Uncertainty-Aware Artificial Intelligence: Editorial †
Conflicts of Interest
List of Contributions
- Lucke, K.; Vakanski, A.; Xian, M. Soft-Label Supervised Meta-Model with Adversarial Samples for Uncertainty Quantification. Computers 2025, 14, 12. https://doi.org/10.3390/computers14010012.
 - Manna, D.L.; Vicente-Sola, A.; Kirkl, P.; Bihl, T.J.; Di Caterina, G. Time Series Forecasting via Derivative Spike Encoding and Bespoke Loss Functions for Spiking Neural Networks. Computers 2024, 13, 202. https://doi.org/10.3390/computers13080202.
 - Al-Saidi, M.; Ballagi, Á; Hassen, O.A.; Saad, S.M. Cognitive classifier of hand gesture images for automated sign language recognition: Soft robot assistance based on Neutrosophic Markov Chain paradigm. Computers 2024, 13, 106. https://doi.org/10.3390/computers13040106.
 - Panayides, M.; Artemiou, A. Least squares minimum class variance support vector machines. Computers 2024, 13, 34. https://doi.org/10.3390/computers13020034.
 - Igual, C.; Castillo, A.; Igual, J. An interactive training model for myoelectric regression control based on human–machine cooperative performance. Computers 2024, 13, 29. https://doi.org/10.3390/computers13010029.
 - Sasani, F.; Moghareh, Dehkordi, M.; Ebrahimi, Z.; Dustmohammadloo, H.; Bouzari, P.; Ebrahimi, P.; Lencsés, E.; Fekete-Farkas, M. Forecasting of Bitcoin Illiquidity Using High-Dimensional and Textual Features. Computers 2024, 13, 20. https://doi.org/10.3390/computers13010020.
 - Jun, S. Zero-Inflated Text Data Analysis using Generative Adversarial Networks and Statistical Modeling. Computers 2023, 12, 258. https://doi.org/10.3390/computers12120258.
 - Dey, A.; Yodo, N.; Yadav, O.P.; Shanmugam, R.; Ramoni, M. Addressing uncertainty in tool wear prediction with dropout-based neural network. Computers 2023, 12, 187. https://doi.org/10.3390/computers12090187.
 - Jebur, S.A.; Hussein, K.A.; Hoomod, H.K.; Alzubaidi, L. Novel deep feature fusion framework for multi-scenario violence detection. Computers 2023, 12, 175. https://doi.org/10.3390/computers12090175.
 - El Lel, T.; Ahsan, M.; Haider, J. Detecting COVID-19 from chest X-rays using convolutional neural network ensembles. Computers 2023, 12, 105. https://doi.org/10.3390/computers12050105.
 - Tsoulos, I.G.; Tzallas, A.; Karvounis, E.; Tsalikakis, D. Bound the parameters of neural networks using particle swarm optimization. Computers 2023, 12, 82. https://doi.org/10.3390/computers12040082.
 - Cevallos, I.D.; Benalcázar, M.E.; Valdivieso Caraguay, Á.L.; Zea, J.A.; Barona-López, L.I. A Systematic Literature Review of Machine Unlearning Techniques in Neural Networks. Computers 2025, 14, 150. https://doi.org/10.3390/computers14040150.
 
References
- Ofori-Oduro, M.; Amer, M. Defending object detection models against image distortions. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 3854–3863. [Google Scholar]
 - Theisen, R.; Wang, H.; Varshney, L.R.; Xiong, C.; Socher, R. Evaluating state-of-the-art classification models against bayes optimality. Adv. Neural Inf. Process. Syst. 2021, 34, 9367–9377. [Google Scholar]
 - Gujarathi-Mehta, S.; Shrivastava, R.; Angadi, S. SpinalCNN: Spinal convolutional neural network based kidney cancer detection. Biomed. Signal Process. Control 2026, 112, 108587. [Google Scholar] [CrossRef]
 - Cao, L. Ai in finance: Challenges, techniques, and opportunities. ACM Comput. Surv. (CSUR) 2022, 55, 1–38. [Google Scholar]
 - Maniruzzaman, M.; Jaman, M.S.; Abid, M.A.S.; Mahmud, Z.; Rahman, M.E.; Siddiky, M.N.A. A Hybrid mRMR-RFE and AI Framework for Advancing Alzheimer’s Biomarkers Discovery. In Proceedings of the 2025 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 18–21 February 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 0282–0287. [Google Scholar]
 - Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 1050–1059. [Google Scholar]
 - Malinin, A.; Gales, M. Predictive uncertainty estimation via prior networks. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar]
 - Dolar, T.; Chen, J.; Chen, W. Uncertainty quantification driven machine learning for improving model accuracy in imbalanced regression tasks. Expert Syst. Appl. 2025, 261, 125526. [Google Scholar] [CrossRef]
 - Zhang, F.; Wang, M.; Li, L.; Liu, Y.; Wang, H. Probabilistic intervals prediction based on adaptive regression with attention residual connections and covariance constraints. Eng. Appl. Artif. Intell. 2025, 156, 111013. [Google Scholar] [CrossRef]
 - Mahmood, S. Heavy metals in poultry products in Bangladesh: A possible death threat to future generations. J. Soc. Political Sci. 2019, 2, 98–105. [Google Scholar]
 - Pichai, S. Google AI Teaches Itself Bangla. Available online: www.tbsnews.net/tech/ai-teaches-itself-bangla-619070 (accessed on 22 September 2025).
