Leveraging Artificial Intelligence in Project Management: A Systematic Review of Applications, Challenges, and Future Directions
Abstract
:1. Introduction
2. Materials and Methods
3. Literature Review
3.1. Project Integration Management
3.2. Project Scope Management
3.3. Project Schedule Management
3.4. Project Cost Management
3.5. Project Quality Management
3.6. Project Resource Management
3.7. Project Risk Management
3.8. Project Stakeholder Management
3.9. Project Cost and Schedule Management
3.10. Evolution Path
3.11. Decision Tree Analyses
3.12. Data Quality and Sources in AI-Driven Project Management Studies
4. Conclusions, Discussion, and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK Guide)—Seventh Edition and the Standard for Project Management. 2021. Available online: https://ibimone.com/PMBOK%207th%20Edition%20(iBIMOne.com).pdf (accessed on 10 November 2024).
- EU. Project Management Methodology Guide Open Edition. 2018. Available online: http://eeas.europa.eu/delegations/index_en.htm (accessed on 10 November 2024).
- Turner, J.R.; Xue, Y. On the success of megaprojects. Int. J. Manag. Proj. Bus. 2018, 11, 783–805. [Google Scholar] [CrossRef]
- Uddin, S.; Ong, S.; Lu, H.H. Machine learning in project analytics: A data-driven framework and case study. Sci. Rep. 2022, 12, 15252. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.L.; Mackworth, A.K. Artificial Intelligence: Foundations of Computational Agents. 2010. Available online: https://books.google.gr/books?hl=el&lr=&id=B7khAwAAQBAJ&oi=fnd&pg=PR7&dq=5.+Poole,+D.+L.,+%26+Mackworth,+A.+K.+(2010).+Artificial+Intelligence:+Foundations+of+Computational+Agents&ots=_5d-NKEPiv&sig=2T1FNOa8LUJqqVraLwBeRMNNmvw&redir_esc=y#v=onepage&q&f=false (accessed on 11 November 2024).
- Shang, G.; Low, S.P.; Lim, X.Y.V. Prospects, drivers of and barriers to artificial intelligence adoption in project management. Built Environ. Proj. Asset Manag. 2023, 13, 629–645. [Google Scholar] [CrossRef]
- Costa, R.L.; da Dias, Á.L.; Gonçalves, R.; Pereira, L.; Abreu, S. Artificial Intelligence in Project Management: Systematic Literature Review. Int. J. Technol. Intell. Plan. 2022, 13, 143–163. [Google Scholar] [CrossRef]
- Munir, M. How Artificial Intelligence can help Project Managers. Glob. J. Manag. Bus. Res. 2019, 19, 29–35. [Google Scholar]
- Ong, S.; Uddin, S. Data science and artificial intelligence in project management: The past, present and future. J. Mod. Proj. Manag. 2020, 7, 26–33. [Google Scholar] [CrossRef]
- Somasundaram, M.; Mohamed Junaid, K.A.; Mangadu, S. Artificial intelligence (AI) enabled intelligent quality management system (IQMS) for personalized learning path. Procedia Comput. Sci. 2020, 172, 438–442. [Google Scholar] [CrossRef]
- Magaña Martínez, D.; Fernandez-Rodriguez, J.C. Artificial Intelligence Applied to Project Success: A Literature Review. Int. J. Interact. Multimed. Artif. Intell. 2015, 3, 77. [Google Scholar] [CrossRef]
- Pinto, J.K. Critical Success Factors Across the Project Life Cycle. 1988. Available online: https://www.researchgate.net/publication/236175751 (accessed on 16 December 2024).
- Abylova, L. Critical Success Factors in Project Management: A Comprehensive Review. In Proceedings of the 8th Scientific Conference on Project Management in the Baltic States, Riga, Latvia, 25–26 April 2019; Available online: www.pmworldlibrary.net (accessed on 6 November 2024).
