Assessing Burned Area Detection in Indonesia Using the Stacking Ensemble Neural Network (SENN): A Comparative Analysis of C- and L-Band Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Research Data
2.2.1. Remote Sensing Data (SAR, Sentinel-2, Planetscope, and IMERG)
2.2.2. Ancillary Data (Peatland Map, Active Fire, Land Cover Map, and Burned Area Map)
2.3. Methodology
2.4. Polarimetric Features
2.5. Stacking Ensemble Neural Network (SENN)
- ANN-1: First layer: 8 nodes; second layer: 4 nodes; and dropout of 0.3 after the second layer.
- ANN-2: First layer: 8 nodes; second layer: 7 nodes; and dropout of 0.5 after the first layer and 0.3 after the second layer.
- ANN-3: First layer: 9 nodes; second layer: 5 nodes; and dropout of 0.3 after the second layer
2.6. Training and Testing Dataset Preparation
2.7. Performance Metrics
3. Results
3.1. Separability Index of the Training Dataset
3.2. Performance Evaluation of Burned Area Detection Using Stacking Ensemble Neural Network (SENN)
3.2.1. Peatland Area
3.2.2. Non-Peatland Area
3.3. Burned Area Map Using the SENN Method
3.3.1. Peatland Area
3.3.2. Non-Peatland Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hein, L.; Spadaro, J.V.; Ostro, B.; Hammer, M.; Sumarga, E.; Salmayenti, R.; Boer, R.; Tata, H.; Atmoko, D.; Castañeda, J.-P. The Health Impacts of Indonesian Peatland Fires. Environ. Health 2022, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Al-hasn, R.; Almuhammad, R. Burned Area Determination Using Sentinel-2 Satellite Images and the Impact of Fire on the Availability of Soil Nutrients in Syria. J. For. Sci. 2022, 68, 96–106. [Google Scholar] [CrossRef]
- Zheng, B.; Ciais, P.; Chevallier, F.; Chuvieco, E.; Chen, Y.; Yang, H. Increasing Forest Fire Emissions despite the Decline in Global Burned Area. Sci. Adv. 2021, 7, eabh2646. [Google Scholar] [CrossRef] [PubMed]
- Indikasi Luas Kebakaran Rekapitulasi Luas Kebakaran Hutan Dan Lahan (Ha) Per Provinsi Di Indonesia. Available online: https://sipongi.menlhk.go.id/indikasi-luas-kebakaran (accessed on 12 May 2024).
- Nasib Restorasi Gambut Indonesia. Available online: https://pantaugambut.id/storage/widget_multiple/nasib-restorasi-gambut-indonesia-YKtMh.pdf (accessed on 12 May 2024).
- Fighting Peatland Fires in Central Kalimantan Emergency Response, Prevention & Recovery. Available online: https://orangutan.com/wp-content/uploads/2020/01/BNF-2019-Report_Fighting-peatland-fires-in-Central-Kalimantan.pdf (accessed on 12 May 2024).