 - Reddy, V.V.K.; Reddy, R.V.K.; Munaga, M.S.K.; Karnam, B.; Maddila, S.K.; Kolli, C.S. Deep learning-based credit card fraud detection in federated learning. Expert Syst. Appl. 2024, 255, 124493. [Google Scholar] [CrossRef]
 - Zhang, Y.; Wang, P.; Cheng, K.; Zhao, J.; Tao, J.; Hai, J.; Feng, J.; Deng, C.; Wang, X. Building Accurate and Interpretable Online Classifiers on Edge Devices. IEEE Trans. Parallel Distrib. Syst. 2025, 36, 1779–1796. [Google Scholar] [CrossRef]
 - Lu, X.; Qiu, J.; Lei, G.; Zhu, J. An interval prediction method for day-ahead electricity price in wholesale market considering weather factors. IEEE Trans. Power Syst. 2023, 39, 2558–2569. [Google Scholar] [CrossRef]
 - Sharmin, A.; Mahmud, B.U.; Nabi, N.; Shaima, M.; Faruk, M.J.H. Cyber Attacks on Space Information Networks: Vulnerabilities, Threats, and Countermeasures for Satellite Security. J. Cybersecur. Priv. 2025, 5, 76. [Google Scholar] [CrossRef]
 - Kabir, H.D.; Mondal, S.K.; Khanam, S.; Khosravi, A.; Rahman, S.; Qazani, M.R.C.; Alizadehsani, R.; Asadi, H.; Mohamed, S.; Nahavandi, S.; et al. Uncertainty aware neural network from similarity and sensitivity. Appl. Soft Comput. 2023, 149, 111027. [Google Scholar] [CrossRef]
 - Pannattee, P.; Kumwilaisak, W.; Hansakunbuntheung, C.; Thatphithakkul, N.; Kuo, C.C.J. American Sign language fingerspelling recognition in the wild with spatio temporal feature extraction and multi-task learning. Expert Syst. Appl. 2024, 243, 122901. [Google Scholar] [CrossRef]
 - Zilly, J.; Achille, A.; Censi, A.; Frazzoli, E. On plasticity, invariance, and mutually frozen weights in sequential task learning. Adv. Neural Inf. Process. Syst. 2021, 34, 12386–12399. [Google Scholar]
 - Chrystal, G. On some Fundamental Principles in the Theory of Probability1. Trans. Actuar. Soc. Edinb. 1891, 2, 420–439. [Google Scholar] [CrossRef]
 - Pearson, K. Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. A 1894, 185, 71–110. [Google Scholar]
 - Kabir, H.D. Reduction of class activation uncertainty with background information. IEEE Trans. Artif. Intell. 2025; Early Access. [Google Scholar]
 - Kohavi, R.; John, G.H. Automatic parameter selection by minimizing estimated error. In Proceedings of the Machine Learning Proceedings 1995, Tahoe City, CA, USA, 9–12 July 1995; Elsevier: Amsterdam, The Netherlands, 1995; pp. 304–312. [Google Scholar]
 - Khosravi, A.; Nahavandi, S.; Creighton, D.; Atiya, A.F. Comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans. Neural Netw. 2011, 22, 1341–1356. [Google Scholar] [CrossRef] [PubMed]
 - Khosravi, A.; Nahavandi, S.; Creighton, D.; Atiya, A.F. Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans. Neural Netw. 2010, 22, 337–346. [Google Scholar] [CrossRef] [PubMed]
 - Baumgartner, C.F.; Tezcan, K.C.; Chaitanya, K.; Hötker, A.M.; Muehlematter, U.J.; Schawkat, K.; Becker, A.S.; Donati, O.; Konukoglu, E. Phiseg: Capturing uncertainty in medical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 119–127. [Google Scholar]
 - Czolbe, S.; Arnavaz, K.; Krause, O.; Feragen, A. Is segmentation uncertainty useful? In Proceedings of the International Conference on Information Processing in Medical Imaging, Virtual Event, 28–30 June 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 715–726. [Google Scholar]
 - Jebur, S.A.; Hussein, K.A.; Hoomod, H.K.; Alzubaidi, L. Novel deep feature fusion framework for multi-scenario violence detection. Computers 2023, 12, 175. [Google Scholar] [CrossRef]
 - Cevallos, I.D.; Benalcázar, M.E.; Valdivieso Caraguay, Á.L.; Zea, J.A.; Barona-López, L.I. A Systematic Literature Review of Machine Unlearning Techniques in Neural Networks. Computers 2025, 14, 150. [Google Scholar] [CrossRef]
 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, H.M.D.; Mondal, S.K. Uncertainty-Aware Artificial Intelligence: Editorial. Computers 2025, 14, 474. https://doi.org/10.3390/computers14110474
Kabir HMD, Mondal SK. Uncertainty-Aware Artificial Intelligence: Editorial. Computers. 2025; 14(11):474. https://doi.org/10.3390/computers14110474
Chicago/Turabian StyleKabir, H. M. Dipu, and Subrota Kumar Mondal. 2025. "Uncertainty-Aware Artificial Intelligence: Editorial" Computers 14, no. 11: 474. https://doi.org/10.3390/computers14110474
APA StyleKabir, H. M. D., & Mondal, S. K. (2025). Uncertainty-Aware Artificial Intelligence: Editorial. Computers, 14(11), 474. https://doi.org/10.3390/computers14110474
        
