Crossing the AI Chasm in Neurocritical Care
Abstract
1. Introduction
2. Crossing the AI Chasm
3. Ethical Issues
4. Perspectives and Ongoing Research
Ongoing Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaudhry, F.; Hunt, R.J.; Hariharan, P.; Anand, S.K.; Sanjay, S.; Kjoller, E.E.; Bartlett, C.M.; Johnson, K.W.; Levy, P.D.; Noushmehr, H.; et al. Machine Learning Applications in the Neuro ICU: A Solution to Big Data Mayhem? Front. Neurol. 2020, 11, 554633. [Google Scholar] [CrossRef] [PubMed]
- Use of AI in Healthcare & Medicine is Booming—Here’s How the Medical Field Is Benefiting from AI in 2023 and Beyond. Available online: https://www.insiderintelligence.com/insights/artificial-intelligence-healthcare/ (accessed on 8 April 2023).
- Al-Mufti, F.; Kim, M.; Dodson, V.; Sursal, T.; Bowers, C.; Cole, C.; Scurlock, C.; Becker, C.; Gandhi, C.; Mayer, S.A. Machine Learning and Artificial Intelligence in Neurocritical Care: A Specialty-Wide Disruptive Transformation or a Strategy for Success. Curr. Neurol. Neurosci. Rep. 2019, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Bellini, V.; Valente, M.; Pelosi, P.; Del Rio, P.; Bignami, E. Big Data and Artificial Intelligence in Intensive Care Unit: From “Bla, Bla, Bla” to the Incredible Five’s. Neurocrit. Care 2022, 37 (Suppl. S2), 170–172. [Google Scholar] [CrossRef] [PubMed]
- United States Government Accountability Office (GAO). Technology Assessment. Artificial Intelligence in Health Care. Benefits and Challenges of Machine Learning. Technologies for Medical Diagnostics. Available online: https://www.gao.gov/assets/gao-22-104629.pdf (accessed on 8 April 2023).
- Gravesteijn, B.Y.; Steyerberg, E.W.; Lingsma, H.F. Modern Learning from Big Data in Critical Care: Primum Non Nocere. Neurocrit. Care 2022, 37 (Suppl. S2), 174–184. [Google Scholar] [CrossRef]
- Savin, I.; Ershova, K.; Kurdyumova, N.; Ershova, O.; Khomenko, O.; Danilov, G.; Shifrin, M.; Zelman, V. Healthcare-associated ventriculitis and meningitis in a neuro-ICU: Incidence and risk factors selected by machine learning approach. J. Crit. Care 2018, 45, 95–104. [Google Scholar] [CrossRef]
- Ye, G.; Balasubramanian, V.; Li, J.K.; Kaya, M. Machine Learning-Based Continuous Intracranial Pressure Prediction for Traumatic Injury Patients. IEEE J. Transl. Eng. Health Med. 2022, 10, 4901008. [Google Scholar] [CrossRef]
- Schweingruber, N.; Mader, M.M.D.; Wiehe, A.; Röder, F.; Göttsche, J.; Kluge, S.; Westphal, M.; Czorlich, P.; Gerloff, C. A recurrent machine learning model predicts intracranial hypertension in neurointensive care patients. Brain 2022, 145, 2910–2919. [Google Scholar] [CrossRef]
- Liu, W.; Ma, W.; Bai, N.; Li, C.; Liu, K.; Yang, J.; Zhang, S.; Zhu, K.; Zhou, Q.; Liu, H.; et al. Identification of key predictors of hospital mortality in critically ill patients with embolic stroke using machine learning. Biosci. Rep. 2022, 42, BSR20220995. [Google Scholar] [CrossRef]
- Claassen, J.; Doyle, K.; Matory, A.; Couch, C.; Burger, K.M.; Velazquez, A.; Okonkwo, J.U.; King, J.R.; Park, S.; Agarwal, S.; et al. Detection of Brain Activation in Unresponsive Patients with Acute Brain Injury. N. Engl. J. Med. 2019, 380, 2497–2505. [Google Scholar] [CrossRef]
- Arbabshirani, M.R.; Fornwalt, B.K.; Mongelluzzo, G.J.; Suever, J.D.; Geise, B.D.; Patel, A.A.; Moore, G.J. Advanced machine learning in action: Identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit Med. 2018, 1, 9. [Google Scholar] [CrossRef][Green Version]