- Rein, G.; Huang, X. Smouldering Wildfires in Peatlands, Forests and the Arctic: Challenges and Perspectives. Curr. Opin. Environ. Sci. Health 2021, 24, 100296. [Google Scholar] [CrossRef]
- Nurhayati, A.D.; Hero Saharjo, B.; Sundawati, L.; Syartinilia, S.; Cochrane, M.A. Forest and Peatland Fire Dynamics in South Sumatra Province. For. Sci. 2021, 591–603. [Google Scholar] [CrossRef]
- Waluyo, J.; Hardyanto, Y.; Hariri, D.; Adnan, H. Guidebook of Village-Based Procedures for Preventing and Controlling Forest and Peatland Fires, 1st ed.; The Partnership for Governance Reform: Jakarta, Indonesia, 2020; ISBN 978-602-1616-79-6. [Google Scholar]
- Adrianto, H.A.; Spracklen, D.V.; Arnold, S.R.; Sitanggang, I.S.; Syaufina, L. Forest and Land Fires Are Mainly Associated with Deforestation in Riau Province, Indonesia. Remote Sens. 2019, 12, 3. [Google Scholar] [CrossRef]
- Edwards, R.B.; Naylor, R.L.; Higgins, M.M.; Falcon, W.P. Causes of Indonesia’s Forest Fires. World Dev. 2020, 127, 104717. [Google Scholar] [CrossRef]
- Tan, L.; Ge, Z.; Zhou, X.; Li, S.; Li, X.; Tang, J. Conversion of Coastal Wetlands, Riparian Wetlands, and Peatlands Increases Greenhouse Gas Emissions: A Global Meta-analysis. Glob. Change Biol. 2020, 26, 1638–1653. [Google Scholar] [CrossRef]
- Thoha, A.S.; Saharjo, B.H.; Boer, R.; Ardiansyah, M. Characteristics and Causes of Forest and Land Fires in Kapuas District, Central Kalimantan Province, Indonesia. Biodiversitas 2018, 20, 110–117. [Google Scholar] [CrossRef]
- Indonesian Fires Return in 2023. Available online: https://earthobservatory.nasa.gov/images/151929/indonesian-fires-return-in-2023 (accessed on 16 May 2024).
- Bar, S.; Parida, B.R.; Pandey, A.C. Landsat-8 and Sentinel-2 Based Forest Fire Burn Area Mapping Using Machine Learning Algorithms on GEE Cloud Platform over Uttarakhand, Western Himalaya. Remote Sens. Appl. Soc. Environ. 2020, 18, 100324. [Google Scholar] [CrossRef]
- Gaveau, D.L.A.; Descals, A.; Salim, M.A.; Sheil, D.; Sloan, S. Refined Burned-Area Mapping Protocol Using Sentinel-2 Data Increases Estimate of 2019 Indonesian Burning. Earth Syst. Sci. Data 2021, 13, 5353–5368. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Schmidt, G.L.; Beal, Y.-J.; Picotte, J.J.; Takacs, J.D.; Falgout, J.T.; Dwyer, J.L. The Landsat Burned Area Algorithm and Products for the Conterminous United States. Remote Sens. Environ. 2020, 244, 111801. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A Spatio-Temporal Active-Fire Clustering Approach for Global Burned Area Mapping at 250 m from MODIS Data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Llorens, R.; Sobrino, J.A.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. A Methodology to Estimate Forest Fires Burned Areas and Burn Severity Degrees Using Sentinel-2 Data. Application to the October 2017 Fires in the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102243. [Google Scholar] [CrossRef]
- Afira, N.; Wijayanto, A.W. Mono-Temporal and Multi-Temporal Approaches for Burnt Area Detection Using Sentinel-2 Satellite Imagery (a Case Study of Rokan Hilir Regency, Indonesia). Ecol. Inform. 2022, 69, 101677. [Google Scholar] [CrossRef]
- Arjasakusuma, S.; Kusuma, S.S.; Vetrita, Y.; Prasasti, I.; Arief, R. Monthly Burned-Area Mapping Using Multi-Sensor Integration of Sentinel-1 and Sentinel-2 and Machine Learning: Case Study of 2019’s Fire Events in South Sumatra Province, Indonesia. Remote Sens. Appl. Soc. Environ. 2022, 27, 100790. [Google Scholar] [CrossRef]