- Nenni, M.E.; de Felice, F.; de Luca, C.; Forcina, A. How artificial intelligence will transform project management in the age of digitization: A systematic literature review. Manag. Rev. Q. 2024, 1–48. [Google Scholar] [CrossRef]
- Taboada, I.; Daneshpajouh, A.; Toledo, N.; de Vass, T. Artificial Intelligence Enabled Project Management: A Systematic Literature Review. Appl. Sci. 2023, 13, 5014. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review* Introduction: The need for an evidence- informed approach. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Denicol, J.; Davies, A.; Krystallis, I. What Are the Causes and Cures of Poor Megaproject Performance? A Systematic Literature Review and Research Agenda. Proj. Manag. J. 2020, 51, 328–345. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Prasetyo, M.L.; Peranginangin, R.A.; Martinovic, N.; Ichsan, M.; Wicaksono, H. Artificial intelligence in open innovation project management: A systematic literature review on technologies, applications, and integration requirements. J. Open Innov. Technol. Mark. Complex. 2025, 11, 100445. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Gemuenden, H.G.; Schoper, Y. Future Trends in Project Management. J. View Proj. Relatsh. Mark. Teams View Proj. 2015. [Google Scholar]
- A guide to the Project Management Body of Knowledge (PMBOK Guide). Project Management Institute. 2017. Available online: https://prothoughts.co.in/wp-content/uploads/2022/06/a-guide-to-the-project-management-body-of-knowledge-6e.pdf (accessed on 20 December 2024).
- Elazouni, A.; Salem, O.A. Progress monitoring of construction projects using pattern recognition techniques. Constr. Manag. Econ. 2011, 29, 355–370. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Tsai, H.-C.; Sudjono, E. Evolutionary fuzzy hybrid neural network for dynamic project success assessment in construction industry. Autom. Constr. 2012, 21, 46–51. [Google Scholar] [CrossRef]
- Colin, J.; Martens, A.; Vanhoucke, M.; Wauters, M. A multivariate approach for top-down project control using earned value management. Decis. Support Syst. 2015, 79, 65–76. [Google Scholar] [CrossRef]
- Salari, M.; Khamooshi, H. A better project performance prediction model using fuzzy time series and data envelopment analysis. J. Oper. Res. Soc. 2016, 67, 1274–1287. [Google Scholar] [CrossRef]
- Chang, Y.C.; Shih, C.W.; Hsu, W.L. Entailment-Based Intelligent System for Software Project Monitoring and Control. IEEE Syst. J. 2018, 12, 216–227. [Google Scholar] [CrossRef]
- Leon, H.; Osman, H.; Georgy, M.; Elsaid, M. System Dynamics Approach for Forecasting Performance of Construction Projects. J. Manag. Eng. 2018, 34, 04017049. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Wu, Y.-W.; Huang, C.-C. Hybrid Gaussian Process Inference Model for Construction Management Decision Making. Int. J. Inf. Technol. Decis. Mak. 2020, 19, 1015–1036. [Google Scholar] [CrossRef]
- Fayek, A.R. Fuzzy Logic and Fuzzy Hybrid Techniques for Construction Engineering and Management. J. Constr. Eng. Manag. 2020, 146, 04020064. [Google Scholar] [CrossRef]
- Pour Rahimian, F.; Seyedzadeh, S.; Oliver, S.; Rodriguez, S.; Dawood, N. On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Autom. Constr. 2020, 110, 103012. [Google Scholar] [CrossRef]
- Amer, F.; Jung, Y.; Golparvar-Fard, M. Transformer machine learning language model for auto-alignment of long-term and short-term plans in construction. Autom. Constr. 2021, 132, 103929. [Google Scholar] [CrossRef]
