Macroscopic Spatial Analysis of the Impact of Socioeconomic, Land Use and Mobility Factors on the Frequency of Traffic Accidents in Bogotá
Abstract
:1. Introduction
2. Variables and Data
2.1. Spatial Analysis Units and Data Aggregation
2.2. Socioeconomic Characteristics
2.3. Mobility Characteristics
2.4. Land Use and Socioeconomic Stratum
3. Methods
3.1. Spatial Autocorrelation
3.2. Traditional Linear Spatial Model
Total Impacts
3.3. Support Vector Regression Models
4. Analysis of Results
4.1. Latent Variable Construction
4.2. Spatial Regression Models
4.3. Support Vector Regression Models
4.4. Impact Analysis
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siddiqui, C.; Abdel-Aty, M.; Choi, K. Macroscopic spatial analysis of pedestrian and bicycle crashes. Accid. Anal. Prev. 2012, 45, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yan, X.; Ma, L.; An, M. Crash prediction and risk evaluation based on traffic analysis zones. Math. Probl. Eng. 2014, 2014, 987978. [Google Scholar] [CrossRef] [Green Version]
- Pulugurtha, S.S.; Duddu, V.R.; Kotagiri, Y. Traffic analysis zone level crash estimation models based on land use characteristics. Accid. Anal. Prev. 2013, 50, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aty, M.; Siddiqui, C.; Huang, H.; Wang, X. Integrating trip and roadway characteristics to manage safety in traffic analysis zones. Transp. Res. Rec. 2011, 2213, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Shafabakhsh, G.; Naderan, A. Macro-level modeling of urban transportation safety: Case-study of Mashhad (Iran). Transp. Telecommun. 2017, 18, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, H.; Zeng, Q. The effect of zonal factors in estimating crash risks by transportation modes: Motor vehicle, bicycle and pedestrian. Accid. Anal. Prev. 2017, 98, 223–231. [Google Scholar] [CrossRef]
- Huang, H.; Song, B.; Xu, P.; Zeng, Q.; Lee, J.; Abdel-Aty, M. Macro and micro models for zonal crash prediction with application in hot zones identification. J. Transp. Geogr. 2016, 54, 248–256. [Google Scholar] [CrossRef]
- Hadayeghi, A.; Shalaby, A.S.; Persaud, B.N. Safety prediction models: Proactive tool for safety evaluation in urban transportation planning applications. Transp. Res. Rec. 2017, 2019, 225–236. [Google Scholar] [CrossRef]
- De Guevara, F.L.; Washington, S.P.; Oh, J. Forecasting crashes at the planning level: Simultaneous negative binomial crash model applied in Tucson, Arizona. Transp. Res. Rec. 2004, 1897, 191–199. [Google Scholar] [CrossRef]
- Hadayeghi, A.; Shalaby, A.S.; Persaud, B.N. Macrolevel Accident Prediction Models for Evaluating Safety of Urban Transportation Systems. Transp. Res. Rec. 2003, 1840, 87–95. [Google Scholar] [CrossRef]
- Dong, N.; Huang, H.; Zheng, L. Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects. Accid. Anal. Prev. 2015, 82, 192–198. [Google Scholar] [CrossRef]
- Quddus, M.A. Modelling area-wide count outcomes with spatial correlation and heterogeneity: An analysis of London crash data. Accid. Anal. Prev. 2008, 40, 1486–1497. [Google Scholar] [CrossRef] [Green Version]
- Tasic, I.; Porter, R.J. Modeling spatial relationships between multimodal transportation infrastructure and traffic safety outcomes in urban environments. Saf. Sci. 2016, 82, 325–337. [Google Scholar] [CrossRef]
- Wier, M.; Weintraub, J.; Humphreys, E.H.; Seto, E.; Bhatia, R. An area-level model of vehicle-pedestrian injury collisions with implications for land use and transportation planning. Accid. Anal. Prev. 2009, 41, 137–145. [Google Scholar] [CrossRef]
- Hezaveh, A.M.; Arvin, R.; Cherry, C.R. A geographically weighted regression to estimate the comprehensive cost of traffic crashes at a zonal level. Accid. Anal. Prev. 2019, 131, 15–24. [Google Scholar] [CrossRef]