- Hosseini, M.; Lim, S. Burned Area Detection Using Sentinel-1 SAR Data: A Case Study of Kangaroo Island, South Australia. Appl. Geogr. 2023, 151, 102854. [Google Scholar] [CrossRef]
- Rokhmatuloh; Ardiansyah; Indratmoko, S.; Riyanto, I.; Margatama, L.; Arief, R. Burnt-Area Quick Mapping Method with Synthetic Aperture Radar Data. Appl. Sci. 2022, 12, 11922. [Google Scholar] [CrossRef]
- GFOI. Integration of Remote-Sensing and Ground-Based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative (GFOI), 3rd ed.; FAO: Rome, Italy, 2020. [Google Scholar]
- Gharechelou, S.; Tateishi, R.; Sumantyo, J.T.S. Comparison of Simulated Backscattering Signal and ALOS PALSAR Backscattering over Arid Environment Using Experimental Measurement. ARS 2015, 4, 224–233. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Menges, C.H.; Bartolo, R.E.; Bell, D.; Hill, G.J.E. The Effect of Savanna Fires on SAR Backscatter in Northern Australia. Int. J. Remote Sens. 2004, 25, 4857–4871. [Google Scholar] [CrossRef]
- Tanase, M.A.; Santoro, M.; De La Riva, J.; Prez-Cabello, F.; Le Toan, T. Sensitivity of X-, C-, and L-Band SAR Backscatter to Burn Severity in Mediterranean Pine Forests. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3663–3675. [Google Scholar] [CrossRef]
- Tanase, M.A.; Santoro, M.; Aponte, C.; De La Riva, J. Polarimetric Properties of Burned Forest Areas at C- and L-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 267–276. [Google Scholar] [CrossRef]
- Lasaponara, R.; Tucci, B. Identification of Burned Areas and Severity Using SAR Sentinel-1. IEEE Geosci. Remote Sens. Lett. 2019, 16, 917–921. [Google Scholar] [CrossRef]
- De Luca, G.; Silva, J.M.N.; Modica, G. A Workflow Based on Sentinel-1 SAR Data and Open-Source Algorithms for Unsupervised Burned Area Detection in Mediterranean Ecosystems. GIScience Remote Sens. 2021, 58, 516–541. [Google Scholar] [CrossRef]
- Mutai, S.; Chang, L. Post-Fire Hazard Detection Using Alos-2 Radar and Landsat-8 Optical Imagery. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, VI-3/W1-2020, 75–82. [Google Scholar] [CrossRef]
- Sudiana, D.; Lestari, A.I.; Riyanto, I.; Rizkinia, M.; Arief, R.; Prabuwono, A.S.; Sri Sumantyo, J.T. A Hybrid Convolutional Neural Network and Random Forest for Burned Area Identification with Optical and Synthetic Aperture Radar (SAR) Data. Remote Sens. 2023, 15, 728. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Van, L.N.; Tran, V.N.; Nguyen, G.V.; Yeon, M.; Do, M.T.-T.; Lee, G. Enhancing Wildfire Mapping Accuracy Using Mono-Temporal Sentinel-2 Data: A Novel Approach through Qualitative and Quantitative Feature Selection with Explainable AI. Ecol. Inform. 2024, 81, 102601. [Google Scholar] [CrossRef]
- Mithal, V.; Nayak, G.; Khandelwal, A.; Kumar, V.; Nemani, R.; Oza, N. Mapping Burned Areas in Tropical Forests Using a Novel Machine Learning Framework. Remote Sens. 2018, 10, 69. [Google Scholar] [CrossRef]
- Ba, R.; Song, W.; Li, X.; Xie, Z.; Lo, S. Integration of Multiple Spectral Indices and a Neural Network for Burned Area Mapping Based on MODIS Data. Remote Sens. 2019, 11, 326. [Google Scholar] [CrossRef]
- Gómez, I.; Martín, M.P. Prototyping an artificial neural network for burned area mapping on a regional scale in Mediterranean areas using MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 741–752. [Google Scholar] [CrossRef]