- Shameem, M.; Nadeem, M.; Zamani, A.T. Genetic algorithm based probabilistic model for agile project success in global software development. Appl. Soft Comput. 2023, 135, 109998. [Google Scholar] [CrossRef]
- Uddin, S.; Ong, S.; Lu, H.; Matous, P. Integrating machine learning and network analytics to model project cost, time and quality performance. Prod. Plan. Control. 2020, 12, 1475–1489. [Google Scholar] [CrossRef]
- Kim, C.W.; Yoo, W.S.; Lim, H.; Yu, I.; Cho, H.; Kang, K.I. Early-warning performance monitoring system (EPMS) using the business information of a project. Int. J. Proj. Manag. 2018, 36, 730–743. [Google Scholar] [CrossRef]
- Shah, M.A.; Jawawi DN, A.; Isa, M.A.; Younas, M.; Abdelmaboud, A.; Sholichin, F. Ensembling Artificial Bee Colony With Analogy-Based Estimation to Improve Software Development Effort Prediction. IEEE Access 2020, 8, 58402–58415. [Google Scholar] [CrossRef]
- de Carvalho, H.D.P.; Fagundes, R.; Santos, W. Extreme Learning Machine Applied to Software Development Effort Estimation. IEEE Access 2021, 9, 92676–92687. [Google Scholar] [CrossRef]
- Mavrovouniotis, M.; Anastasiadou, M.N.; Hadjimitsis, D. Measuring the Performance of Ant Colony Optimization Algorithms for the Dynamic Traveling Salesman Problem. Algorithms 2023, 16, 545. [Google Scholar] [CrossRef]
- Azar, D.; Vybihal, J. An ant colony optimization algorithm to improve software quality prediction models: Case of class stability. Inf. Softw. Technol. 2011, 53, 388–393. [Google Scholar] [CrossRef]
- Sun, C.; Xu, J. Estimation of Time for Wenchuan Earthquake Reconstruction in China. J. Constr. Eng. Manag. 2011, 137, 179–187. [Google Scholar] [CrossRef]
- Jha, K.N.; Chockalingam, C. Prediction of schedule performance of Indian construction projects using an artificial neural network. Constr. Manag. Econ. 2011, 29, 901–911. [Google Scholar] [CrossRef]
- Irfan, M.; Khurshid, M.B.; Anastasopoulos, P.; Labi, S.; Moavenzadeh, F. Planning-stage estimation of highway project duration on the basis of anticipated project cost, project type, and contract type. Int. J. Proj. Manag. 2011, 29, 78–92. [Google Scholar] [CrossRef]
- Agarwal, A.; Colak, S.; Erenguc, S. A Neurogenetic approach for the resource-constrained project scheduling problem. Comput. Oper. Res. 2011, 38, 44–50. [Google Scholar] [CrossRef]
- Chou, J.S.; Cheng, M.Y.; Wu, Y.W.; Wu, C.C. Forecasting enterprise resource planning software effort using evolutionary support vector machine inference model. Int. J. Proj. Manag. 2012, 30, 967–977. [Google Scholar] [CrossRef]
- Sadeghi, N.; Fayek, A.R.; Seresht, N.G. A fuzzy discrete event simulation framework for construction applications: Improving the simulation time advancement. J. Constr. Eng. Manag. 2016, 142, 04016071. [Google Scholar] [CrossRef]
- Wauters, M.; Vanhoucke, M. A Nearest Neighbour extension to project duration forecasting with Artificial Intelligence. Eur. J. Oper. Res. 2017, 259, 1097–1111. [Google Scholar] [CrossRef]
- Golizadeh, H.; Banihashemi, S.; Sadeghifam, A.N.; Preece, C. Automated estimation of completion time for dam projects. Int. J. Constr. Manag. 2017, 17, 197–209. [Google Scholar] [CrossRef]
- Choetkiertikul, M.; Dam, H.K.; Tran, T.; Ghose, A. Predicting the delay of issues with due dates in software projects. Empir. Softw. Eng. 2017, 22, 1223–1263. [Google Scholar] [CrossRef]