- Fuentes, C.; Hernández, V. La estructura espacial urbana y la incidencia de accidentes de tránsito en Tijuana, Baja California (2003–2004). Front. Norte 2009, 21, 5. [Google Scholar] [CrossRef]
- Siddiqui, C.; Abdel-Aty, M.; Huang, H. Aggregate nonparametric safety analysis of traffic zones. Accid. Anal. Prev. 2012, 45, 317–325. [Google Scholar] [CrossRef]
- Pljakić, M.; Jovanović, D.; Matović, B.; Mićić, S. Macro-level accident modeling in Novi Sad: A spatial regression approach. Accid. Anal. Prev. 2019, 132, 105259. [Google Scholar] [CrossRef]
- Rhee, K.A.; Kim, J.K.; Lee, Y.I.; Ulfarsson, G.F. Spatial regression analysis of traffic crashes in Seoul. Accid. Anal. Prev. 2016, 91, 190–199. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Huang, J.; Chen, N.; Lu, Y. Macrolevel Traffic Crash Analysis: A Spatial Econometric Model Approach. Math. Probl. Eng. 2019, 2019, 4–7. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Elhorst, J.P. Spatial Econometrics from Cross-Sectional Data to Spatial Panels; Springer: London, UK, 2013; Volume 16. [Google Scholar]
- Scholkopf, B.; Williamson, R.C.; Bartlett, P.L.; Smola, A.J. New support vector algorithms. Neural Comput. 2000, 1245, 1207–1245. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lord, D.; Zhang, Y.; Xie, Y. Predicting motor vehicle crashes using Support Vector Machine models. Accid. Anal. Prev. 2008, 40, 1611–1618. [Google Scholar] [CrossRef] [PubMed]
- Boulton, A.J.; Williford, A. Analyzing skewed continuous outcomes with many zeros: A tutorial for social work and youth prevention science researchers. J. Soc. Soc. Work Res. 2018, 9, 721–740. [Google Scholar] [CrossRef]
- Secretaría Distrital de Movilidad. Caracterización de la movilidad—Encuesta de Movilidad de Bogotá 2019; Secretaría Distrital de Movilidad: Bogotá, Colombia, 2019; pp. 13–184. Available online: https://www.movilidadbogota.gov.co/web/encuesta_de_movilidad_2019 (accessed on 1 December 2021).
- Lee, J.; Yasmin, S.; Eluru, N.; Abdel-Aty, M.; Cai, Q. Analysis of crash proportion by vehicle type at traffic analysis zone level: A mixed fractional split multinomial logit modeling approach with spatial effects. Accid. Anal. Prev. 2018, 111, 12–22. [Google Scholar] [CrossRef]
- Naderan, A.; Shahi, J. Aggregate crash prediction models: Introducing crash generation concept. Accid. Anal. Prev. 2010, 42, 339–346. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Lee, C.; Ji, Z.; You, S. Macro-level safety analysis of pedestrian crashes in Shanghai, China. Accid. Anal. Prev. 2016, 96, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Moran, P.A. The interpretation of statistical maps. J. R. Stat. Soc. 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Anselin, L.; Griffith, D. Do spatial effects really matter in regression analysis? Pap. Reg. Sci. 1998, 65, 11–34. [Google Scholar] [CrossRef]
- Jaromczyk, J.W.; Toussaint, G.T. Relative Neighborhood Graphs and Their Relatives. Proc. IEEE 1992, 80, 1502–1517. [Google Scholar] [CrossRef] [Green Version]
- Bivand, R. R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data. Geogr. Anal. 2022, 54, 488–518. [Google Scholar] [CrossRef]
- Bivand, R.; Millo, G.; Piras, G. A Review of Software for Spatial Econometrics in R. Mathematics 2021, 9, 1276. [Google Scholar] [CrossRef]
- Pace, R.K.; LeSage, J.P. Interpreting spatial econometric models. In Handbook of Applied Spatial Analysis; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1535–1552. [Google Scholar]
- Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; Lin, C.J. LIBLINEAR: A Library for Large Linear Classification. J. Mach. Learn. Res. 2008, 9, 1871–1874. [Google Scholar]
- Kassambara, A. Practical Guide to Principal Component Methods in R. 2017. Available online: http://www.analyticsvidhya.com/blog/2016/03/practical-guide-principal-component-analysis-python/ (accessed on 1 December 2021).