- Sorkhabi, O.M. Deep learning of Sentinel-1 SAR for burnt peatland detection in Ireland. Geosystems Geoenvironment. 2024, 3, 100321. [Google Scholar] [CrossRef]
- Santi, E. Neural Networks Applications for the Remote Sensing of Hydrological Parameters; Rosa, J.L.G., Ed.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Maier, H.R.; Galelli, S.; Razavi, S.; Castelletti, A.; Rizzoli, A.; Athanasiadis, I.N.; Sànchez-Marrè, M.; Acutis, M.; Wu, W.; Humphrey, G.B. Exploding the myths: An introduction to artificial neural networks for prediction and forecasting. Environ. Model. Softw. 2023, 167, 105776. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.E.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and Disadvantages of Using Artificial Neural Networks versus Logistic Regression for Predicting Medical Outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Shen, W. A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Appl. Sci. 2022, 12, 8654. [Google Scholar] [CrossRef]
- Du, C.; Fan, W.; Ma, Y.; Jin, H.-I.; Zhen, Z. The Effect of Synergistic Approaches of Features and Ensemble Learning Algorithms on Aboveground Biomass Estimation of Natural Secondary Forests Based on ALS and Landsat 8. Sensors 2021, 21, 5974. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.; Hassan, M.A.; He, Z.; Chen, Z.; Shu, M.; Wang, J.; Li, C.; Xiao, Y. Assessment of Ensemble Learning to Predict Wheat Grain Yield Based on UAV-Multispectral Reflectance. Remote Sens. 2021, 13, 2338. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Liang, S.; Li, X.; Liu, J. A Stacking Ensemble Algorithm for Improving the Biases of Forest Aboveground Biomass Estimations from Multiple Remotely Sensed Datasets. GIScience Remote Sens. 2022, 59, 234–249. [Google Scholar] [CrossRef]
- Das, B.; Rathore, P.; Roy, D.; Chakraborty, D.; Jatav, R.S.; Sethi, D.; Kumar, P. Comparison of bagging; boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies. CATENA 2022, 217, 106485. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J. Application of Bagging; Boosting and Stacking Ensemble and EasyEnsemble Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area of China. Int. J. Environ. Res. Public Health. 2023, 20, 4977. [Google Scholar] [CrossRef]
- Rokan Hilir Regency in Figures 2018-BPS-Statistics Indonesia Rokan Hilir Regency. Available online: https://rohilkab.bps.go.id/en/publication/2018/08/16/e96c32fb842eb1e03c5a7bbe/rokan-hilir-regency-in-figures-2018.html (accessed on 10 June 2024).
- Government General Description of Merauke Regency. Available online: https://www.papua.go.id/view-detail-kabupaten-121/Gambaran-Umum.html (accessed on 3 June 2024).
- Oldeman, L.R. The agroclimatic classification of rice-growing environments in Indonesia. In Proceedings of the Symposium on the Agrometeorology of the Rice Crop; World Meteorological Organization and International Rice Research Institute: Los Baños, Philippines, 1980; pp. 47–55. [Google Scholar]
- Bima Regency in Figures 2015 - BPS-Statistics Indonesia Bima Regency. Available online: https://bimakab.bps.go.id/en/publication/2015/11/03/3290f42d8c01f866d2e2f602/kabupaten-bima-dalam-angka-2015.html (accessed on 16 July 2024).
- Dompu Regency in Figures 2024-BPS-Statistics Indonesia Dompu Regency. Available online: https://dompukab.bps.go.id/en/publication/2024/02/28/df3db3910eaed72ddb8a18df/dompu-regency-in-figures-2024.html (accessed on 16 July 2024).