- Pospieszny, P.; Czarnacka-Chrobot, B.; Kobylinski, A. An effective approach for software project effort and duration estimation with machine learning algorithms. J. Syst. Softw. 2018, 137, 184–196. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Hoang, N.-D. Estimating construction duration of diaphragm wall using firefly-tuned least squares support vector machine. Neural Comput. Appl. 2018, 30, 2489–2497. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Ali, Z.H.; Salih, S.Q.; Al-Ansari, N. Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model. Sustainability 2020, 12, 1514. [Google Scholar] [CrossRef]
- Gondia, A.; Siam, A.; El-Dakhakhni, W.; Nassar, A.H. Machine Learning Algorithms for Construction Projects Delay Risk Prediction. J. Constr. Eng. Manag. 2020, 146, 04019085. [Google Scholar] [CrossRef]
- Awada, M.; Srour, F.J.; Srour, I.M. Data-Driven Machine Learning Approach to Integrate Field Submittals in Project Scheduling. J. Manag. Eng. 2021, 37, 04020104. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X. Dynamic Probability Analysis for Construction Schedule Using Subset Simulation. Adv. Civ. Eng. 2021, 2021, 1567261. [Google Scholar] [CrossRef]
- Sai, L.; Hao, W.Q. Forecasting the scheduling issues in engineering project management: Applications of deep learning models. Future Gener. Comput. Syst.-Int. J. Esci. 2021, 123, 85–93. [Google Scholar] [CrossRef]
- Chakrabortty, R.K.; Abbasi, A.; Ryan, M.J. A Risk Assessment Framework for Scheduling Projects With Resource and Duration Uncertainties. IEEE Trans. Eng. Manag. 2022, 69, 1917–1931. [Google Scholar] [CrossRef]
- Sousa, A.O.; Veloso, D.T.; Gonçalves, H.M.; Faria, J.P.; Mendes-Moreira, J.; Graça, R.; Gomes, D.; Castro, R.N.; Henriques, P.C. Applying Machine Learning to Estimate the Effort and Duration of Individual Tasks in Software Projects. IEEE Access 2023, 11, 89933–89946. [Google Scholar] [CrossRef]
- Liang, A.; Tao, L.; Lei, H. Combined machine-learning and EDM to monitor and predict a complex project with a GERT-type network: A multi-point perspective. Comput. Ind. Eng. 2023, 180, 109256. [Google Scholar] [CrossRef]
- Jaafar, K.; Watfa, M.; Aloran, A. Framework for a Predictive Progress Model—Case of infrastructure projects. Int. J. Manag. Sci. Eng. Manag. 2023, 18, 157–169. [Google Scholar] [CrossRef]
- Khan, U.U.; Ali, Y.; Garai-Fodor, M.; Csiszárik-Kocsir, A. Application of Project Management Techniques for Timeline and Budgeting Estimates of Startups. Sustainability 2023, 15, 15526. [Google Scholar] [CrossRef]
- Yang, J.-B.; Chen, Y.-H. Enhanced ESM approach for duration forecasting in delayed projects. Ain Shams Eng. J. 2024, 15, 102472. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Roy, A.F.V. Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines. Int. J. Proj. Manag. 2011, 29, 56–65. [Google Scholar] [CrossRef]
- Hwang, S. Time series models for forecasting construction costs using time series indexes. J. Constr. Eng. Manag. 2011, 137, 656–662. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Hoang, N.-D.; Roy AF, v.; Wu, Y.-W. A novel time-depended evolutionary fuzzy SVM inference model for estimating construction project at completion. Eng. Appl. Artif. Intell. 2012, 25, 744–752. [Google Scholar] [CrossRef]
- Nassif, A.B.; Ho, D.; Capretz, L.F. Towards an early software estimation using log-linear regression and a multilayer perceptron model. J. Syst. Softw. 2013, 86, 144–160. [Google Scholar] [CrossRef]