- Koren, J.P.; Herta, J.; Fürbass, F.; Pirker, S.; Reiner-Deitemyer, V.; Riederer, F.; Flechsenhar, J.; Hartmann, M.; Kluge, T.; Baumgartner, C. Automated Long-Term EEG Review: Fast and Precise Analysis in Critical Care Patients. Front. Neurol. 2018, 9, 454. [Google Scholar] [CrossRef]
- Stapleton, C.J.; Acharjee, A.; Irvine, H.J.; Wolcott, Z.C.; Patel, A.B.; Kimberly, W.T. High-throughput metabolite profiling: Identification of plasma taurine as a potential biomarker of functional outcome after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2019, 133, 1842–1849. [Google Scholar] [CrossRef]
- Tanioka, S.; Ishida, F.; Nakano, F.; Kawakita, F.; Kanamaru, H.; Nakatsuka, Y.; Nishikawa, H.; Suzuki, H.; pSEED Group. Machine Learning Analysis of Matricellular Proteins and Clinical Variables for Early Prediction of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Mol. Neurobiol. 2019, 56, 7128–7135. [Google Scholar] [CrossRef]
- Chang, C.C.; Yeh, J.H.; Chiu, H.C.; Chen, Y.M.; Jhou, M.J.; Liu, T.C.; Lu, C.J. Utilization of Decision Tree Algorithms for Supporting the Prediction of Intensive Care Unit Admission of Myasthenia Gravis: A Machine Learning-Based Approach. J. Pers. Med. 2022, 12, 32. [Google Scholar] [CrossRef]
- Kamousi, B.; Karunakaran, S.; Gururangan, K.; Markert, M.; Decker, B.; Khankhanian, P.; Mainardi, L.; Quinn, J.; Woo, R.; Parvizi, J. Monitoring the Burden of Seizures and Highly Epi-leptiform Patterns in Critical Care with a Novel Machine Learning Method. Neurocrit. Care. 2021, 34, 908–917. [Google Scholar] [CrossRef]
- Ryvlin, P.; Rheims, S.; Hirsch, L.J.; Sokolov, A.; Jehi, L. Neuromodula-tion in epilepsy: State-of-the-art approved therapies. Lancet Neurol. 2021, 20, 1038–1047. [Google Scholar] [CrossRef]
- King, M.R. The Future of AI in Medicine: A Perspective from a Chatbot. Ann. Bio-Med Eng. 2023, 51, 291–295. [Google Scholar] [CrossRef]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E. Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios. J. Med. Syst. 2023, 47, 33. [Google Scholar] [CrossRef]
- Fratino, S.; Garré, A.; Garufi, A.; Hafidi, S.; Migliorino, E.; Stropeni, S.; Bogossian, E.G.; Ndieugnou Djan-gang, N.; Albano, G.; Creteur, J.; et al. Evaluation of nociception in unconscious critically ill patients using a multimodal approach. Anaesth. Crit. Care Pain Med. 2023, 42, 101175. [Google Scholar] [CrossRef]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E.G. Integrating data science and neural architecture techniques for automatic pain assessment in critically ill patients. Anaesth. Crit. Care Pain Med. 2023, 42, 101220. [Google Scholar] [CrossRef]
- Aristidou, A.; Jena, R.; Topol, E.J. Bridging the chasm between AI and clinical implementation. Lancet 2022, 399, 620. [Google Scholar] [CrossRef] [PubMed]
- Westfall, J.M.; Mold, J.; Fagnan, L. Practice-based research—“Blue Highways” on the NIH roadmap. JAMA 2007, 297, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Car, J.; Sheikh, A.; Wicks, P.; Williams, M.S. Beyond the hype of big data and artificial intelligence: Building foundations for knowledge and wisdom. BMC Med. 2019, 17, 143. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Duke Neurocritical Care Patient Data Repository. Available online: https://datacatalog.mclibrary.duke.edu/dataset/duke-neurocritical-care-patient-data-repository (accessed on 26 February 2023).