- Hergoualc’h, K.; Verchot, L.V. Stocks and Fluxes of Carbon Associated with Land Use Change in Southeast Asian Tropical Peatlands: A Review: Peatland Carbon Dynamics and Land Use Change in Southeast Asia. Global Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef]
- Junior, F.R.F.; Dos Santos, A.M.; Alvarado, S.T.; Da Silva, C.F.A.; Nunes, F.G. Remote Sensing Applied to the Study of Fire in Savannas: A Literature Review. Ecol. Inform. 2024, 79, 102448. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In Satellite Precipitation Measurement; Advances in Global Change Research; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 67, pp. 343–353. ISBN 978-3-030-24567-2. [Google Scholar]
- Rana, V.K.; Suryanarayana, T.M.V. Evaluation of SAR Speckle Filter Technique for Inundation Mapping. Remote Sens. Appl. Soc. Environ. 2019, 16, 100271. [Google Scholar] [CrossRef]
- Hasan, S.F.; Shareef, M.A.; Hassan, N.D. Speckle filtering impact on land use/land cover classification area using the combination of Sentinel-1A and Sentinel-2B (a case study of Kirkuk city; Iraq). Arab. J. Geosci. 2021, 14, 276. [Google Scholar] [CrossRef]
- Zhang, Y.; He, C.; Xu, X.; Chen, D. Forest Vertical Parameter Estimation Using PolInSAR Imagery Based on Radiometric Correction. IJGI 2016, 5, 186. [Google Scholar] [CrossRef]
- Holtgrave, A.-K.; Röder, N.; Ackermann, A.; Erasmi, S.; Kleinschmit, B. Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. Remote Sens. 2020, 12, 2919. [Google Scholar] [CrossRef]
- Chen, W.; Yin, H.; Moriya, K.; Sakai, T.; Cao, C. Retrieval and Comparison of Forest Leaf Area Index Based on Remote Sensing Data from AVNIR-2, Landsat-5 TM, MODIS, and PALSAR Sensors. IJGI 2017, 6, 179. [Google Scholar] [CrossRef]
- Wolpert, D.H. Stacked Generalization. Neural Networks 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Graupe, D. Principles of Artificial Neural Networks, 3rd ed.; Advanced Series in Circuits and Systems; World Scientific: Singapore, 2013; Volume 7, ISBN 978-981-4522-73-1. [Google Scholar]
- Ibrahim, R.A.; Elsheikh, A.H.; Elasyed Abd Elaziz, M.; Al-qaness, M.A.A. Basics of Artificial Neural Networks. In Artificial Neural Networks for Renewable Energy Systems and Real-World Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–10. ISBN 978-0-12-820793-2. [Google Scholar]
- Stathakis, D.; Vasilakos, A. Satellite image classification using granular neural networks. Int. J. Remote Sens. 2006, 27, 3991–4003. [Google Scholar] [CrossRef]
- Rachmatullah, M.I.C.; Santoso, J.; Surendro, K. Determining the number of hidden layer and hidden neuron of neural network for wind speed prediction. PeerJ Comput. Sci. 2021, 7, e724. [Google Scholar] [CrossRef]
- Bai, Y. RELU-Function and Derived Function Review. SHS Web Conferences 2022, 144, 02006. [Google Scholar] [CrossRef]
- Jurafsky, D.; Martin, J.H. Logistic Regression. In Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition; Pearson: London, UK, 2022. [Google Scholar]
- Dreiseitl, S.; Ohno-Machado, L. Logistic Regression and Artificial Neural Network Classification Models: A Methodology Review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L.A. Detection of Forests Using Mid-IR Reflectance: An Application for Aerosol Studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- García, M.J.L.; Caselles, V. Mapping Burns and Natural Reforestation Using Thematic Mapper Data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Karthik; Shivakumar, B.R. Land Cover Mapping Capability of Chaincluster; K-Means; and ISODATA techniques—A Case Study. In BT- Advances in VLSI; Signal Processing; Power Electronics; IoT; Communication and Embedded Systems; Kalya, S., Kulkarni, M., Shivaprakasha, K.S., Eds.; Springer: Singapore, 2021; pp. 273–288. [Google Scholar]