- Chen, H.L. Improving Forecasting Accuracy of Project Earned Value Metrics: Linear Modeling Approach. J. Manag. Eng. 2014, 30, 135–145. [Google Scholar] [CrossRef]
- Kim, B.C. Integrating Risk Assessment and Actual Performance for Probabilistic Project Cost Forecasting: A Second Moment Bayesian Model. IEEE Trans. Eng. Manag. 2015, 62, 158–170. [Google Scholar] [CrossRef]
- Cao, M.-T.; Cheng, M.-Y.; Wu, Y.-W. Hybrid computational model for forecasting Taiwan construction cost index. J. Constr. Eng. Manag. 2015, 141, 04014089. [Google Scholar] [CrossRef]
- Nassif, A.B.; Azzeh, M.; Capretz, L.F.; Ho, D. Neural network models for software development effort estimation: A comparative study. Neural Comput. Appl. 2016, 27, 2369–2381. [Google Scholar] [CrossRef]
- Batselier, J.; Vanhoucke, M. Improving project forecast accuracy by integrating earned value management with exponential smoothing and reference class forecasting. Int. J. Proj. Manag. 2017, 35, 28–43. [Google Scholar] [CrossRef]
- Xue, X.; Jia, Y.; Tang, Y. Expressway Project Cost Estimation with a Convolutional Neural Network Model. IEEE Access 2020, 8, 217848–217866. [Google Scholar] [CrossRef]
- Moon, H.; Williams, T.P.; Lee, H.-S.; Park, M. Predicting project cost overrun levels in bidding stage using ensemble learning. J. Asian Archit. Build. Eng. 2020, 19, 586–599. [Google Scholar] [CrossRef]
- Mir, M.; Kabir, H.M.D.; Nasirzadeh, F.; Khosravi, A. Neural network-based interval forecasting of construction material prices. J. Build. Eng. 2021, 39, 102288. [Google Scholar] [CrossRef]
- Xu, X.; Peng, L.; Ji, Z.; Zheng, S.; Tian, Z.; Geng, S. Research on substation project cost prediction based on sparrow search algorithm optimized BP neural network. Sustainability 2021, 13, 13746. [Google Scholar] [CrossRef]
- Kim, J.; Cha, H.S. Expediting the Cost Estimation Process for Aged-Housing Renovation Projects Using a Probabilistic Deep Learning Approach. Sustainability 2022, 14, 564. [Google Scholar] [CrossRef]
- Castro Miranda, S.L.; del Rey Castillo, E.; Gonzalez, V.; Adafin, J. Predictive Analytics for Early-Stage Construction Costs Estimation. Buildings 2022, 12, 1043. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, H.S.; Park, M.; Seo, J. Early-stage cost estimation model for power generation project with limited historical data. Eng. Constr. Archit. Manag. 2022, 29, 2599–2614. [Google Scholar] [CrossRef]
- Disch, M. Estimating the Costs of Product Development Projects Based on External Data: The New Product Development Cost Benchmarking Method. IEEE Trans. Eng. Manag. 2023, 71, 5117–5128. [Google Scholar] [CrossRef]
- Al Kailani, H.; Sweis, G.J.; Sammour, F.; Maaitah, W.O.; Sweis, R.J.; Alkailani, M. Predicting construction cost index using fuzzy logic and machine learning in Jordan. Constr. Innov. 2024. [Google Scholar] [CrossRef]
- Chen, N.; Hoi, S.C.H.; Xiao, X. Software process evaluation: A machine learning framework with application to defect management process. Empir. Softw. Eng. 2013, 19, 1531–1564. [Google Scholar] [CrossRef]
- Juneja, K. A fuzzy-filtered neuro-fuzzy framework for software fault prediction for inter-version and inter-project evaluation. Appl. Soft Comput. J. 2019, 77, 696–713. [Google Scholar] [CrossRef]
- Dikmen, I.; Qazi, A.; Erol, H.; Birgonul, M.T. Meta-Modeling of Complexity-Uncertainty-Performance Triad in Construction Projects. EMJ—Eng. Manag. J. 2020, 33, 30–44. [Google Scholar] [CrossRef]
