Understanding Cancer Health Disparities
Simple Summary
Abstract
1. Introduction
2. Genetic and Epigenetic Drivers of Cancer Susceptibility
2.1. Roles of Genetic Mutations (Inherited and Acquired) in Cancer Susceptibility
2.2. Roles of Epigenetic Alterations in Cancer Susceptibility
3. Social Factors or SDoH and Cancer Health Disparities
4. Cancer Health Disparities in the Real World
4.1. Health Disparity in Gastrointestinal Cancers in Hawaii
4.2. Factors Associated with the Risk of Major GICs
4.3. SDoH and Health Disparities in Major GICs
4.4. Molecular Mechanisms Linking SDoH to Health Disparities in Cancer
4.5. Altered DNA Methylations in GICs
5. Perspective
Bridging the Molecular and the Social—DNA Damage as a Unifying Lens in Cancer Health Disparities
- Environmental Exposures: Historical and present-day environmental changes, including potential exposure to carcinogens from military activities or shifts in traditional land use.
- Social-Economic Factors: Systemic barriers leading to higher rates of obesity, diabetes, and tobacco use—all conditions that foster a pro-inflammatory state and genomic instability.
- Cultural and Systemic Barriers: Later-stage diagnosis due to disparities in screening access, healthcare distrust, or cultural misalignment of care, reducing the chances of intercepting premalignant damage.
- 1.
- Embrace Translational Epidemiology: Link population-level exposure data with biomarkers of DNA damage (e.g., mutational signatures, micronuclei frequency) in disparity populations.
- 2.
- Contextualize Genetic Findings: Investigate how social and environmental factors modify the penetrance of common genetic variants in DNA repair genes.
- 3.
- Identify Intervention Points: Use the DNA damage framework to identify and prioritize modifiable risk factors—from policy-level environmental regulations to community-level screening programs.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, M.R.; Gaiatto, A.; Erarslan Uysal, B.; Andrades, A.; Sautter, N.L.; Simunovic, M.; Jendrusch, M.A.; Zumalave, S.; Rausch, T.; Halavatyi, A.; et al. Origins of chromosome instability unveiled by coupled imaging and genomics. Nature 2025, 648, 383–393. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seed, G.; Truong, F.; Riahi, R.; O’lEary, B. Tumour Evolution Driving Genome Instability, Immune Interactions, and Response to Radiotherapy. Cancer J. 2025, 31, e0777. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability—An evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 2010, 11, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Hosea, R.; Hillary, S.; Naqvi, S.; Wu, S.; Kasim, V. The two sides of chromosomal instability: Drivers and brakes in cancer. Signal Transduct. Target. Ther. 2024, 9, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Langie, S.A.; Koppen, G.; Desaulniers, D.; Al-Mulla, F.; Al-Temaimi, R.; Amedei, A.; Azqueta, A.; Bisson, W.H.; Brown, D.G.; Brunborg, G.; et al. Causes of genome instability: The effect of low dose chemical exposures in modern society. Carcinogenesis 2015, 36, S61–S88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tiwari, V.; Wilson, D.M., 3rd. DNA Damage and Associated DNA Repair Defects in Disease and Premature Aging. Am. J. Hum. Genet. 2019, 105, 237–257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coker, E.S.; Gunier, R.; Huen, K.; Holland, N.; Eskenazi, B. DNA methylation and socioeconomic status in a Mexican-American birth cohort. Clin. Epigenetics 2018, 10, 61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, S.; Soto, A.M.; Sonnenschein, C. The end of the genetic paradigm of cancer. PLoS Biol. 2025, 23, e3003052. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rembiałkowska, N.; Kocik, Z.; Kłosińska, A.; Kübler, M.; Pałkiewicz, A.; Rozmus, W.; Sędzik, M.; Wojciechowska, H.; Gajewska-Naryniecka, M. Inflammation-Driven Genomic Instability: A Pathway to Cancer Development and Therapy Resistance. Pharmaceuticals 2025, 18, 1406. [Google Scholar] [CrossRef]
- Kar, S.P.; Berchuck, A.; Gayther, S.A.; Goode, E.L.; Moysich, K.B.; Pearce, C.L.; Ramus, S.J.; Schildkraut, J.M.; Sellers, T.A.; Pharoah, P.D.P. Common Genetic Variation and Susceptibility to Ovarian Cancer: Current Insights and Future Directions. Cancer Epidemiol. Biomark. Prev. 2018, 27, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Colonna, G. Overcoming Barriers in Cancer Biology Research: Current Limitations and Solutions. Cancers 2025, 17, 2102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spencer Chapman, M.; Mitchell, E.; Yoshida, K.; Williams, N.; Fabre, M.A.; Ranzoni, A.M.; Robinson, P.S.; Kregar, L.D.; Wilk, M.; Boettcher, S.; et al. Prolonged persistence of mutagenic DNA lesions in somatic cells. Nature 2025, 638, 729–738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shadfar, S.; Parakh, S.; Jamali, M.S.; Atkin, J.D. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl. Neurodegener. 2023, 12, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nepal, M.; Che, R.; Zhang, J.; Ma, C.; Fei, P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017, 3, 840–856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Che, R.; Zhang, J.; Nepal, M.; Han, B.; Fei, P. Multifaceted Fanconi Anemia Signaling. Trends Genet. 2018, 34, 171–183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, D.; Cao, D.; Han, R. Recent advances in therapeutic gene-editing technologies. Mol. Ther. 2025, 33, 2619–2644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yadav, K.; Das, T.; Lynn, A.M. Pancancer analysis of DNA damage repair gene mutations and their impact on immune regulatory gene expression. Sci. Rep. 2025, 15, 15667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, B.; Ding, Z.; Hong, Y.; Wang, Y.; Zhou, Y.; Chen, J.; Peng, X.; Zeng, C. Research progress in DNA damage response (DDR)-targeting modulators: From hits to clinical candidates. Eur. J. Med. Chem. 2025, 287, 117347. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zhou, Y.; Deng, Y. Targeting DNA Damage Response-Mediated Resistance in Non-Small Cell Lung Cancer: From Mechanistic Insights to Drug Development. Curr. Oncol. 2025, 32, 367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Previtali, V.; Bagnolini, G.; Ciamarone, A.; Ferrandi, G.; Rinaldi, F.; Myers, S.H.; Roberti, M.; Cavalli, A. New Horizons of Synthetic Lethality in Cancer: Current Development and Future Perspectives. J. Med. Chem. 2024, 67, 11488–11521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Zhang, S.; Song, L.; Qu, M.; Zou, Z. Synergistic lethality between PARP-trapping and alantolactone-induced oxidative DNA damage in homologous recombination-proficient cancer cells. Oncogene 2020, 39, 2905–2920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gorecki, L.; Andrs, M.; Korabecny, J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers 2021, 13, 795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, X.; Mahdizadeh, S.J.; Le Gallo, M.; Eriksson, L.A.; Chevet, E.; Lafont, E. UFMylation: A ubiquitin-like modification. Trends Biochem. Sci. 2024, 49, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Han, K.; Hao, Y.; Su, W.; Xie, X.; Li, X.; Chen, Q.; Wei, Y.; Luo, X.; Xie, S.; et al. Navigating the 3D genome at single-cell resolution: Techniques, computation, and mechanistic landscapes. Brief. Bioinform. 