Intratumoral Microbiome: Impact on Cancer Progression and Cellular Immunotherapy
Simple Summary
Abstract
1. Introduction
2. Origin of the Intratumoral Microbiota and Relationships with Other Human Microbiomes
3. The Role of the Intratumoral Microbiome in Cancer Progression
3.1. Ecology and Composition of the Intratumoral Microbiome
3.2. Pro-Tumor Mechanisms of the Intratumoral Microbiome
4. The Relationship Between Immune Cells and Intratumoral Microbiota in the Context of Treatment Outcomes
5. Current Limitation and Future Direction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CAR-T | Chimeric Antigen Receptor-Positive T-cell |
| NK | Natural Killer (cells) |
| NF-κB | NF-kappa B (Signaling Pathway) |
| PI3K | PI3K (Signaling Pathway) |
| TAMs | Tumor-Associated Macrophages |
| ACT | Adoptive Cell Transfer |
| OCI | Oncology Cellular Immunotherapy |
| DCs | Dendritic Cells |
| NK | Natural Killer Cells |
| CIKs | Cytokine-Induced Killer Cells |
| TILs | Tumor-Infiltrating Lymphocytes |
| LAKs | Lymphocyte-Activated Killer Cells |
| MAKs | Killer-Induced Macrophages |
| TMB | Tumor Mutational Burden, |
| TCR-T | T-cell Receptor-Transfer |
| FDA | U.S. Food and Drug Administration |
| NGS | Next-Generation Sequencing |
| rRNA | Ribosomal RNA |
| WGS | Whole-Genome Shotgun sequencing |
| FISH | Fluorescence In Situ Hybridization |
| SCFAs | Short-Chain Fatty Acids |
| ROS | Reactive Oxygen Species |
| TLR | Toll-like receptors |
| ERK | ERK (Signaling Pathway) |
| RhoA/ROCK | RhoA/ROCK signaling pathway |
| TLR4 | Toll-like Receptor 4 |
| HIF-1α | Hypoxia-Inducible Factor 1 Alpha |
| HLA | Human Leukocyte Antigen |
| PAMPs | Pathogen-Associated Molecular Patterns |
| LPS | Lipopolysaccharides |
| PRRs | Pattern Recognition Receptors |
| TLRs | Toll-like Receptors |
| NLRs | Nod-like Receptors |
| VacA | Vacuolating cytotoxin A |
| TIGIT | T cell Immunoreceptor with Ig and ITIM domains |
| CEACAM1 | Carcinoembryonic antigen-related cell adhesion molecule 1 |
| CRC | Colorectal Cancers |
| OSCC | Oral Squamous Cell Carcinoma |
| GLUT1 | Glucose Transporter 1 |
| PDAC | Pancreatic Ductal Adenocarcinoma |
| ILC2 | Innate Lymphoid Cell 2 |
| PD-L1 | Programmed Death-Ligand 1 |
| TCGA | The Cancer Genome Atlas |
| CTL | Cytotoxic T Lymphocyte |
| TLS | Tertiary Lymphoid Structures |
| SLIC | Synchronized Lysis System |
| IFN-I | Type I Interferon |
| STING | Stimulator of Interferon Genes |
References
- Mukherjee, A.G.; Wanjari, U.R.; Namachivayam, A.; Murali, R.; Prabakaran, D.S.; Ganesan, R.; Renu, K.; Dey, A.; Vellingiri, B.; Ramanathan, G.; et al. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines 2022, 10, 1493. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. The History and Advances in Cancer Immunotherapy: Understanding the Characteristics of Tumor-Infiltrating Immune Cells and Their Therapeutic Implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, B.; Zheng, S.; Jiang, Y.; Zhang, X.; Mao, K. The Progress and Prospects of Immune Cell Therapy for the Treatment of Cancer. Cell Transplant. 2024, 33, 09636897241231892. [Google Scholar] [CrossRef]
- Hayes, C. Cellular Immunotherapies for Cancer. Ir. J. Med. Sci. 2021, 190, 41–57. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, J.; Rao, S.; Guo, S.; Shen, J.; Du, F.; Wu, X.; Chen, Y.; Li, M.; Chen, M.; et al. Tumor Infiltrating Lymphocyte (TIL) Therapy for Solid Tumor Treatment: Progressions and Challenges. Cancers 2022, 14, 4160. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Ren, X.; Rosato, A.; Sangiolo, D.; Wang, Z.; Tettamanti, S.; Zhang, Y.; Rettinger, E.; Fenix, K.A.; Sommaggio, R.; et al. Cytokine-Induced Killer (CIK) Cells, Successes and Challenges: Report on the First International Conference Dedicated to the Clinical Translation of This Unique Adoptive Cell Immunotherapy. Cancer Immunol. Immunother. CII 2024, 73, 21. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Gao, F.; Yan, M.; Zhao, S.; Yan, Z.; Shi, B.; Liu, Y. Natural Killer Cells: A Promising Immunotherapy for Cancer. J. Transl. Med. 2022, 20, 240. [Google Scholar] [CrossRef]