- Yang, M.D. A genetic algorithm (GA) based automated classifier for remote sensing imagery. Can. J. Remote Sens. 2007, 33, 203–213. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef]
- Carreiras, J.M.B.; Quegan, S.; Tansey, K.; Page, S. Sentinel-1 Observation Frequency Significantly Increases Burnt Area Detectability in Tropical SE Asia. Environ. Res. Lett. 2020, 15, 054008. [Google Scholar] [CrossRef]
- Rahman, M.; Chen, N.; Elbeltagi, A.; Islam, M.M.; Alam, M.; Pourghasemi, H.R.; Tao, W.; Zhang, J.; Shufeng, T.; Faiz, H.; et al. Application of Stacking Hybrid Machine Learning Algorithms in Delineating Multi-Type Flooding in Bangladesh. J. Environ. Manag. 2021, 295, 113086. [Google Scholar] [CrossRef]
- Shama, A.; Zhang, R.; Zhan, R.; Wang, T.; Xie, L.; Bao, X.; Lv, J. A Burned Area Extracting Method Using Polarization and Texture Feature of Sentinel-1A Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Radman, A.; Shah-Hosseini, R.; Homayouni, S. A Deep Convolutional Neural Network for Burn Progression Mapping Using Sentinel-1 SAR Time-Series. Int. J. Remote Sens. 2023, 44, 2196–2215. [Google Scholar] [CrossRef]
- Supriyati, S.; Tjahjono, B.; Effendy, S. Analysis of Rainfall Pattern for Lahar Mitigation at Sinabung Volcano. J. Ilmu Tan. Lingk. 2018, 20, 95–100. [Google Scholar] [CrossRef]
- Haiyan, D.A.I.; Haimei, W.A.N.G. Influence of Rainfall Events on Soil Moisture in a Typical Steppe of Xilingol. Phys. Chem. Earth Parts A/B/C 2021, 121, 102964. [Google Scholar] [CrossRef]
- Burgin, M.; Clewley, D.; Lucas, R.M.; Moghaddam, M. A Generalized Radar Backscattering Model Based on Wave Theory for Multilayer Multispecies Vegetation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4832–4845. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Zhang, J.; Zhang, S.; Li, H. An LSTM Neural Network for Improving Wheat Yield Estimates by Integrating Remote Sensing Data and Meteorological Data in the Guanzhong Plain, PR China. Agric. For. Meteorol. 2021, 310, 108629. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Marcos, E.; Suárez-Seoane, S.; Calvo, L. ALOS-2 L-Band SAR Backscatter Data Improves the Estimation and Temporal Transferability of Wildfire Effects on Soil Properties under Different Post-Fire Vegetation Responses. Sci. Total Environ. 2022, 842, 156852. [Google Scholar] [CrossRef]
- Luo, D.; Xiong, K.; Wu, C.; Gu, X.; Wang, Z. Soil Moisture and Nutrient Changes of Agroforestry in Karst Plateau Mountain: A Monitoring Example. Agronomy 2022, 13, 94. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Belenguer-Plomer, M.A.; Tanase, M.A.; Chuvieco, E.; Bovolo, F. CNN-Based Burned Area Mapping Using Radar and Optical Data. Remote Sens. Environ. 2021, 260, 112468. [Google Scholar] [CrossRef]
AOI | Sensor | Acquisition Date | |
---|---|---|---|
Pre-Fire Event | Post-Fire Event | ||
Rokan Hilir Regency, Riau Province | Sentinel-1 (C-Band SAR) | 10 June | 20 October (**–13 days) |
ALOS-2/PALSAR-2 (L-Band SAR) | 11 June | 29 October (**–4 days) | |
Sentinel-2 | From 1 May to 30 July | 17 August, 1 September, and 1 October | |
PlanetScope | * | 2 November | |
Merauke Regency, Papua Province | Sentinel-1 (C-Band SAR) | 16 May | 20 August (**–12 days) |
ALOS-2/PALSAR-2 (L-Band SAR) | 21 May | 27 August (**–5 days) | |
Sentinel-2 | From 1 June to 30 June | From 15 August to 31 August | |