2025, 26, bbaf520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weng, J.; Ju, F.; Lyu, Z.; Fan, N.; Smit, D.J.; Xu, W.; Wu, X.; Becker, P.; Xu, Y.; Schweiger, M.R.; et al. Single-cell insights into tumor microenvironment heterogeneity and plasticity: Transforming precision therapy in gastrointestinal cancers. J. Exp. Clin. Cancer Res. 2025, 44, 314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeon, J.; Kang, T.H. Transcription-Coupled Repair and R-Loop Crosstalk in Genome Stability. Int. J. Mol. Sci. 2025, 26, 3744. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiu, Y.; Kang, Y.M.; Korfmann, C.; Pouyet, F.; Eckford, A.; Palazzo, A.F. The GC-content at the 5′ ends of human protein-coding genes is undergoing mutational decay. Genome Biol. 2024, 25, 219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Motsinger-Reif, A.A.; Reif, D.M.; Akhtari, F.S.; House, J.S.; Campbell, C.R.; Messier, K.P.; Fargo, D.C.; Bowen, T.A.; Nadadur, S.S.; Schmitt, C.P.; et al. Gene-environment interactions within a precision environmental health framework. Cell Genom. 2024, 4, 100591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loewe, A.; Hunter, P.J.; Kohl, P. Computational modelling of biological systems now and then: Revisiting tools and visions from the beginning of the century. Philos. Trans. A Math. Phys. Eng. Sci. 2025, 383, 20230384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeitler, L.; Denby Wilkes, C.; Goldar, A.; Soutourina, J. A quantitative modelling approach for DNA repair on a population scale. PLoS Comput. Biol. 2022, 18, e1010488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanu, N.; Cerone, M.A.; Goh, G.; Zalmas, L.P.; Bartkova, J.; Dietzen, M.; McGranahan, N.; Rogers, R.; Law, E.K.; Gromova, I.; et al. DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer. Genome Biol. 2016, 17, 185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, X.; Shen, G.; Liu, Z.; Kaysar, P.; Shang, X.; Ni, B.; Zhang, W.; Zhou, Y.; Xie, Y.; Liu, W. The role of APOBEC mutagenesis in the progression and therapeutic guidance of pancreatic cancer. Genomics 2025, 117, 111098. [Google Scholar] [CrossRef] [PubMed]
- Petljak, M.; Dananberg, A.; Chu, K.; Bergstrom, E.N.; Striepen, J.; von Morgen, P.; Chen, Y.; Shah, H.; Sale, J.E.; Alexandrov, L.B.; et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature 2022, 607, 799–807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Carlo, E.; Sorrentino, C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark. Res. 2024, 12, 156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Damodaran, C.; Cho, J.Y.; Gungor, C. Therapeutic resistance and combination therapy for cancer: Recent developments and future directions. Sci. Rep. 2025, 15, 26881. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, S.; Chen, X.; Tong, X.; Zhu, L. Overcoming the Delivery Challenges in CRISPR/Cas9 Gene Editing for Effective Cancer Treatment: A Review of Delivery Systems. Int. J. Med. Sci. 2025, 22, 3625–3649. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cavalli, L.R.; Ellsworth, R.E.; Aneja, R. Editorial: Epigenomic drivers of cancer disparities. Front. Oncol. 2024, 14, 1387049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swanton, C.; Bernard, E.; Abbosh, C.; Andre, F.; Auwerx, J.; Balmain, A.; Bar-Sagi, D.; Bernards, R.; Bullman, S.; DeGregori, J.; et al. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024, 187, 1589–1616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.M. A global perspective on the ethnic-specific BRCA variation and its implication in clinical application. J. Natl. Cancer Cent. 2023, 3, 14–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris, A.R.; Pichardo, C.M.; Franklin, J.; Liu, H.; Wooten, W.; Panigrahi, G.; Lawrence, W.R.; Pichardo, M.S.; Jenkins, B.D.; Dorsey, T.H.; et al. Multilevel Stressors and Systemic and Tumor Immunity in Black and White Women with Breast Cancer. JAMA Netw. Open 2025, 8, e2459754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cuevas, A.G.; Ong, A.D.; Carvalho, K.; Ho, T.; Chan, S.W.C.; Allen, J.D.; Chen, R.; Rodgers, J.; Biba, U.; Williams, D.R. Discrimination and systemic inflammation: A critical review and synthesis. Brain Behav. Immun. 2020, 89, 465–479. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thorpe, R.J., Jr.; Bruce, M.A.; Wilder, T.; Jones, H.P.; Thomas Tobin, C.; Norris, K.C. Health Disparities at the Intersection of Racism, Social Determinants of Health, and Downstream Biological Pathways. Int. J. Environ. Res. Public Health 2025, 22, 703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cook, Q.; Argenio, K.; Lovinsky-Desir, S. The impact of environmental injustice and social determinants of health on the role of air pollution in asthma and allergic disease in the United States. J. Allergy Clin. Immunol. 2021, 148, 1089–1101.E5. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.H.; Chen, E.; Chiang, J.J.; Miller, G.E. Socioeconomic disadvantage, chronic stress, and proinflammatory phenotype: An integrative data analysis across the lifecourse. PNAS Nexus 2022, 1, pgac219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edwards, E.R.; Fei-Zhang, D.J.; Stein, A.P.; Lott, D.G.; Chelius, D.C.; Sheyn, A.; Rastatter, J. The impact of digital inequities on laryngeal cancer disparities in the US. Am. J. Otolaryngol. 2024, 45, 104066. [Google Scholar] [CrossRef] [PubMed]
- Fei-Zhang, D.J.; Bentrem, D.J.; Wayne, J.D.; Hou, L.; Fei, P.; Pawlik, T.M. Associations of Social Vulnerability and Race-Ethnicity with Gastrointestinal Cancers in the United States. Cancer Med. 2025, 14, e70591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fei-Zhang, D.; Asthana, S.; Smith, S.; Rajasekaran, K.; Patel, U.; Chelius, D.; Sheyn, A.; Osazuwa-Peters, N.; Rastatter, J. Individual and community-level social determinant impact on HPV-differentiated nasopharyngeal carcinoma disparities in the USA. Sci. Rep. 2025, 15, 26778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Assis, S.G.; Tavares, P.H.; Oliveira, N.; Serpeloni, F.; Avanci, J.Q. Epigenetics, Resilience, Protective Factors and Factors Promoting Positive Outcomes: A Scoping Review. Int. J. Dev. Neurosci. 2025, 85, e70042. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Banushi, B.; Collova, J.; Milroy, H. Epigenetic Echoes: Bridging Nature, Nurture, and Healing Across Generations. Int. J. Mol. Sci. 2025, 26, 3075. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, S.; Mayshar, Y.; Stelzer, Y. Induced epigenetic changes memorized across generations in mice. Cell 2023, 186, 683–685. [Google Scholar] [CrossRef] [PubMed]