- Azad, T.D.; Shah, P.P.; Kim, H.B.; Stevens, R.D. Endotypes and the Path to Precision in Moderate and Severe Traumatic Brain Injury. Neurocrit. Care. 2022, 37 (Suppl. S2), 259–266. [Google Scholar] [CrossRef]
- Pollard, T.J.; Johnson, A.E.W.; Raffa, J.D.; Celi, L.A.; Mark, R.G.; Badawi, O. The eICU collaborative research database, a freely available multi-center database for critical care research. Sci. Data 2018, 5, 180178. [Google Scholar] [CrossRef]
- Bignami, E.G.; Vittori, A.; Lanza, R.; Compagnone, C.; Cascella, M.; Bellini, V. The Clinical Researcher Journey in the Artificial Intelligence Era: The PAC-MAN’s Challenge. Healthcare 2023, 11, 975. [Google Scholar] [CrossRef]
- Bellini, V.; Cascella, M.; Cutugno, F.; Russo, M.; Lanza, R.; Compagnone, C.; Bignami, E.G. Understanding basic principles of Artificial Intelligence: A practical guide for intensivists. Acta Biomed. 2022, 93, e2022297. [Google Scholar] [CrossRef]
- Yang, S.; Du, P.; Feng, X.; He, D.; Chen, Y.; Zhong, L.L.D.; Yan, X.; Luo, J. Propensity score analysis with missing data using a multi-task neural network. BMC Med. Res. Methodol. 2023, 23, 41. [Google Scholar] [CrossRef]
- Cobianchi, L.; Verde, J.M.; Loftus, T.J.; Piccolo, D.; Dal Mas, F.; Mascagni, P.; Garcia Vazquez, A.; Ansaloni, L.; Marseglia, G.R.; Massaro, M.; et al. Artificial Intelligence and Surgery: Ethical Dilemmas and Open Issues. J. Am. Coll Surg. 2022, 235, 268–275. [Google Scholar] [CrossRef]
- Raimundo, R.; Rosário, A. The Impact of Artificial Intelligence on Data System Security: A Literature Review. Sensors 2021, 21, 7029. [Google Scholar] [CrossRef]
- Panch, T.; Mattie, H.; Atun, R. Artificial intelligence and algorithmic bias: Implications for health systems. J. Glob. Health 2019, 9, 010318. [Google Scholar] [CrossRef]
- Koohy, H. The rise and fall of machine learning methods in biomedical research. F1000Res 2017, 6, 2012. [Google Scholar] [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I.; Precise4Q Consortium. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef]
- Keskinbora, K.H. Medical ethics considerations on artificial intelligence. J. Clin. Neurosci. 2019, 64, 277–282. [Google Scholar] [CrossRef]
- IEEE Xplore. Available online: https://ieeexplore.ieee.org/Xplore/home.jsp (accessed on 25 February 2023).