PlanetScope | * | 1 September | |
Bima and Dompu Regencies, West Nusa Tenggara Province | Sentinel-1 (C-Band SAR) | 11 June | 21 October (**–5–8 days) |
ALOS-2/PALSAR-2 (L-Band SAR) | 8 June | 26 October (**–3 days) | |
Sentinel-2 | From 1 June to 15 June | From 15 to 31 October | |
PlanetScope | * | 26–29 October |
Sensors | Polarimetric Features | Acronyms | Equations |
---|---|---|---|
Sentinel-1 C-Band | Radar post-fire events on VH polarization | VHpost-fire events | |
Radar post-fire events on VV polarization | VVpost-fire events | ||
Radar Vegetation Index on post-fire events | RVIpost-fire events | ||
Dual-Polarization SAR Vegetation Index on post-fire events | DPSVIpost-fire events | ||
Difference Radar Vegetation Index | DRVI | RVIpost-fire events − RVIpre-fire events | |
Difference Dual-Polarization SAR Vegetation Index | DDPSVI | DPSVIpost-fire events − DPSVIpre-fire events | |
Radar Burn Ratio on VH and VV polarizations | RBRVH and RBRVV | where xy: polarization | |
Radar Burn Difference on VH and VV polarizations | RBDVH and RBDVV | Post-fire backscatterxy − Pre-fire backscatterxy where xy: polarization | |
ALOS-2/PALSAR-2 L-Band | Radar post-fire events on HV polarization | HVpost-fire events | where CF = −83.0 |
Radar post-fire events on HH polarization | HHpost-fire events | where CF = −83.0 | |
Radar Ratio Vegetation Index on post-fire events | RRVIpost-fire events | ||
Radar Normalized Difference Vegetation Index on post-fire events | RNDVIpost-fire events | ||
Difference Radar Ratio Vegetation Index | DRRVI | RRVIpost-fire events − RRVIpre-fire events | |
Difference Radar Normalized Difference Vegetation Index | DRNDVI | RNDVIpost-fire events − RNDVIpre-fire events | |
Radar Burn Ratio on HV and HH polarizations | RBRHV and RBRHH | where xy: polarization | |
Radar Burn Difference on HV and HH polarizations | RBDHV and RBDHH | Post-fire backscatterxy − Pre-fire backscatterxy where xy: polarization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudiana, D.; Lestari, A.I.; Rizkinia, M.; Riyanto, I.; Vetrita, Y.; Bayanuddin, A.A.; Putri, F.A.; Kartika, T.; Suhadha, A.G.; Julzarika, A.; et al. Assessing Burned Area Detection in Indonesia Using the Stacking Ensemble Neural Network (SENN): A Comparative Analysis of C- and L-Band Performance. Computers 2025, 14, 337. https://doi.org/10.3390/computers14080337
Sudiana D, Lestari AI, Rizkinia M, Riyanto I, Vetrita Y, Bayanuddin AA, Putri FA, Kartika T, Suhadha AG, Julzarika A, et al. Assessing Burned Area Detection in Indonesia Using the Stacking Ensemble Neural Network (SENN): A Comparative Analysis of C- and L-Band Performance. Computers. 2025; 14(8):337. https://doi.org/10.3390/computers14080337
Chicago/Turabian StyleSudiana, Dodi, Anugrah Indah Lestari, Mia Rizkinia, Indra Riyanto, Yenni Vetrita, Athar Abdurrahman Bayanuddin, Fanny Aditya Putri, Tatik Kartika, Argo Galih Suhadha, Atriyon Julzarika, and et al. 2025. "Assessing Burned Area Detection in Indonesia Using the Stacking Ensemble Neural Network (SENN): A Comparative Analysis of C- and L-Band Performance" Computers 14, no. 8: 337. https://doi.org/10.3390/computers14080337
APA StyleSudiana, D., Lestari, A. I., Rizkinia, M., Riyanto, I., Vetrita, Y., Bayanuddin, A. A., Putri, F. A., Kartika, T., Suhadha, A. G., Julzarika, A., Sobue, S., Prabuwono, A. S., & Sri Sumantyo, J. T. (2025). Assessing Burned Area Detection in Indonesia Using the Stacking Ensemble Neural Network (SENN): A Comparative Analysis of C- and L-Band Performance. Computers, 14(8), 337. https://doi.org/10.3390/computers14080337