- Jolliffe, I. Principal Component Analysis, Ilustrada; Springer: New York, NY, USA, 2002. [Google Scholar]
- Saha, D.; Alluri, P.; Gan, A.; Wu, W. Spatial analysis of macro-level bicycle crashes using the class of conditional autoregressive models. Accid. Anal. Prev. 2018, 118, 166–177. [Google Scholar] [CrossRef]
- Albalate, D.; Fernández-Villadangos, L. Motorcycle injury severity in Barcelona: The role of vehicle type and congestion. Traffic Inj. Prev. 2010, 11, 623–631. [Google Scholar] [CrossRef]
- Lee, D.; Guldmann, J.; Von-Rabenau, B. Macro-Level Analysis of the Impacts of Urban Factors on Traffic Crashes: A Case Study of Central Ohio. Paper Presented at the 52nd Annual Meeting of the Western Regional Science Association, Santa Barbara, CA, USA, 24–27 February 2013. [Google Scholar]
- Lankarani, K.B.; Heydari, S.T.; Aghabeigi, M.R.; Moafian, G.; Hoseinzadeh, A.; Vossoughi, M. The impact of environmental factors on traffic accidents in Iran. J. Inj. Violence Res. 2014, 6, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Secretaría Distrital de Movilidad. Observatorio de Movilidad Bogotá D.C. de 2017; Secretaría Distrital de Movilidad: Bogotá, Colombia, 2017; p. 219.
- Izadi, A.; Jamshidpour, F.; Safari, D.; Gilani, V.N.M. Accident analysis of bus rapid transit system: Before and after construction. Eur. Transp. Trasp. Eur. 2020, 79, 9. [Google Scholar] [CrossRef]
- Secretaría Distrital de Movilidad. Anuario de Siniestralidad vial de Bogotá 2019; Secretaría Distrital de Movilidad: Bogotá, Colombia, 2020; p. 206. Available online: https://www.simur.gov.co/portal-simur/wp-content/uploads/2019/files/datos-abiertos/documentos/anuario/Anuario_de_Siniestralidad_Vial_de_Bogota_2019.pdf (accessed on 1 December 2021).