- Saylor, K.W.; Allen, C.G.; Marable, J.; Whitcomb, C.; Olstad, D.L.; Steinberg, J.; Smit, A.; Turbitt, E.; Foss, K.; Landry, L.; et al. Proceedings from the 2023 transdisciplinary conference for future leaders in precision public health “Applying Implementation Science to Precision Public Health”. BMC Proc. 2025, 19, 17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- LaCosse, J.; Donaldson, E.S.; Ferreira, T.; Burzo, M. Using Psychologically Informed Community-Based Participatory Research to Create Culturally Relevant Informal STEM Experiences. Behav. Sci. 2025, 15, 1249. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kebede, S.D.; Mamo, D.N.; Adem, J.B.; Walle, A.D.; Tsega, Y.; Addisu, E.; Tadese, Z.B.; Enyew, E.B. Spatial distribution and urban-rural disparity of unmet need for family planning among married/in-union women in Ethiopia: A spatial and decomposition analysis. Front. Reprod. Health 2024, 6, 1416280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas Craig, K.J.; Fusco, N.; Gunnarsdottir, T.; Chamberland, L.; Snowdon, J.L.; Kassler, W.J. Leveraging Data and Digital Health Technologies to Assess and Impact Social Determinants of Health (SDoH): A State-of-the-Art Literature Review. Online J. Public Health Inform. 2021, 13, e62617. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keen, R.; Chen, J.T.; Slopen, N.; Sandel, M.; Copeland, W.E.; Tiemeier, H. The biological embedding of social adversity: How adolescent housing insecurity impacts inflammation over time. Brain Behav. Immun. 2024, 119, 1008–1015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Polsky, L.R.; Rentscher, K.E.; Carroll, J.E. Stress-induced biological aging: A review and guide for research priorities. Brain Behav. Immun. 2022, 104, 97–109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Behnke, A.; Gumpp, A.M.; Rojas, R.; Sanger, T.; Lutz-Bonengel, S.; Moser, D.; Schelling, G.; Krumbholz, A.; Kolassa, I.T. Circulating inflammatory markers, cell-free mitochondrial DNA, cortisol, endocannabinoids, and N-acylethanolamines in female depressed outpatients. World J. Biol. Psychiatry 2023, 24, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Behnke, A.; Mack, M.; Fieres, J.; Christmann, M.; Burkle, A.; Moreno-Villanueva, M.; Kolassa, I.T. Expression of DNA repair genes and its relevance for DNA repair in peripheral immune cells of patients with posttraumatic stress disorder. Sci. Rep. 2022, 12, 18641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ostroverkhova, D.; Przytycka, T.M.; Panchenko, A.R. Cancer driver mutations: Predictions and reality. Trends Mol. Med. 2023, 29, 554–566. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nourbakhsh, M.; Degn, K.; Saksager, A.; Tiberti, M.; Papaleo, E. Prediction of cancer driver genes and mutations: The potential of integrative computational frameworks. Brief. Bioinform. 2024, 25, bbad519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perez-Losada, J.; Castellanos-Martin, A.; Mao, J.H. Cancer evolution and individual susceptibility. Integr. Biol. 2011, 3, 316–328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hodgson, S.V.; Foulkes, W.D.; Maher, E.R.; Turnbull, C. Inherited Susceptibility to Cancer: Past, Present and Future. Ann. Hum. Genet. 2025, 89, 354–365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdallah, N.; Purrington, K.S.; Tatineni, S.; Assad, H.; Petrucelli, N.; Simon, M.S. Racial and ethnic variation in BRCA1 and BRCA2 genetic test results among individuals referred for genetic counseling at a large urban comprehensive cancer center. Cancer Causes Control 2023, 34, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Silvestri, V.; Leslie, G.; Rebbeck, T.R.; Neuhausen, S.L.; Hopper, J.L.; Nielsen, H.R.; Lee, A.; Yang, X.; McGuffog, L.; et al. Cancer Risks Associated with BRCA1 and BRCA2 Pathogenic Variants. J. Clin. Oncol. 2022, 40, 1529–1541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parsa, N. Environmental factors inducing human cancers. Iran. J. Public Health 2012, 41, 1–9. [Google Scholar] [PubMed] [PubMed Central]
- Singh, S.R.; Bhaskar, R.; Ghosh, S.; Yarlagadda, B.; Singh, K.K.; Verma, P.; Sengupta, S.; Mladenov, M.; Hadzi-Petrushev, N.; Stojchevski, R.; et al. Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers 2025, 17, 1082. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joerger, A.C.; Stiewe, T.; Soussi, T. TP53: The unluckiest of genes? Cell Death Differ. 2025, 32, 219–224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Funk, J.S.; Klimovich, M.; Drangenstein, D.; Pielhoop, O.; Hunold, P.; Borowek, A.; Noeparast, M.; Pavlakis, E.; Neumann, M.; Balourdas, D.I.; et al. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat. Genet. 2025, 57, 140–153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature 2000, 408, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Fei, P.; El-Deiry, W.S. P53 and radiation responses. Oncogene 2003, 22, 5774–5783. [Google Scholar] [CrossRef] [PubMed]
- Hankey, W.; Frankel, W.L.; Groden, J. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: Implications for therapeutic targeting. Cancer Metastasis Rev. 2018, 37, 159–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hankey, W.; Chen, Z.; Bergman, M.J.; Fernandez, M.O.; Hancioglu, B.; Lan, X.; Jegga, A.G.; Zhang, J.; Jin, V.X.; Aronow, B.J.; et al. Chromatin-associated APC regulates gene expression in collaboration with canonical WNT signaling and AP-1. Oncotarget 2018, 9, 31214–31230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazzoleni, A.; Awuah, W.A.; Sanker, V.; Bharadwaj, H.R.; Aderinto, N.; Tan, J.K.; Huang, H.Y.R.; Poornaselvan, J.; Shah, M.H.; Atallah, O.; et al. Chromosomal instability: A key driver in glioma pathogenesis and progression. Eur. J. Med. Res. 2024, 29, 451. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baumann, A.A.; Buribayev, Z.; Wolkenhauer, O.; Salybekov, A.A.; Wolfien, M. Epigenomic Echoes—Decoding Genomic and Epigenetic Instability to Distinguish Lung Cancer Types and Predict Relapse. Epigenomes 2025, 9, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martin-Trujillo, A.; Vidal, E.; Monteagudo-Sanchez, A.; Sanchez-Delgado, M.; Moran, S.; Hernandez Mora, J.R.; Heyn, H.; Guitart, M.; Esteller, M.; Monk, D. Copy number rather than epigenetic alterations are the major dictator of imprinted methylation in tumors. Nat. Commun. 2017, 8, 467. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cramer, D.; Serrano, L.; Schaefer, M.H. A network of epigenetic modifiers and DNA repair genes controls tissue-specific copy number alteration preference. eLife 2016, 5, e16519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohanty, V.; Akmamedova, O.; Komurov, K. Selective DNA methylation in cancers controls collateral damage induced by large structural variations. Oncotarget 2017, 8, 71385–71392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huhn, S.; Chang, M.; Kumar, A.; Liu, R.; Jiang, B.; Betenbaugh, M.; Lin, H.; Nyberg, G.; Du, Z. Chromosomal instability drives convergent and divergent evolution toward advantageous inherited traits in mammalian CHO bioproduction lineages. iScience 2022, 25, 104074. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajaprakash, M.; Dean, L.T.; Palmore, M.; Johnson, S.B.; Kaufman, J.; Fallin, D.M.; Ladd-Acosta, C. DNA methylation signatures as biomarkers of socioeconomic position. Environ. Epigenetics 2023, 9, dvac027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ragusa, D.; Vagnarelli, P. Contribution of histone variants to aneuploidy: A cancer perspective. Front. Genet. 2023, 14, 1290903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, R.; Zhou, P.K. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, J.; Zhou, X.A.; Zhang, N.; Wang, J. Evolving insights: How DNA repair pathways impact cancer evolution. Cancer Biol. Med. 2020, 17, 805–827. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Divekar, S.; Kritzer, R.; Shu, H.; Thakkar, K.; Hicks, J.; Mills, M.G.; Makambi, K.; Dash, C.; Roy, R. Systemic DNA Damage and Repair Activity Vary by Race in Breast Cancer Survivors. Cancers 2024, 16, 1807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, Z.; Huang, T.; Guo, M.; Wang, S.M. Distinct landscapes of deleterious variants in DNA damage repair system in ethnic human populations. Life Sci. Alliance 2022, 5, e202101319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nagel, Z.D.; Chaim, I.A.; Samson, L.D. Inter-individual variation in DNA repair capacity: A need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair 2014, 19, 199–213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borbiev, T.; Babcock, K.; Sinopole, K.; Chesnut, G.T.; Petrovics, G. Ancestry-Specific DNA Damage Repair Gene Mutations and Prostate Cancer. Cancers 2025, 17, 682. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Luo, N.; Jin, G.; Han, T.; Yin, X.; Guo, D.; Zhang, X.; Tan, Z. Clinical and genomic features of Lynch syndrome differ by tumor site and disease spectrum. Nat. Commun. 2025, 16, 10179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolfer, A.; Ramaswamy, S. MYC and metastasis. Cancer Res. 2011, 71, 2034–2037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, T.; Ambrodji, A.; Huang, H.; Bouchonville, K.J.; Etheridge, A.S.; Schmidt, R.E.; Bembenek, B.M.; Temesgen, Z.B.; Wang, Z.; Innocenti, F.; et al. Germline cis variant determines epigenetic regulation of the anti-cancer drug metabolism gene dihydropyrimidine dehydrogenase (DPYD). eLife 2024, 13, RP94075. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamamoto, S.; Kawashima, K.; Fujiwara, Y.; Adachi, S.; Narui, K.; Hosaka, C.; Takahashi, R.; Tsuyuki, S.; Sugimori, M.; Tanoshima, M.; et al. BRCA2 reversion mutation confers resistance to olaparib in breast cancer. Clin. Case Rep. 2023, 11, e7537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mersch, J.; Jackson, M.A.; Park, M.; Nebgen, D.; Peterson, S.K.; Singletary, C.; Arun, B.K.; Litton, J.K. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 2015, 121, 269–275, Erratum in Cancer 2015, 121, 2474–2475. https://doi.org/10.1002/cncr.29357. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sadida, H.Q.; Abdulla, A.; Marzooqi, S.A.; Hashem, S.; Macha, M.A.; Akil, A.S.A.; Bhat, A.A. Epigenetic modifications: Key players in cancer heterogeneity and drug resistance. Transl. Oncol. 2024, 39, 101821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Aboud, N.M.; Tupper, C.; Jialal, I. Genetics, Epigenetic Mechanism. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Sugimoto, H.; Kawase, M.; Ichiyanagi, K. DNA methylation dictates histone modifications in developing male germ cells in the mouse. Nucleic Acids Res. 2025, 53, gkaf1240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cui, Y.; Deng, J.; Zhang, Y.; Du, L.; Jiang, F.; Li, C.; Chen, W.; Zhang, H.; He, Z. Epigenetic regulation by DNA methylation, histone modifications and chromatin remodeling complexes in controlling spermatogenesis and their dysfunction with male infertility. Cell. Mol. Life Sci. 2025, 82, 343. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beckedorff, F.C.; Amaral, M.S.; Deocesano-Pereira, C.; Verjovski-Almeida, S. Long non-coding RNAs and their implications in cancer epigenetics. Biosci. Rep. 2013, 33, 667–675. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mancilla, V.J.; Peeri, N.C.; Silzer, T.; Basha, R.; Felini, M.; Jones, H.P.; Phillips, N.; Tao, M.H.; Thyagarajan, S.; Vishwanatha, J.K. Understanding the Interplay Between Health Disparities and Epigenomics. Front. Genet. 2020, 11, 903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uribe, Y.; Brown, D.; Dean, J.R.; O′Brian, C.A.; Simon, M.A. Intersectionality Between Epigenetics and Cancer Health Disparities Stemming from Social Determinants of Health (SDoH) Through a Gynecologic Oncology Lens: A Narrative Review. Clin. Obstet. Gynecol. 2023, 66, 53–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menon, A.; Mutalik, V.S.; Chen, Y.; Ponamgi, S.; Peela, S.; Schroth, R.J.; Ghavami, S.; Chelikani, P. Beyond Genetics: Exploring Lifestyle, Microbiome, and Social Determinants in Oral Cancer Development. Cancers 2025, 17, 1094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verma, A.; Lindroth, A.M. The emerging intertwined activities of metabolism and epigenetics unveils culprits and prospects in cancer. Exp. Mol. Med. 2025, 57, 1928–1939. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quan, S.; Huang, H. Epigenetic contribution to cancer. Int. Rev. Cell Mol. Biol. 2024, 387, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Hajat, A.; Fohner, A.E. Conceptual frameworks for the integration of genetic and social epidemiology in complex diseases. Glob. Epidemiol. 2024, 8, 100156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woodhouse, R.M.; Frolows, N.; Monteiro, D.S.; Hawes, J.J.; Hawdon, A.; Davies, M.; Watson, O.; Lennox, V.S.; Ashe, A. A unified framework governing the establishment and maintenance of transgenerational epigenetic inheritance. Genetics 2025, 230, iyaf106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Syrnioti, G.; Eden, C.M.; Johnson, J.A.; Alston, C.; Syrnioti, A.; Newman, L.A. Social Determinants of Cancer Disparities. Ann. Surg. Oncol. 2023, 30, 8094–8104. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.; Liu, Z.; Molinari, M. From Diagnosis to Survivorship: The Role of Social Determinants in Cancer Care. Cancers 2025, 17, 1067. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Turner, D.P.; Winn, R.A.; Findlay, V.J. Biosocial determinants inform on enduring cancer disparities. Trends Cancer 2024, 10, 673–676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinheiro, L.C.; Reshetnyak, E.; Akinyemiju, T.; Phillips, E.; Safford, M.M. Social determinants of health and cancer mortality in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort study. Cancer 2022, 128, 122–130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fei-Zhang, D.J.; Chelius, D.C.; Patel, U.A.; Smith, S.S.; Sheyn, A.M.; Rastatter, J.C. Assessment of Social Vulnerability in Pediatric Head and Neck Cancer Care and Prognosis in the United States. JAMA Netw. Open 2023, 6, e230016. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tseng, T.S.; Li, C.C.; Matthews, A.K. Editorial: The Interplay Between Social Determinants of Health and Cancer Related Health Disparities. Front. Public Health 2022, 10, 887847. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA A Cancer J. Clin. 2024, 74, 12–49, Erratum in CA A Cancer J. Clin. 2024, 74, 203. https://doi.org/10.3322/caac.21830. [Google Scholar] [CrossRef] [PubMed]
- Bock, S.; Henley, S.J.; O’Neil, M.E.; Singh, S.D.; Thompson, T.D.; Wu, M. Cancer Distribution Among Asian, Native Hawaiian, and Pacific Islander Subgroups—United States, 2015–2019. MMWR—Morb. Mortal. Wkly. Rep. 2023, 72, 421–425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, D.T.; Pompa, I.R.; Qi, D.; Goldberg, S.I.; Lee, R.J.; Kamran, S.C. US Cancer Mortality Trends Among Asian and Pacific Islander Populations. JAMA Netw. Open 2024, 7, e2442451. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hawai‘i Tumor Registry. Hawaii Cancer at a Glance, 2012–2016. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.uhcancercenter.org/pdf/htr/Hawaii%2520Cancer%2520at%2520a%2520Glance%25202012_2016.pdf&ved=2ahUKEwj11trDi7KSAxVqJUQIHVLjDlcQFnoECBoQAQ&usg=AOvVaw01DQ3_2rSXXipS-9gIJLeB (accessed on 27 January 2026).