- Cobianchi, L.; Piccolo, D.; Dal Mas, F.; Agnoletti, V.; Ansaloni, L.; Balch, J.; Biffl, W.; Butturini, G.; Catena, F.; Coccolini, F.; et al. Surgeons’ perspectives on artificial intelligence to support clinical decision-making in trauma and emergency contexts: Results from an international survey. World J. Emerg. Surg. 2023, 18, 1. [Google Scholar] [CrossRef]
- Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef][Green Version]
- Harris, S.; Shi, S.; Brealey, D.; MacCallum, N.S.; Denaxas, S.; Perez-Suarez, D.; Ercole, A.; Watkinson, P.; Jones, A.; Ashworth, S.; et al. Critical Care Health Informatics Collaborative (CCHIC): Data, tools and methods for reproducible research: A multi-centre UK intensive care database. Int. J. Med. Inform. 2018, 112, 82–89. [Google Scholar] [CrossRef][Green Version]
- Marwaha, J.S.; Kvedar, J.C. Crossing the chasm from model performance to clinical impact: The need to improve implementation and evaluation of AI. NPJ Digit. Med. 2022, 5, 25. [Google Scholar] [CrossRef]
- Levy, J.J.; O’Malley, A.J. Don’t dismiss logistic regression: The case for sensible extraction of interactions in the era of machine learning. BMC Med. Res. Methodol. 2020, 20, 171. [Google Scholar] [CrossRef]
- Russak, A.J.; Chaudhry, F.; De Freitas, J.K.; Baron, G.; Chaudhry, F.F.; Bienstock, S.; Paranjpe, I.; Vaid, A.; Ali, M.; Zhao, S.; et al. Machine Learning in Cardiology-Ensuring Clinical Impact Lives Up to the Hype. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 379–390. [Google Scholar] [CrossRef]
- Simpkins, A.N.; Busl, K.M.; Amorim, E.; Barnett-Tapia, C.; Cervenka, M.C.; Dhakar, M.B.; Etherton, M.R.; Fung, C.; Griggs, R.; Holloway, R.G.; et al. Neurotherapeutics Symposium 2019. Proceedings from the Neurotherapeutics Symposium on Neurological Emergencies: Shaping the Future of Neurocritical Care. Neurocrit. Care 2020, 33, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Vasseneix, C.; Najjar, R.P.; Xu, X.; Tang, Z.; Loo, J.L.; Singhal, S.; Tow, S.; Milea, L.; Ting, D.S.W.; Liu, Y.; et al. Accuracy of a deep learning system for classification of papilledema severity on ocular fundus photographs. Neurology 2021, 97, e369–e377. [Google Scholar] [CrossRef] [PubMed]
- Megjhani, M.; Weiss, M.; Kwon, S.B.; Ford, J.; Nametz, D.; Kastenholz, N.; Fogel, H.; Velazquez, A.; Roh, D.; Agarwal, S.; et al. Vector Angle Analysis of Multimodal Neuromonitoring Data for Continuous Prediction of Delayed Cerebral Ischemia. Neurocrit. Care 2022, 37 (Suppl. S2), 230–236. [Google Scholar] [CrossRef] [PubMed]
- Mohd Noor, N.S.E.; Ibrahim, H.; Lai, C.Q.; Abdullah, J.M. A Long Short-Term Memory Network Using Resting-State Electroencephalogram to Predict Outcomes Following Moderate Traumatic Brain Injury. Computers 2023, 12, 45. [Google Scholar] [CrossRef]
- Narindrarangkura, P.; Kim, M.S.; Boren, S.A. A Scoping Review of Artificial Intelligence Algorithms in Clinical Decision Support Systems for Internal Medicine Subspecialties. ACI Open. 2021, 5, e67–e79. [Google Scholar] [CrossRef]
- Jha, R.M.; Elmer, J.; Zusman, B.E.; Desai, S.; Puccio, A.M.; Okonkwo, D.O.; Park, S.Y.; Shutter, L.A.; Wallisch, J.S.; Conley, Y.P.; et al. Intracranial pressure trajectories: A novel approach to informing severe traumatic brain injury Phenotypes. Crit. Care Med. 2018, 46, 1792–1802. [Google Scholar] [CrossRef]