Variables | Mean | Median | S.D. | Min | Max | C.V. | |
---|---|---|---|---|---|---|---|
Response variables | |||||||
Traffic accidents index on the road perimeter—TAI (traffic accidents/kilometer) | 4.303 | 4.369 | 2.635 | 0.055 | 13.172 | 0.612 | |
Traffic accidents index with deaths on the road perimeter—TADI (traffic accidents with deaths/kilometer) | 0.584 | 0.422 | 0.521 | 0.000 | 2.521 | 0.893 | |
Land use factors | |||||||
LV | Land uses and socioeconomic stratification (weighted explained variance) | 0.55 | 0.44 | 0.60 | 0.11 | 4.07 | 1.09 |
Socioeconomical factors | |||||||
X1 | Population density (people per kilometer) | 18,963.1 | 19,553.3 | 11,591.36 | 0 | 53,668.6 | 0.61 |
X2 | Rate of motorization of motor vehicles—RMMV (motorized vehicles per 1000 inhabitants) | 236.6 | 212.46 | 139.66 | 0 | 753.43 | 0.59 |
X14 | Number of households (households per TMAU) | 19,411.18 | 15,936.5 | 15,028.03 | 0 | 85,108 | 0.77 |
Mobility factors | |||||||
X3 | Rate of pedestrian trips per person—RPTP (average daily pedestrian trips per person) | 2.13 | 2.14 | 0.36 | 0 | 2.79 | 0.17 |
X4 | Rate of trips per person on public transport—RTPPT (average daily trips on public transport per person) | 0.59 | 0.6 | 0.18 | 0 | 1.05 | 0.31 |
X5 | Rate of trips per person by taxi—RTPT (average daily taxi rides per person) | 0.1 | 0.08 | 0.07 | 0 | 0.3 | 0.70 |
X6 | Rate of trips per person by car—RTPC (average daily car trips per person) | 0.33 | 0.27 | 0.29 | 0 | 1.5 | 0.85 |
X7 | Rate of trips per person on motorcycle—RTPM (average daily motorcycle trips per person) | 0.08 | 0.08 | 0.04 | 0 | 0.25 | 0.55 |
X8 | Rate of trips per person by bicycle—RTPB (average daily bicycle trips per person) | 0.1 | 0.08 | 0.07 | 0 | 0.33 | 0.68 |
X9 | Trips in a typical day—origin—TTDO (origin of trips in a typical day across all available modes of transportation) | 114,176.69 | 100,169.93 | 75,521.33 | 551.97 | 394,626.84 | 0.66 |
X10 | Trips in a typical day—destination—TTDD (destination of trips in a typical day across all available modes of transportation) | 114,241.15 | 101,562.74 | 75,297.79 | 551.97 | 395,196.43 | 0.66 |
X11 | Travel rate per person in Transmilenio—RTPTM (average daily Transmilenio trips per person) | 4.48 | 1.56 | 11.08 | 0 | 102.86 | 2.47 |
X15 | Average maximum speed allowed (kilometers per hour) | 39.55 | 39.16 | 6.06 | 30 | 54.61 | 0.15 |
TAI~ | TADI~ | ||||||
---|---|---|---|---|---|---|---|
GNS | SDEM | ||||||
Variables | Coeff | * | E.E. | Coeff | * | E.E. | |
Intercept | −5.0505 | *** | 1.3377 | 0.0521 | --- | 0.2389 | |
Land use factors | |||||||
LV | Land uses and socioeconomic stratification | --- | --- | --- | −0.1750 | * | 0.0848 |
W(LV) | Land uses and socioeconomic stratification | --- | --- | --- | −0.3116 | * | 0.1320 |
Socioeconomic factors | |||||||
X14 | Number of households | −6.77 × 10−5 | *** | 1.61 × 10−5 | --- | --- | --- |