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA A Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.M. Epidemiology of Cancer. Clin. Chem. 2024, 70, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.F.; Rumgay, H.; Dunlop, C.; Ryan, M.; Quartly, F.; Cox, A.; Deas, A.; Elliss-Brookes, L.; Gavin, A.; Hounsome, L.; et al. The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. Br. J. Cancer 2018, 118, 1130–1141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Islami, F.; Goding Sauer, A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.; Soerjomataram, I.; et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA A Cancer J. Clin. 2018, 68, 31–54. [Google Scholar] [CrossRef] [PubMed]
- Olakowski, M.; Buldak, L. Modifiable and Non-Modifiable Risk Factors for the Development of Non-Hereditary Pancreatic Cancer. Medicina 2022, 58, 978. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barsouk, A.; Thandra, K.C.; Saginala, K.; Rawla, P. Reply to Chemical Risk Factors of Primary Liver Cancer: A Short Comment [Response To Letter]. Hepatic Med. Evid. Res. 2021, 13, 145–146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barsouk, A.; Thandra, K.C.; Saginala, K.; Rawla, P.; Barsouk, A. Chemical Risk Factors of Primary Liver Cancer: An Update. Hepatic Med. Evid. Res. 2020, 12, 179–188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- VoPham, T. Environmental risk factors for liver cancer and nonalcoholic fatty liver disease. Curr. Epidemiol. Rep. 2019, 6, 50–66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alvarez, C.S.; Hernandez, E.; Escobar, K.; Villagran, C.I.; Kroker-Lobos, M.F.; Rivera-Andrade, A.; Smith, J.W.; Egner, P.A.; Lazo, M.; Freedman, N.D.; et al. Aflatoxin B(1) exposure and liver cirrhosis in Guatemala: A case-control study. BMJ Open Gastroenterol. 2020, 7, e000380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barouki, R.; Samson, M.; Blanc, E.B.; Colombo, M.; Zucman-Rossi, J.; Lazaridis, K.N.; Miller, G.W.; Coumoul, X. The exposome and liver disease—How environmental factors affect liver health. J. Hepatol. 2023, 79, 492–505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katabathina, V.S.; Buddha, S.; Rajebi, H.; Shah, J.N.; Morani, A.C.; Lubner, M.G.; Dasyam, A.; Nazarullah, A.; Menias, C.O.; Prasad, S.R. Pancreas in Hereditary Syndromes: Cross-sectional Imaging Spectrum. Radiographics 2021, 41, 1082–1102. [Google Scholar] [CrossRef] [PubMed]
- Carrera, S.; Sancho, A.; Azkona, E.; Azkuna, J.; Lopez-Vivanco, G. Hereditary pancreatic cancer: Related syndromes and clinical perspective. Hered. Cancer Clin. Pract. 2017, 15, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Llach, J.; Carballal, S.; Moreira, L. Familial Pancreatic Cancer: Current Perspectives. Cancer Manag. Res. 2020, 12, 743–758. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garutti, M.; Foffano, L.; Mazzeo, R.; Michelotti, A.; Da Ros, L.; Viel, A.; Miolo, G.; Zambelli, A.; Puglisi, F. Hereditary Cancer Syndromes: A Comprehensive Review with a Visual Tool. Genes 2023, 14, 1025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seppala, T.T.; Burkhart, R.A.; Katona, B.W. Hereditary colorectal, gastric, and pancreatic cancer: Comprehensive review. BJS Open 2023, 7, zrad023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Stryjkowska-Gora, A.; Rudzki, S. Risk Factors for the Diagnosis of Colorectal Cancer. Cancer Control 2022, 29, 10732748211056692. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewandowska, A.; Religioni, U.; Czerw, A.; Deptala, A.; Karakiewicz, B.; Partyka, O.; Pajewska, M.; Sygit, K.; Cipora, E.; Kmiec, K.; et al. Nutritional Treatment of Patients with Colorectal Cancer. Int. J. Environ. Res. Public Health 2022, 19, 6881. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amersi, F.; Agustin, M.; Ko, C.Y. Colorectal cancer: Epidemiology, risk factors, and health services. Clin. Colon Rectal Surg. 2005, 18, 133–140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roshandel, G.; Ghasemi-Kebria, F.; Malekzadeh, R. Colorectal Cancer: Epidemiology, Risk Factors, and Prevention. Cancers 2024, 16, 1530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fuccio, L.; Eusebi, L.H.; Bazzoli, F. Gastric cancer, Helicobacter pylori infection and other risk factors. World J. Gastrointest. Oncol. 2010, 2, 342–347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Usui, Y.; Taniyama, Y.; Endo, M.; Koyanagi, Y.N.; Kasugai, Y.; Oze, I.; Ito, H.; Imoto, I.; Tanaka, T.; Tajika, M.; et al. Helicobacter pylori, Homologous-Recombination Genes, and Gastric Cancer. N. Engl. J. Med. 2023, 388, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.E.; Fasaye, G.A.; Gallanis, A.F.; Gamble, L.A.; McClelland, P.H.; Duemler, A.; Samaranayake, S.G.; Blakely, A.M.; Drogan, C.M.; Kingham, K.; et al. Germline CDH1 Variants and Lifetime Cancer Risk. JAMA 2024, 332, 722–729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tran, T.; Rousseau, M.A.; Farris, D.P.; Bauer, C.; Nelson, K.C.; Doan, H.Q. The social vulnerability index as a risk stratification tool for health disparity research in cancer patients: A scoping review. Cancer Causes Control 2023, 34, 407–420. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Braveman, P.; Gottlieb, L. The social determinants of health: It’s time to consider the causes of the causes. Public Health Rep. 2014, 129, 19–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coughlin, S.S. Social Determinants of Health and Cancer Survivorship. J. Environ. Health Sci. 2021, 7, 11–15. [Google Scholar] [PubMed] [PubMed Central]
- Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 2020, 159, 335–349.E15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Sim, J.A.; Dong, Q.; Zheng, Y.; Hou, L.; Li, Z.; Hsu, C.W.; Pan, H.; Mulder, H.; Easton, J.; et al. Blood DNA methylation signatures are associated with social determinants of health among survivors of childhood cancer. Epigenetics 2022, 17, 1389–1403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lima, H.A.; Moazzam, Z.; Endo, Y.; Alaimo, L.; Diaz, A.; Woldesenbet, S.; Shaikh, C.; Munir, M.M.; Azap, L.E.; Yang, J.; et al. Impact of the Affordable Care Act on Presentation, Treatment, and Outcomes of Intrahepatic Cholangiocarcinoma. J. Gastrointest. Surg. 2023, 27, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.M.; Woldesenbet, S.; Endo, Y.; Lima, H.A.; Alaimo, L.; Moazzam, Z.; Shaikh, C.; Cloyd, J.; Ejaz, A.; Azap, R.; et al. Racial Segregation Among Patients with Cholangiocarcinoma—Impact on Diagnosis, Treatment, and Outcomes. Ann. Surg. Oncol. 2023, 30, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Congly, S.E.; Chyou, D.E.; Ross-Driscoll, K.; Forbes, N.; Tsang, E.S.; Sussman, D.A.; Goldberg, D.S. Factors Associated with Geographic Disparities in Gastrointestinal Cancer Mortality in the United States. Gastroenterology 2022, 163, 437–448.E1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Safaei, J.; Saliminezhad, A. Health impacts of social determinants and lifestyle behaviours: Some evidence from Canadian provinces. Health Promot. Int. 2023, 38. [Google Scholar] [CrossRef] [PubMed]
- Graham, H.; White, P.C. Social determinants and lifestyles: Integrating environmental and public health perspectives. Public Health 2016, 141, 270–278. [Google Scholar] [CrossRef] [PubMed]
- SDoH. 2024. Available online: https://www.cdc.gov/about/priorities/why-is-addressing-sdoh-important.html (accessed on 27 January 2026).
- McCampbell, L.; Fei-Zhang, D.J.; Chelius, D.; Rastatter, J.; Sheyn, A. Analyzing County-level Social Vulnerabilities of Head and Neck Melanomas in the United States. Laryngoscope 2024, 134, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Mensah, J.A.; Fei-Zhang, D.J.; Rossen, J.L.; Rahmani, B.; Bentrem, D.J.; Stein, J.D.; French, D.D. Assessment of Social Vulnerabilities of Care and Prognosis in Adult Ocular Melanomas in the US. Ann. Surg. Oncol. 2024, 31, 3302–3313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanaris, A.A.; Fei-Zhang, D.J.; Fletcher, L.B.; Smith, S.S.; Patel, U.A.; D’Souza, J.N.; Chelius, D.C.; Sheyn, A.M.; Rastatter, J.C. Assessment of social vulnerability impact in care and prognosis of sinonasal cancers in the United States. Int. Forum Allergy Rhinol. 2024, 14, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Fei-Zhang, D.J.; Pawlik, T.M.; Bentrem, D.J.; Wayne, J.D. Associations of social vulnerability with truncal and extremity melanomas in the United States. J. Surg. Oncol. 2024, 129, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Fei-Zhang, D.J.; Verma, R.; Arimoto, R.; Lawrence, A.S.; Chelius, D.C.; Patel, U.A.; Smith, S.S.; Sheyn, A.M.; Rastatter, J.C. Social Vulnerability Association with Thyroid Cancer Disparities in the United States. Thyroid 2024, 34, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Fei-Zhang, D.J.; Schellenberg, S.J.; Bentrem, D.J.; Wayne, J.D.; Pawlik, T.M. The associations of food environment with gastrointestinal cancer outcomes in the United States. J. Surg. Oncol. 2024, 129, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Fei-Zhang, D.J.; Park, A.C.; Chelius, D.C., Jr.; Smith, S.S.; Samant, S.; Patel, U.A.; Sheyn, A.M.; Rastatter, J.C. Influence of Social Vulnerability in Treatment and Prognosis of Squamous Cell Carcinoma of the Tongue. Otolaryngol. Head Neck Surg. 2024, 170, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Fei-Zhang, D.J.; Chelius, D.C.; Sheyn, A.M.; Rastatter, J.C. Large-data contextualizations of social determinant associations in pediatric head and neck cancers. Curr. Opin. Otolaryngol. Head Neck Surg. 2023, 31, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Notterman, D.A.; Mitchell, C. Epigenetics and Understanding the Impact of Social Determinants of Health. Pediatr. Clin. N. Am. 2015, 62, 1227–1240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raffington, L. Associations of DNA-Methylation Measures of Biological Aging with Social Disparities in Child and Adolescent Mental Health. Clin. Psychol. Sci. 2023, 12, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, J.; Lussier, A.A.; Zhu, Y.; Liu, J.; Dunn, E.C. Associations between indicators of socioeconomic position and DNA methylation: A scoping review. Clin. Epigenetics 2021, 13, 221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fiorito, G.; Polidoro, S.; Dugue, P.A.; Kivimaki, M.; Ponzi, E.; Matullo, G.; Guarrera, S.; Assumma, M.B.; Georgiadis, P.; Kyrtopoulos, S.A.; et al. Social adversity and epigenetic aging: A multi-cohort study on socioeconomic differences in peripheral blood DNA methylation. Sci. Rep. 2017, 7, 16266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, M.; Riva, A.; Gauthier, M.L.; Kladde, M.P.; Ferl, R.J.; Paul, A.L. Single-molecule long-read methylation profiling reveals regional DNA methylation regulated by Elongator Complex Subunit 2 in Arabidopsis roots experiencing spaceflight. Biol. Direct 2024, 19, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, X.; Ren, J.; Long, H.; Zeng, R.; Zhang, G.; Bilal, A.; Cui, Y. iDNA-OpenPrompt: OpenPrompt learning model for identifying DNA methylation. Front. Genet. 2024, 15, 1377285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giraudi, P.J.; Larano, A.A.; Monego, S.D.; Pravisani, R.; Bonazza, D.; Gondolesi, G.; Tiribelli, C.; Baralle, F.; Baccarani, U.; Licastro, D. Genome-wide DNA methylation and transcriptomic analysis of liver tissues subjected to early ischemia/reperfusion injury upon human liver transplantation. Ann. Hepatol. 2024, 29, 101506. [Google Scholar] [CrossRef] [PubMed]
- Shantz, E.; Elliott, S.J. From social determinants to social epigenetics: Health geographies of chronic disease. Health Place 2021, 69, 102561. [Google Scholar] [CrossRef] [PubMed]
- Hing, B.; Braun, P.; Cordner, Z.A.; Ewald, E.R.; Moody, L.; McKane, M.; Willour, V.L.; Tamashiro, K.L.; Potash, J.B. Chronic social stress induces DNA methylation changes at an evolutionary conserved intergenic region in chromosome X. Epigenetics 2018, 13, 627–641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell-Wiley, T.M.; Baumer, Y.; Baah, F.O.; Baez, A.S.; Farmer, N.; Mahlobo, C.T.; Pita, M.A.; Potharaju, K.A.; Tamura, K.; Wallen, G.R. Social Determinants of Cardiovascular Disease. Circ. Res. 2022, 130, 782–799. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Serasinghe, N.; Vepsalainen, H.; Lehto, R.; Abdollahi, A.M.; Erkkola, M.; Roos, E.; Ray, C. Associations between socioeconomic status, home food availability, parental role-modeling, and children’s fruit and vegetable consumption: A mediation analysis. BMC Public Health 2023, 23, 1037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tiffon, C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int. J. Mol. Sci. 2018, 19, 3425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Korolenko, A.A.; Noll, S.E.; Skinner, M.K. Epigenetic Inheritance and Transgenerational Environmental Justice. Yale J. Biol. Med. 2023, 96, 241–250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holuka, C.; Grova, N.; Charalambous, E.G.; Le Cleac, H.J.; Turner, J.D.; Mposhi, A. Transgenerational impacts of early life adversity: From health determinants, implications to epigenetic consequences. Neurosci. Biobehav. Rev. 2024, 164, 105785. [Google Scholar] [CrossRef] [PubMed]