- Dumitrascu-Băldău, I.; Dumitrascu, D.D.; Dobrota, G. Predictive model for the factors influencing international project success: A data mining approach. Sustainability 2021, 13, 3819. [Google Scholar] [CrossRef]
- Rashidi, A.; Jazebi, F.; Brilakis, I. Neurofuzzy genetic system for selection of construction project managers. J. Constr. Eng. Manag. 2011, 137, 17–29. [Google Scholar] [CrossRef]
- Heravi, G.; Eslamdoost, E. Applying Artificial Neural Networks for Measuring and Predicting Construction-Labor Productivity. J. Constr. Eng. Manag. 2015, 141, 04015032. [Google Scholar] [CrossRef]
- Patel, D.A.; Jha, K.N. Neural network model for the prediction of safe work behavior in construction projects. J. Constr. Eng. Manag. 2015, 141, 04014066. [Google Scholar] [CrossRef]
- El-Gohary, K.M.; Aziz, R.F.; Abdel-Khalek, H.A. Engineering Approach Using ANN to Improve and Predict Construction Labor Productivity under Different Influences. J. Constr. Eng. Manag. 2017, 143, 04017045. [Google Scholar] [CrossRef]
- Mo, Y.; Zhao, D.; Du, J.; Syal, M.; Aziz, A.; Li, H. Automated staff assignment for building maintenance using natural language processing. Autom. Constr. 2020, 113, 103150. [Google Scholar] [CrossRef]
- Arora, M.; Verma, S.; Kavita Wozniak, M.; Shafi, J.; Ijaz, M.F. An efficient ANFIS-EEBAT approach to estimate effort of Scrum projects. Sci. Rep. 2022, 12, 7974. [Google Scholar] [CrossRef]
- Ronghui, S.; Liangrong, N. An intelligent fuzzy-based hybrid metaheuristic algorithm for analysis the strength, energy and cost optimization of building material in construction management. Eng. Comput. 2022, 38, 2663–2680. [Google Scholar] [CrossRef]
- Jiang, C.; Li, X.; Lin, J.-R.; Liu, M.; Ma, Z. Adaptive control of resource flow to optimize construction work and cash flow via online deep reinforcement learning. Autom. Constr. 2023, 150, 104817. [Google Scholar] [CrossRef]
- Shafiabady, N.; Hadjinicolaou, N.; Din, F.U.; Bhandari, B.; Wu, R.M.X.; Vakilian, J. Using Artificial Intelligence (AI) to predict organizational agility. PLoS ONE 2023, 18, e0283066. [Google Scholar] [CrossRef]
- Jin, X.H.; Zhang, G.M. Modelling optimal risk allocation in PPP projects using artificial neural networks. Int. J. Proj. Manag. 2011, 29, 591–603. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Valentina, L.; Possamai, O. Forecasting project performance considering the influence of leadership style on organizational agility. Int. J. Product. Perform. Manag. 2012, 61, 653–671. [Google Scholar] [CrossRef]
- Wang, Y.R.; Yu, C.Y.; Chan, H.H. Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models. Int. J. Proj. Manag. 2012, 30, 470–478. [Google Scholar] [CrossRef]
- Fang, C.; Marle, F. A simulation-based risk network model for decision support in project risk management. Decis. Support Syst. 2012, 52, 635–644. [Google Scholar] [CrossRef]
- Hu, Y.; Du, J.; Zhang, X.; Hao, X.; Ngai, E.W.T.; Fan, M.; Liu, M. An integrative framework for intelligent software project risk planning. Decis. Support Syst. 2013, 55, 927–937. [Google Scholar] [CrossRef]
- Shi, Q.; Zhou, Y.K.; Xiao, C.; Chen, R.Y.; Zuo, J. Delivery risk analysis within the context of program management using fuzzy logic and DEA: A China case study. Int. J. Proj. Manag. 2014, 32, 341–349. [Google Scholar] [CrossRef]
- Nasirzadeh, F.; Khanzadi, M.; Rezaie, M. Dynamic modeling of the quantitative risk allocation in construction projects. Int. J. Proj. Manag. 2014, 32, 442–451. [Google Scholar] [CrossRef]