- Dhar, R.; Meyfroidt, G. Navigating the Ocean of Big Data in Neurocritical Care. Neurocrit. Care 2022, 37 (Suppl. S2), 157–159. [Google Scholar] [CrossRef]
- Carminati, L. Generalizability in Qualitative Research: A Tale of Two Traditions. Qual. Health Res. 2018, 28, 2094–2101. [Google Scholar] [CrossRef]
- Islam, M.S.; Ameedeen, M.A.B.; Rahman, M.A.; Ajra, H.; Ismail, Z.B. Healthcare-Chain: Blockchain-Enabled Decentralized Trustworthy System in Healthcare Management Industry 4.0 with Cyber Safeguard. Computers 2023, 12, 46. [Google Scholar] [CrossRef]
- Lin, A.L.; Avila, E.K. Neurologic emergencies in the patients with cancer. J. Intensive Care Med. 2017, 32, 99–115. [Google Scholar] [CrossRef]
- Tabrizi, P.R.; Obeid, R.; Mansoor, A.; Ensel, S.; Cerrolaza, J.J.; Penn, A.; Linguraru, M.G. Cranial ultrasound-based prediction of post hemorrhagic hydrocephalus outcome in premature neonates with intraventricular hemorrhage. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017, 2017, 169–172. [Google Scholar] [CrossRef]
- Pisapia, J.M.; Akbari, H.; Rozycki, M.; Goldstein, H.; Bakas, S.; Rathore, S.; Moldenhauer, J.S.; Storm, P.B.; Zarnow, D.M.; Anderson, R.C.E.; et al. Use of Fetal Magnetic Resonance Image Analysis and Machine Learning to Predict the Need for Postnatal Cerebrospinal Fluid Diversion in Fetal Ventriculomegaly. JAMA Pediatr. 2018, 172, 128–135. [Google Scholar] [CrossRef][Green Version]
- Sheikh, A.; Anderson, M.; Albala, S.; Casadei, B.; Franklin, B.D.; Richards, M.; Taylor, D.; Tibble, H.; Mossialos, E. Health information technology and digital innovation for national learning health and care systems. Lancet Digit. Health 2021, 3, e383–e396. [Google Scholar] [CrossRef]
- Reddy, S.; Allan, S.; Coghlan, S.; Cooper, P. A governance model for the application of AI in health care. J. Am. Med. Inform. Assoc. 2020, 27, 491–497. [Google Scholar] [CrossRef]
- Becker, C.D.; Fusaro, M.V.; Scurlock, C. Telemedicine in the ICU: Clinical outcomes, economic aspects, and trainee education. Curr. Opin. Anaesthesiol. 2019, 32, 129–135. [Google Scholar] [CrossRef]
- Cascella, M.; Coluccia, S.; Monaco, F.; Schiavo, D.; Nocerino, D.; Grizzuti, M.; Romano, M.C.; Cuomo, A. Different Machine Learning Approaches for Implementing Telehealth-Based Cancer Pain Management Strategies. J. Clin. Med. 2022, 11, 5484. [Google Scholar] [CrossRef]
- Klein, K.E.; Rasmussen, P.A.; Winners, S.L.; Frontera, J.A. Teleneurocritical care and telestroke. Crit. Care Clin. 2015, 31, 197–224. [Google Scholar] [CrossRef]
- Freeman, W.D.; Rogers, A.; Rabinstein, A. TeleNeuroICU: Expanding the Reach of Subspecialty Neurocritical Care. Semin. Neurol. 2022, 42, 18–30. [Google Scholar] [CrossRef]
- Cascella, M.; Schiavo, D.; Grizzuti, M.; Romano, M.C.; Coluccia, S.; Bimonte, S.; Cuomo, A. Implementation of a Hybrid Care Model for Telemedicine-based Cancer Pain Management at the Cancer Center of Naples, Italy: A Cohort Study. Vivo 2023, 37, 385–392. [Google Scholar] [CrossRef]
Topic | Data Source | Algorithm and Methods | Ref […] |
---|---|---|---|
Incidence and risk factors of HAVM in a neuro-ICU | Multiple | ML (RF; XGBoost) | [7] |
Early prediction of an abnormal increase in ICP in trauma | ICP | DL | [8] |
Early prediction of an abnormal increase in ICP | Multiple | DL (LSTM) | [9] |
Hospital mortality after embolic stroke | Multiple | 15 ML models ^ | [10] |