W(X1) | Population density | −6.23 × 10−5 | * | 2.76 × 10−5 | --- | --- | --- |
W(X2) | RMMV | --- | --- | --- | 0.0034 | * | 0.0015 |
W(X14) | Number of households | --- | --- | --- | −1.40 × 10−5 | * | 6.94 × 10−6 |
Mobility factors | |||||||
X5 | RTPT | 8.0470 | * | 3.5763 | 1.7509 | * | 0.7265 |
X6 | RTPC | −1.4546 | * | 0.5979 | -0.5181 | ** | 0.2009 |
X8 | RTPB | --- | --- | --- | --- | --- | --- |
X9 | TTDO | 1.47 × 10−5 | *** | 2.99 × 10−6 | −3.12 × 10−5 | * | 1.47 × 10−5 |
X10 | TTDD | --- | --- | --- | 3.35 × 10−5 | * | 1.48 × 10−5 |
X11 | RTPTM | −0.0315 | * | 0.0146 | --- | --- | --- |
X15 | Average maximum allowable speed | 0.1585 | *** | 0.0286 | --- | --- | --- |
W(X5) | RTPT | 10.4450 | . | 6.1049 | --- | --- | --- |
W(X6) | RTPC | --- | --- | --- | −1.6902 | * | 0.7569 |
W(X7) | RTPM | 11.4270 | . | 7.4649 | 2.7204 | . | 1.4877 |
W(X8) | RTPB | 10.9880 | *** | 4.1595 | --- | --- | --- |
W(X10) | TTDD | --- | --- | --- | 3.00 × 10−6 | * | 1.17 × 10−6 |
W(X11) | RTPTM | −0.0932 | *** | 0.0274 | --- | --- | --- |
0.7263 | 0.3571 | ||||||
0.2607 | --- | ||||||
−0.2930 | 0.2222 | ||||||
Log Likelihood | −190.8752 | −59.6248 | |||||
Moran I (Residuals) | 0.5050 | 0.4060 | |||||
Shapiro–Wilk (Residuals) | 0.5488 | 0.0895 | |||||
Breusch–Pagan | 0.0503 | 0.0600 | |||||
MAE | 1.0711 | 0.2762 | |||||
RSME | 1.3500 | 0.3690 |
Variables | TAI~ | TADI~ | |||||||
---|---|---|---|---|---|---|---|---|---|
Linear | Radial Basis | Linear | Radial Basis | ||||||
SVR NE | SVR E | SVR NE | SVR E | SVR NE | SVR E | SVR NE | SVR E | ||
Bias (b) | 4.2983 | 4.2686 | --- | --- | 0.5818 | 0.5858 | --- | --- | |
Land use factors | |||||||||
LV | Land uses and stratification socioeconomic | --- | --- | --- | --- | −0.0697 | −0.0840 * | × | × |
Socioeconomic factors | |||||||||
X1 | Population density | --- | 0.4568 * | --- | × | --- | --- | --- | --- |
X2 | RMMV | --- | 0.1249 * | --- | × | ||||
X14 | Number of households | −1.2096 | −0.9718 * | × | × | --- | −0.0640 * | --- | × |
Mobility factors | |||||||||
X5 | RTPT | 1.0579 | 1.2382 * | × | × | 0.1030 | 0.0364 * | × | × |
X6 | RTPC | −0.3987 | -0.3610 * | × | × | −0.0998 | −0.1063 * | × | × |
X7 | RTPM | −0.0627 | 0.1221 * | × | × | --- | 0.0587 * | × | |
X8 | RTPB | 0.3901 | 0.5337 * | × | × | --- | --- | --- | --- |
X9 | TTDO | 1.3135 | 1.1058 * | × | × | 0.0442 | 0.1781 * | × | × |
X10 | TTDD | --- | --- | --- | --- | 0.1079 | 0.0870 * | × | × |
X11 | RTPTM | −0.2491 | −0.5991 * | × | × | --- | --- | --- | --- |
X15 | Average maximum speed allowed | 1.0128 | 0.8714 * | × | × | --- | --- | --- | --- |
Hyperparameters | |||||||||
(cost) | 1 | 0.4444 | 1 | 1 | 0.1111 | 0.1111 | 0.2222 | 1 | |
L1–L2 (Loss function) | L2 | L2 | --- | --- | L2 | L2 | --- | --- | |
(sigma) | --- | --- | 0.5000 | 0.5000 | --- | --- | 0.5000 | 0.5000 | |
(épsilon) | 0 | 0 | 0.1000 | 0.1000 | 0 | 0 | 0.1000 | 0.1000 | |
0.5070 | 0.5128 | 0.7651 | 0.8252 | 0.1954 | 0.1995 | 0.2006 | 0.6908 | ||