- Braz, C.U.; Taylor, T.; Namous, H.; Townsend, J.; Crenshaw, T.; Khatib, H. Paternal diet induces transgenerational epigenetic inheritance of DNA methylation signatures and phenotypes in sheep model. PNAS Nexus 2022, 1, pgac040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.Z.; Zhao, W.; Ammous, F.; Song, Y.; Du, J.; Shang, L.; Ratliff, S.M.; Moore, K.; Kelly, K.M.; Needham, B.L.; et al. DNA Methylation Mediates the Association Between Individual and Neighborhood Social Disadvantage and Cardiovascular Risk Factors. Front. Cardiovasc. Med. 2022, 9, 848768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kello, E.; Vieira, A.R.; Rivas-Tumanyan, S.; Campos-Rivera, M.; Martinez-Gonzalez, K.G.; Buxo, C.J.; Morou-Bermudez, E. Pre- and peri-natal hurricane exposure alters DNA methylation patterns in children. Sci. Rep. 2023, 13, 3875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinot de Moira, A.; Taylor-Robinson, D. Social Inequalities in Asthma: The Cold Facts. Arch. Bronconeumol. 2023, 59, 791–792. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.M.; de Souza Andrade, A.C.; Silva, U.M.; Lazo, M.; Slesinski, S.C.; Quistberg, A.; Diez-Roux, A.V.; de Lima Friche, A.A.; Caiaffa, W.T. Gender differences in the association of individual and contextual socioeconomic status with hypertension in 230 Latin American cities from the SALURBAL study: A multilevel analysis. BMC Public Health 2023, 23, 1532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clausing, E.S.; Tomlinson, C.J.; Non, A.L. Epigenetics and social inequalities in asthma and allergy. J. Allergy Clin. Immunol. 2023, 151, 1468–1470. [Google Scholar] [CrossRef] [PubMed]
- Kinzler, K.W.; Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 1996, 87, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Genetic instabilities in human cancers. Nature 1998, 396, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, S.D.; Bertagnolli, M.M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 2009, 361, 2449–2460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsang, A.H.; Cheng, K.H.; Wong, A.S.; Ng, S.S.; Ma, B.B.; Chan, C.M.; Tsui, N.B.; Chan, L.W.; Yung, B.Y.; Wong, S.C. Current and future molecular diagnostics in colorectal cancer and colorectal adenoma. World J. Gastroenterol. 2014, 20, 3847–3857. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pino, M.S.; Chung, D.C. The chromosomal instability pathway in colon cancer. Gastroenterology 2010, 138, 2059–2072. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.; Nicolaides, N.C.; Liu, B.; Parsons, R.; Lengauer, C.; Palombo, F.; D’Arrigo, A.; Markowitz, S.; Willson, J.K.; Kinzler, K.W.; et al. Mutations of GTBP in genetically unstable cells. Science 1995, 268, 1915–1917. [Google Scholar] [CrossRef] [PubMed]
- Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004, 304, 554. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.J.; Fearon, E.R.; Nigro, J.M.; Hamilton, S.R.; Preisinger, A.C.; Jessup, J.M.; vanTuinen, P.; Ledbetter, D.H.; Barker, D.F.; Nakamura, Y.; et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989, 244, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Thiagalingam, S.; Lengauer, C.; Leach, F.S.; Schutte, M.; Hahn, S.A.; Overhauser, J.; Willson, J.K.; Markowitz, S.; Hamilton, S.R.; Kern, S.E.; et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat. Genet. 1996, 13, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Siu, J.; Wang, Z.; Yu, H.; Bezabeh, T.; Deng, Y.; Du, W.; Fei, P. Focal Point of Fanconi Anemia Signaling. Int. J. Mol. Sci. 2021, 22, 12976. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deycmar, S.; Johnson, B.J.; Ray, K.; Schaaf, G.W.; Ryan, D.P.; Cullin, C.; Dozier, B.L.; Ferguson, B.; Bimber, B.N.; Olson, J.D.; et al. Epigenetic MLH1 silencing concurs with mismatch repair deficiency in sporadic, naturally occurring colorectal cancer in rhesus macaques. J. Transl. Med. 2024, 22, 292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, L.; Li, X.; Yuan, Y.; Dong, C.; Yang, M. APC Promoter Methylation in Gastrointestinal Cancer. Front. Oncol. 2021, 11, 653222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Szigeti, K.A.; Kalmar, A.; Galamb, O.; Valcz, G.; Bartak, B.K.; Nagy, Z.B.; Zsigrai, S.; Felletar, I.; Patai, A.V.; Micsik, T.; et al. Global DNA hypomethylation of colorectal tumours detected in tissue and liquid biopsies may be related to decreased methyl-donor content. BMC Cancer 2022, 22, 605. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzuki, K.; Suzuki, I.; Leodolter, A.; Alonso, S.; Horiuchi, S.; Yamashita, K.; Perucho, M. Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 2006, 9, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Cravo, M.; Pinto, R.; Fidalgo, P.; Chaves, P.; Gloria, L.; Nobre-Leitao, C.; Costa Mira, F. Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut 1996, 39, 434–438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Issa, J.P. CpG island methylator phenotype in cancer. Nat. Rev. Cancer 2004, 4, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, W.; Cao, P. Advances in CpG Island Methylator Phenotype Colorectal Cancer Therapies. Front. Oncol. 