Brain activation in unresponsive patients with acute brain injury | EEG | ML (SVM) | [11] |
Early detection of ICH | Imaging | DL (CNN) | [12] |
Neonatal seizure detection | EEG | ML ° | [13] |
Prediction of neurological recovery after SAH | Biomarkers | ML (EN; LASSO) | [14] |
Prediction DCI after SAH | Multiple | ML (RF) | [15] |
Prediction of ICU admission in Myasthenia Gravis | Clinical variables | ML (DT) ‡ | [16] |
Topic | Strategy |
---|---|
Partnerships and knowledge dissemination [38] | Enhancement of collaborations between neuro-ICU clinicians, data scientists, and AI developers. Targeted acquaintance dissemination. |
Technology acceptance [39] | It is mandatory to “persuade” clinicians about the opportunities of using AI. |
Data collection and management [1,3,28,40,41] | There is a need to collect and manage high-quality data from multiple sources, including electronic medical records, imaging, and vital signs. |
Standardization of data [40,41] | It is necessary to ensure that AI models can be applied across different institutions and datasets. |
Model development and validation [24,52] | AI models should be developed and validated using robust methods, including external validation through independent datasets. |
Real-world evidence and causal inference strategies [42,43] | Data from electronic health records, administrative claims databases, and data gathered from other sources. |
Disease-specific knowledge gaps [45,54,55,56] | Extensive collaboration for structuring and analyzing datasets. |
Integration of AI into clinical workflows [46,47,48,49] | AI tools should be integrated into clinical workflows to ensure that they are used effectively and efficiently. |
Training and education [39,44,45,50,57] | Training and education programs should be developed to ensure that neuro-ICU specialists are equipped with the necessary skills to use AI tools. |
Ethical and regulatory considerations [26,32,33,34,35,36,37,53] | Regulatory frameworks with the involvement of ethicists, governments, and other stakeholders. International cooperation and communication. |
Long-term monitoring and evaluation [49,51] | Continuous monitoring and evaluation of AI tools should be performed to ensure their safety, effectiveness, and impact on patient outcomes. |
Investing in AI technology [57,58,59,60,61] | Strategic investments in research and development, education, and infrastructures. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascella, M.; Montomoli, J.; Bellini, V.; Vittori, A.; Biancuzzi, H.; Dal Mas, F.; Bignami, E.G. Crossing the AI Chasm in Neurocritical Care. Computers 2023, 12, 83. https://doi.org/10.3390/computers12040083
Cascella M, Montomoli J, Bellini V, Vittori A, Biancuzzi H, Dal Mas F, Bignami EG. Crossing the AI Chasm in Neurocritical Care. Computers. 2023; 12(4):83. https://doi.org/10.3390/computers12040083
Chicago/Turabian StyleCascella, Marco, Jonathan Montomoli, Valentina Bellini, Alessandro Vittori, Helena Biancuzzi, Francesca Dal Mas, and Elena Giovanna Bignami. 2023. "Crossing the AI Chasm in Neurocritical Care" Computers 12, no. 4: 83. https://doi.org/10.3390/computers12040083
APA StyleCascella, M., Montomoli, J., Bellini, V., Vittori, A., Biancuzzi, H., Dal Mas, F., & Bignami, E. G. (2023). Crossing the AI Chasm in Neurocritical Care. Computers, 12(4), 83. https://doi.org/10.3390/computers12040083