- Gunduz, M.; Nielsen, Y.; Ozdemir, M. Fuzzy Assessment Model to Estimate the Probability of Delay in Turkish Construction Projects. J. Manag. Eng. 2015, 31, 04014055. [Google Scholar] [CrossRef]
- Rodríguez, A.; Ortega, F.; Concepción, R. A method for the evaluation of risk in IT projects. Expert Syst. Appl. 2016, 45, 273–285. [Google Scholar] [CrossRef]
- Xia, N.; Zou, P.X.W.; Liu, X.; Wang, X.; Zhu, R. A hybrid BN-HFACS model for predicting safety performance in construction projects. Saf. Sci. 2018, 101, 332–343. [Google Scholar] [CrossRef]
- Kataev, M.; Bulysheva, L.; Xu, L.D.; Ekhlakov, Y.; Permyakova, N.; Jovanovic, V. Fuzzy model estimation of the risk factors impact on the target of promotion of the software product. Enterp. Inf. Syst. 2020, 14, 797–811. [Google Scholar] [CrossRef]
- Aladaǧ, H.; Işik, Z. The Effect of Stakeholder-Associated Risks in Mega-Engineering Projects: A Case Study of a PPP Airport Project. IEEE Trans. Eng. Manag. 2020, 67, 174–186. [Google Scholar] [CrossRef]
- Bashir, H.; Ojiako, U.; Mota, C. Modeling and Analyzing Factors Affecting Project Delays Using an Integrated Social Network-Fuzzy MICMAC Approach. EMJ—Eng. Manag. J. 2020, 32, 26–36. [Google Scholar] [CrossRef]
- Assaad, R.; El-Adaway, I.H.; Abotaleb, I.S. Predicting Project Performance in the Construction Industry. J. Constr. Eng. Manag. 2020, 146, 04020030. [Google Scholar] [CrossRef]
- Kim, J.M.; Bae, J.; Son, S.; Son, K.; Yum, S.G. Development of Model to Predict Natural Disaster-Induced Financial Losses for Construction Projects Using Deep Learning Techniques. Sustainability 2021, 13, 5304. [Google Scholar] [CrossRef]
- Ayhan, M.; Dikmen, I.; Talat Birgonul, M. Predicting the Occurrence of Construction Disputes Using Machine Learning Techniques. J. Constr. Eng. Manag. 2021, 147, 04021022. [Google Scholar] [CrossRef]
- Chattapadhyay, D.B.; Putta, J.; Rama Mohan Rao, P. Risk identification, assessments, and prediction for mega construction projects: A risk prediction paradigm based on cross analytical-machine learning model. Buildings 2021, 11, 172. [Google Scholar] [CrossRef]
- Islam, M.S.; Mohandes, S.R.; Mahdiyar, A.; Fallahpour, A.; Olanipekun, A.O. A Coupled Genetic Programming Monte Carlo Simulation-Based Model for Cost Overrun Prediction of Thermal Power Plant Projects. J. Constr. Eng. Manag. 2022, 148, 04022073. [Google Scholar] [CrossRef]
- Koc, K.; Ekmekcioğlu, Ö.; Gurgun, A.P. Accident prediction in construction using hybrid wavelet-machine learning. Autom. Constr. 2022, 133, 103987. [Google Scholar] [CrossRef]
- Kim, J.M.; Bae, J.; Park, H.; Yum, S.G. Predicting financial losses due to apartment construction accidents utilizing deep learning techniques. Sci. Rep. 2022, 12, 5365. [Google Scholar] [CrossRef]
- Santos, J.I.; Pereda, M.; Ahedo, V.; Galán, J.M. Explainable machine learning for project management control. Comput. Ind. Eng. 2023, 180, 109261. [Google Scholar] [CrossRef]
- Gondia, A.; Moussa, A.; Ezzeldin, M.; El-Dakhakhni, W. Machine learning-based construction site dynamic risk models. Technol. Forecast. Soc. Chang. 2023, 189, 122347. [Google Scholar] [CrossRef]
- de Andrade, P.A.; Vanhoucke, M.; Martens, A. An empirical project forecasting accuracy framework using project regularity. Ann. Oper. Res. 2023, 2, 501–521. [Google Scholar] [CrossRef]