2021, 11, 629390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weng, Y.Y.; Huang, M.Y. The CpG Island Methylator Phenotype Status in Synchronous and Solitary Primary Colorectal Cancers: Prognosis and Effective Therapeutic Drug Prediction. Int. J. Mol. Sci. 2024, 25, 5243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bure, I.V.; Nemtsova, M.V. Methylation and Noncoding RNAs in Gastric Cancer: Everything Is Connected. Int. J. Mol. Sci. 2021, 22, 5683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Helderman, N.C.; Andini, K.D.; van Leerdam, M.E.; van Hest, L.P.; Hoekman, D.R.; Ahadova, A.; Bajwa-Ten Broeke, S.W.; Bosse, T.; van der Logt, E.M.J.; Imhann, F.; et al. MLH1 Promotor Hypermethylation in Colorectal and Endometrial Carcinomas from Patients with Lynch Syndrome. J. Mol. Diagn. 2024, 26, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Azhdari, S.; Khodabandehloo, F.; Ehtesham, N.; Mazhari, S.A.; Behroozi, J.; Siri, G. Hypermethylation of MGMT Gene Promoter in Peripheral Blood Mononuclear Cells as a Noninvasive Biomarker for Colorectal Cancer Diagnosis. Adv. Biomed. Res. 2023, 12, 256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xing, X.; Cai, W.; Shi, H.; Wang, Y.; Li, M.; Jiao, J.; Chen, M. The prognostic value of CDKN2A hypermethylation in colorectal cancer: A meta-analysis. Br. J. Cancer 2013, 108, 2542–2548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valo, S.; Kaur, S.; Ristimaki, A.; Renkonen-Sinisalo, L.; Jarvinen, H.; Mecklin, J.P.; Nystrom, M.; Peltomaki, P. DNA hypermethylation appears early and shows increased frequency with dysplasia in Lynch syndrome-associated colorectal adenomas and carcinomas. Clin. Epigenetics 2015, 7, 71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarbia, M.; Geddert, H.; Klump, B.; Kiel, S.; Iskender, E.; Gabbert, H.E. Hypermethylation of tumor suppressor genes (p16INK4A, p14ARF and APC) in adenocarcinomas of the upper gastrointestinal tract. Int. J. Cancer 2004, 111, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Karamitrousis, E.I.; Balgkouranidou, I.; Xenidis, N.; Amarantidis, K.; Biziota, E.; Koukaki, T.; Trypsianis, G.; Karayiannakis, A.; Bolanaki, H.; Kolios, G.; et al. Prognostic Role of RASSF1A, SOX17 and Wif-1 Promoter Methylation Status in Cell-Free DNA of Advanced Gastric Cancer Patients. Technol. Cancer Res. Treat. 2021, 20, 1533033820973279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Puliga, E.; Corso, S.; Pietrantonio, F.; Giordano, S. Microsatellite instability in Gastric Cancer: Between lights and shadows. Cancer Treat. Rev. 2021, 95, 102175. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, Z. Comparison of CDH1 Gene Hypermethylation Status in Blood and Serum among Gastric Cancer Patients. Pathol. Oncol. Res. 2020, 26, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Kaneto, H.; Sasaki, S.; Yamamoto, H.; Itoh, F.; Toyota, M.; Suzuki, H.; Ozeki, I.; Iwata, N.; Ohmura, T.; Satoh, T.; et al. Detection of hypermethylation of the p16INK4A gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut 2001, 48, 372–377. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mansour, L.A.; El Raziky, M.; Mohamed, A.A.; Mahmoud, E.H.; Hamdy, S.; El Sayed, E.H. Circulating Hypermethylated RASSF1A as a Molecular Biomarker for Diagnosis of Hepatocellular Carcinoma. Asian Pac. J. Cancer Prev. 2017, 18, 1637–1643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerdes, B.; Ramaswamy, A.; Kersting, M.; Ernst, M.; Lang, S.; Schuermann, M.; Wild, A.; Bartsch, D.K. p16INK4a alterations in chronic pancreatitis—Indicator for high-risk lesions for pancreatic cancer. Surgery 2001, 129, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Koukaki, T.; Balgkouranidou, I.; Biziota, E.; Karayiannakis, A.; Bolanaki, H.; Karamitrousis, E.; Zarogoulidis, P.; Deftereos, S.; Charalampidis, C.; Ioannidis, A.; et al. Prognostic significance of BRCA1 and BRCA2 methylation status in circulating cell-free DNA of Pancreatic Cancer patients. J. Cancer 2024, 15, 2573–2579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Natale, F.; Vivo, M.; Falco, G.; Angrisano, T. Deciphering DNA methylation signatures of pancreatic cancer and pancreatitis. Clin. Epigenetics 2019, 11, 132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitchell, S.M.; Ross, J.P.; Drew, H.R.; Ho, T.; Brown, G.S.; Saunders, N.F.; Duesing, K.R.; Buckley, M.J.; Dunne, R.; Beetson, I.; et al. A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer 2014, 14, 54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, H.; Cao, W.; Long, Z.; Kuang, L.; Li, X.; Feng, Y.; Wu, Y.; Zhao, Y.; Chen, Y.; Sun, P.; et al. DNA methylation-based patterns for early diagnostic prediction and prognostic evaluation in colorectal cancer patients with high tumor mutation burden. Front. Oncol. 2022, 12, 1030335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muller, D.; Gyorffy, B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188722. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Huang, T.; Ye, G.; Wang, B.; Zhang, X. Methylation of SFRP2 gene as a promising noninvasive biomarker using feces in colorectal cancer diagnosis: A systematic meta-analysis. Sci. Rep. 2016, 6, 33339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, R.; Zhao, K.; Wang, T.; Yuan, J.; Zhang, D.; Xiang, W.; Qian, J.; Luo, N.; Zhou, Y.; Tang, B.; et al. 5-aza-2′-deoxycytidine potentiates anti-tumor immunity in colorectal peritoneal metastasis by modulating ABC A9-mediated cholesterol accumulation in macrophages. Theranostics 2022, 12, 875–890. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, W.J.; Dai, D.Q.; Teng, Y.; Liu, H.B. [5-Aza-CdR regulates the expression of RASSF1A gene in human gastric cancer cell line and inhibits the growth of cells]. Chin. J. Gastrointest. Surg.-J. 2009, 12, 57–60. [Google Scholar] [PubMed]
- Qiu, H.; Yashiro, M.; Shinto, O.; Matsuzaki, T.; Hirakawa, K. DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci. 2009, 100, 181–188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, J.; Du, W.; Deng, Y.; Yu, H.; Fei, P. Understanding Cancer Health Disparities. Cancers 2026, 18, 476. https://doi.org/10.3390/cancers18030476
Zhang J, Du W, Deng Y, Yu H, Fei P. Understanding Cancer Health Disparities. Cancers. 2026; 18(3):476. https://doi.org/10.3390/cancers18030476
Chicago/Turabian StyleZhang, Jun, Wei Du, Youping Deng, Herbert Yu, and Peiwen Fei. 2026. "Understanding Cancer Health Disparities" Cancers 18, no. 3: 476. https://doi.org/10.3390/cancers18030476
APA StyleZhang, J., Du, W., Deng, Y., Yu, H., & Fei, P. (2026). Understanding Cancer Health Disparities. Cancers, 18(3), 476. https://doi.org/10.3390/cancers18030476