Moran I (Residuals) | 0.0420 | 0.3220 | 0.0070 | 0.0540 | 0.1130 | 0.0520 | 0.1370 | 0.2990 | |
MAE | 1.1462 | 1.2071 | 0.5572 | 0.4843 | 0.3629 | 0.3537 | 0.3117 | 0.1508 | |
RMSE | 1.5023 | 1.4809 | 0.9637 | 0.8792 | 0.4655 | 0.4643 | 0.4640 | 0.2885 |
Variables | Impacts | |||
---|---|---|---|---|
GNS | SVR NE | SVR E | ||
Socioeconomic factors | ||||
X1 | Population density | −8.43 × 10−5 | --- | 0.4568 |
X14 | Number of households | −9.16 × 10−5 | −1.2096 | −0.9718 |
Mobility factors | ||||
X5 | Rate of trips per person by taxi (RTPT) | 25.0122 | 1.0579 | 1.2382 |
X6 | Rate of trips per person by automobile (RTPC) | −1.9674 | −0.3987 | −0.3610 |
X7 | Rate of trips per person by motorbike (RTPT) | 15.4555 | −0.0627 | 0.1221 |
X8 | Rate of trips per person by bicycle (RTPB) | 14.8614 | 0.3901 | 0.5337 |
X9 | Trips in a typical day—origin (TTDO) | 1.99 × 10−5 | 1.3135 | 1.1058 |
X11 | Ratio of trips per person in Transmilenio (RTPTM) | −0.1688 | −0.2491 | −0.5991 |
X15 | Average maximum speed permitted | 0.2144 | 1.0128 | 0.8714 |
Variables | Impacts | |||
---|---|---|---|---|
SDEM | SVR NE | SVR E | ||
Land use factors | ||||
LV | Land uses and socioeconomic stratification | −0.4866 | −0.0697 | −0.0840 |
Socioeconomic factors | ||||
X2 | Rate of motorization of motor vehicles (RMMV) | 0.0034 | --- | 0.1249 |
X14 | Number of households | −1.40 × 10−5 | --- | −0.0640 |
Mobility factors | ||||
X5 | Travel tax per person by taxi (RTPT) | 1.7509 | 0.1030 | 0.0364 |
X6 | Travel rate per person by car (RTPC) | −2.2083 | −0.0998 | −0.1063 |
X7 | Travel rate per person on motorcycle (RTPM) | 2.7204 | --- | 0.0587 |
X9 | Typical day trips—origin (TTDO) | −3.12 × 10−5 | 0.0442 | 0.1781 |
X10 | Typical day trips—destination (TTDD) | 3.65 × 10−5 | 0.1079 | 0.0870 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval-Pineda, A.; Pedraza, C.; Darghan, A.E. Macroscopic Spatial Analysis of the Impact of Socioeconomic, Land Use and Mobility Factors on the Frequency of Traffic Accidents in Bogotá. Computers 2022, 11, 180. https://doi.org/10.3390/computers11120180
Sandoval-Pineda A, Pedraza C, Darghan AE. Macroscopic Spatial Analysis of the Impact of Socioeconomic, Land Use and Mobility Factors on the Frequency of Traffic Accidents in Bogotá. Computers. 2022; 11(12):180. https://doi.org/10.3390/computers11120180
Chicago/Turabian StyleSandoval-Pineda, Alejandro, Cesar Pedraza, and Aquiles E. Darghan. 2022. "Macroscopic Spatial Analysis of the Impact of Socioeconomic, Land Use and Mobility Factors on the Frequency of Traffic Accidents in Bogotá" Computers 11, no. 12: 180. https://doi.org/10.3390/computers11120180
APA StyleSandoval-Pineda, A., Pedraza, C., & Darghan, A. E. (2022). Macroscopic Spatial Analysis of the Impact of Socioeconomic, Land Use and Mobility Factors on the Frequency of Traffic Accidents in Bogotá. Computers, 11(12), 180. https://doi.org/10.3390/computers11120180