97. In Programs for Crystal Structure Analysis (Release 97-2); University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrugia, L.J. wingx and ortep for windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
1 | |
---|---|
Empirical formula | C7H11FeN6O11.25 |
Formula weight | 415.04 |
Crystal system | Monoclinic |
Space group | P21/c |
Temperature/K | 150(2) |
a/Å | 7.2541(4) |
b/Å | 14.4633(8) |
c/Å | 14.7415(9) |
β/° | 93.275(2) |
V (Å3) | 1544.13(15) |
Z | 4 |
Dcalc (g cm–3) | 1.785 |
F000 | 844 |
μ(Mo Kα) (mm–1) | 1.052 |
Rfls. collected/unique/observed | 22957/2837/2385 |
Rint | 0.0478 |
Final R1a, wR2b (I ≥ 2σ) | 0.0319, 0.0711 |
Goodness-of-fit on F2 | 1.051 |
Entry | Catalyst | Catalyst Amount (mol) | Reaction Time (h) | Yield (%) b | Selectivity to Cyclohexanol (%) d | ||
---|---|---|---|---|---|---|---|
CyOH | Cy=O | TOTAL c | |||||
1 | 1 | 10 | 0.5 | 1.6 | 0.1 | 1.7 | 94 |
2 | 10 | 1 | 6.7 | 0.7 | 7.4 | 91 | |
3 e | 10 | 1 | 0.7 | 0.04 | 0.74 | 95 | |
4 f | 10 | 3 | 7.5 | 3.1 | 10.6 | 71 | |
5 | 10 | 3 | 13.2 | 1.7 | 14.9 | 86 | |
6 | 10 | 6 | 14.2 | 2.7 | 16.9 | 84 | |
7 g | 10 | 3 | 7.6 | 1.1 | 8.7 | 87 | |
8 h | 10 | 3 | 16.7 | 4.8 | 21.5 | 78 | |
9 | 2.5 | 3 | 3.6 | 0.2 | 3.8 | 95 | |
10 | 5 | 3 | 8.4 | 0.9 | 9.3 | 90 | |
11 | 20 | 3 | 15.7 | 3.7 | 19.4 | 80 | |
12 i | 10 | 3 | 17.1 | 4.3 | 21.4 | 80 | |
13 j | 10 | 3 | 22.6 | 6.1 | 28.7 | 79 | |
14 k | 10 | 3 | 24.8 | 12.9 | 37.7 | 66 | |
15 l | 10 | 3 | 27.5 | 9.7 | 37.2 | 74 | |
16 k | 10 | 1 | 9.9 | 1.7 | 11.6 | 85 | |
17 k | 10 | 6 | 24.7 | 12.9 | 37.6 | 66 | |
18 k | 10 | 9 | 23.5 | 13.6 | 37.1 | 63 | |
19 m | 10 | 3 | 7.7 | 1.1 | 8.8 | 88 | |
20 n | 10 | 3 | 21.8 | 6.5 | 28.3 | 77 | |
21 o | 10 | 3 | 1.3 | 0.4 | 1.7 | 76 | |
22 | 2 | 10 | 3 | 9.1 | 1.3 | 10.4 | 88 |
23 k | 10 | 3 | 9.8 | 0.9 | 10.7 | 92 | |
24 o | 10 | 3 | 2.5 | 0.2 | 2.7 | 93 | |
25 | 3 | 10 | 3 | 12.3 | 2.1 | 14.4 | 85 |
26 k | 10 | 3 | 16.3 | 1.9 | 18.2 | 90 | |
27 o | 10 | 3 | 1.9 | 0.4 | 2.3 | 83 | |
28 | Fe(NO3)3.9H2O | 10 | 3 | 3.8 | 1.5 | 5.3 | 72 |
29 | Anhy. FeCl2 | 10 | 3 | 3.3 | 0.9 | 4.2 | 79 |
Entry | Catalyst | Method | Reaction Time (h) | Yield (%) b | Selectivity to Cyclohexanol (%) d | ||
---|---|---|---|---|---|---|---|
CyOH | Cy=O | TOTAL c | |||||
1 | 1 | CONV | 0.5 | 16.5 | 5.1 | 21.6 | 76 |
2 | 1 | 16.9 | 6.2 | 23.1 | 73 | ||
3 | 3 | 18.9 | 8.6 | 27.5 | 69 | ||
4 | 6 | 19.8 | 7.8 | 27.6 | 72 | ||
5 | 24 | 28.8 | 11.8 | 40.6 | 71 | ||
6 | MW | 0.5 | 11.6 | 2.9 | 14.5 | 82 | |
7 e | 1 | 15.2 | 4.6 | 19.8 | 77 | ||
8 e | 3 | 24.8 | 12.9 | 37.7 | 66 | ||
9 e | 6 | 24.7 | 12.9 | 37.6 | 66 | ||
10 | US | 0.5 | 16.4 | 4.9 | 21.3 | 77 | |
11 | 1 | 16.2 | 6.5 | 22.7 | 71 | ||
12 | 3 | 15.4 | 7.7 | 23.1 | 67 | ||
13 | 6 | 14.9 | 9.7 | 24.6 | 61 | ||
14 | 2 | CONV | 3 | 15.2 | 6.9 | 22.1 | 69 |
15 | MW | 3 | 9.8 | 0.9 | 10.7 | 92 | |
16 | US | 3 | 7.3 | 4.0 | 11.3 | 65 | |
17 | 3 | CONV | 3 | 13.3 | 4.4 | 17.7 | 75 |
18 | MW | 3 | 16.3 | 1.9 | 18.2 | 90 | |
19 | US | 3 | 20.9 | 9.1 | 29.9 | 70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy Barman, T.; Sutradhar, M.; C. B. A. Alegria, E.; C. Guedes da Silva, M.d.F.; Pombeiro, A.J.L. Fe(III) Complexes in Cyclohexane Oxidation: Comparison of Catalytic Activities under Different Energy Stimuli. Catalysts 2020, 10, 1175. https://doi.org/10.3390/catal10101175
Roy Barman T, Sutradhar M, C. B. A. Alegria E, C. Guedes da Silva MdF, Pombeiro AJL. Fe(III) Complexes in Cyclohexane Oxidation: Comparison of Catalytic Activities under Different Energy Stimuli. Catalysts. 2020; 10(10):1175. https://doi.org/10.3390/catal10101175
Chicago/Turabian StyleRoy Barman, Tannistha, Manas Sutradhar, Elisabete C. B. A. Alegria, Maria de Fátima C. Guedes da Silva, and Armando J. L. Pombeiro. 2020. "Fe(III) Complexes in Cyclohexane Oxidation: Comparison of Catalytic Activities under Different Energy Stimuli" Catalysts 10, no. 10: 1175. https://doi.org/10.3390/catal10101175