- Chou, J.-S.; Cheng, M.-Y.; Wu, Y.-W. Improving classification accuracy of project dispute resolution using hybrid artificial intelligence and support vector machine models. Expert Syst. Appl. 2013, 40, 2263–2274. [Google Scholar] [CrossRef]
- Chaphalkar, N.B.; Iyer, K.C.; Patil, S.K. Prediction of outcome of construction dispute claims using multilayer perceptron neural network model. Int. J. Proj. Manag. 2015, 33, 1827–1835. [Google Scholar] [CrossRef]
- Soltan, S.; Ashrafi, M. Predicting project duration and cost, and selecting the best action plan using statistical methods for earned value management. J. Proj. Manag. 2020, 5, 157–166. [Google Scholar] [CrossRef]
- Wauters, M.; Vanhoucke, M. Support Vector Machine Regression for project control forecasting. Autom. Constr. 2014, 47, 92–106. [Google Scholar] [CrossRef]
- Habibi, F.; Birgani, O.T.; Koppelaar, H.; Radenovic, S.N. Using fuzzy logic to improve the project time and cost estimation based on Project Evaluation and Review Technique (PERT). J. Proj. Manag. 2018, 3, 183–196. [Google Scholar] [CrossRef]
- de Andrade, P.A.; Martens, A.; Vanhoucke, M. Using real project schedule data to compare earned schedule and earned duration management project time forecasting capabilities. Autom. Constr. 2019, 99, 68–78. [Google Scholar] [CrossRef]
- Giabbanelli, P.J.; Schneider, B.I.; Wainer, G.A. Hybrid Models That Combine Machine Learning and Simulations. Comput. Sci. Eng. 2022, 24, 72–76. [Google Scholar] [CrossRef]
- Whang, S.E.; Roh, Y.; Song, H.; Lee, J.-G. Data Collection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective. VLDB J. 2021, 32, 791–813. [Google Scholar] [CrossRef]
JOURNAL | VALUES |
---|---|
JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT | 13 |
INTERNATIONAL JOURNAL OF PROJECT MANAGEMENT | 10 |
SUSTAINABILITY (SWITZERLAND) | 6 |
AUTOMATION IN CONSTRUCTION | 5 |
JOURNAL OF MANAGEMENT IN ENGINEERING | 4 |
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT | 4 |
DECISION SUPPORT SYSTEMS | 3 |
SCIENTIFIC REPORTS | 3 |
IEEE ACCESS | 3 |
AUTOMATION IN CONSTRUCTION | 3 |
INDUSTRY | VALUES |
---|---|
ENGINEERING | 53 |
CONSTRUCTION AND BUILDING TECHNOLOGY | 27 |
COMPUTER SCIENCE | 25 |
BUSINESS AND ECONOMICS | 24 |
OPERATIONS RESEARCH AND MANAGEMENT SCIENCE | 14 |
SCIENCE AND TECHNOLOGY | 10 |
ENVIRONMENTAL SCIENCES AND ECOLOGY | 6 |
TELECOMMUNICATIONS | 4 |
MANAGEMENT | 2 |
ARCHITECTURE CONSTRUCTION AND BUILDING TECHNOLOGY | 1 |
AUTOMATION AND CONTROL SYSTEMS | 1 |
PUBLIC ADMINISTRATION | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamantiadou, D.S.; Tsironis, L. Leveraging Artificial Intelligence in Project Management: A Systematic Review of Applications, Challenges, and Future Directions. Computers 2025, 14, 66. https://doi.org/10.3390/computers14020066
Adamantiadou DS, Tsironis L. Leveraging Artificial Intelligence in Project Management: A Systematic Review of Applications, Challenges, and Future Directions. Computers. 2025; 14(2):66. https://doi.org/10.3390/computers14020066
Chicago/Turabian StyleAdamantiadou, Dorothea S., and Loukas Tsironis. 2025. "Leveraging Artificial Intelligence in Project Management: A Systematic Review of Applications, Challenges, and Future Directions" Computers 14, no. 2: 66. https://doi.org/10.3390/computers14020066
APA StyleAdamantiadou, D. S., & Tsironis, L. (2025). Leveraging Artificial Intelligence in Project Management: A Systematic Review of Applications, Challenges, and Future Directions. Computers, 14(2), 66. https://doi.org/10.3390/computers14020066