- Wculek, S.K.; Cueto, F.J.; Mujal, A.M.; Melero, I.; Krummel, M.F.; Sancho, D. Dendritic Cells in Cancer Immunology and Immunotherapy. Nat. Rev. Immunol. 2020, 20, 7–24. [Google Scholar] [CrossRef]
- Chen, P.; Chen, Y.; Wang, Y.; Sharma, A.; Veronika, L.-K.; Weiher, H.; Maria, A.G.-C.; Schmidt-Wolf, I.G.H. Macrophage-Derived pro-Inflammatory Cytokines Augment the Cytotoxicity of Cytokine-Induced Killer Cells by Strengthening the NKG2D Pathway in Multiple Myeloma. Sci. Rep. 2025, 15, 16739. [Google Scholar] [CrossRef]
- Tan, S.; Li, D.; Zhu, X. Cancer Immunotherapy: Pros, Cons and Beyond. Biomed. Pharmacother. 2020, 124, 109821. [Google Scholar] [CrossRef]
- Jogalekar, M.P.; Rajendran, R.L.; Khan, F.; Dmello, C.; Gangadaran, P.; Ahn, B.-C. CAR T-Cell-Based Gene Therapy for Cancers: New Perspectives, Challenges, and Clinical Developments. Front. Immunol. 2022, 13, 925985. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.N.; Asija, S.; Pendhari, J.; Purwar, R. CAR-T Cell Therapy in Hematological Malignancies: Where Are We Now and Where Are We Heading For? Eur. J. Haematol. 2024, 112, 6–18. [Google Scholar] [CrossRef]
- Hu, L.; Fan, C.; Bross, P.; Das, A.; Cho, E.S.; Knudson, K.M.; Tegenge, M.; Gao, Q.; Brewer, J.R.; Theoret, M.R.; et al. FDA Approval Summary: Lifileucel for Unresectable or Metastatic Melanoma Previously Treated with an Anti–PD-1–Based Immunotherapy. Clin. Cancer Res. 2025, 31, 4004–4009. [Google Scholar] [CrossRef]
- Zhao, T.; You, J.; Wang, C.; Li, B.; Liu, Y.; Shao, M.; Zhao, W.; Zhou, C. Cell-Based Immunotherapies for Solid Tumors: Advances, Challenges, and Future Directions. Front. Oncol. 2025, 15, 1551583. [Google Scholar] [CrossRef]
- Bates, S.M.; Evans, K.V.; Delsing, L.; Wong, R.; Cornish, G.; Bahjat, M. Immune Safety Challenges Facing the Preclinical Assessment and Clinical Progression of Cell Therapies. Drug Discov. Today 2024, 29, 104239. [Google Scholar] [CrossRef]
- Han, M.W.; Jeong, S.Y.; Suh, C.H.; Park, H.; Guenette, J.P.; Huang, R.Y.; Kim, K.W.; Yoon, D.H. Incidence of Immune Effector Cell-Associated Neurotoxicity among Patients Treated with CAR T-Cell Therapy for Hematologic Malignancies: Systematic Review and Meta-Analysis. Front. Neurol. 2024, 15, 1392831. [Google Scholar] [CrossRef]
- Jayathilaka, B.; Mian, F.; Franchini, F.; Au-Yeung, G.; IJzerman, M. Cancer and Treatment Specific Incidence Rates of Immune-Related Adverse Events Induced by Immune Checkpoint Inhibitors: A Systematic Review. Br. J. Cancer 2025, 132, 51–57. [Google Scholar] [CrossRef]
- Leonov, G.E.; Grinchevskaya, L.R.; Makhnach, O.V.; Samburova, M.V.; Goldshtein, D.V.; Salikhova, D.I. Safety Assessment of Stem Cell-Based Therapies: Current Standards and Advancing Frameworks. Cells 2025, 14, 1660. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Pareek, S.; Kulkarni, P.; Horne, D.; Salgia, R.; Singhal, S.S. Next-Generation Immunotherapy: Advancing Clinical Applications in Cancer Treatment. J. Clin. Med. 2024, 13, 6537. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xiong, W.; Liang, Z.; Wang, J.; Zeng, Z.; Kołat, D.; Li, X.; Zhou, D.; Xu, X.; Zhao, L. Critical Role of the Gut Microbiota in Immune Responses and Cancer Immunotherapy. J. Hematol. Oncol. 2024, 17, 33. [Google Scholar] [CrossRef]
- Ahmad, A.; Mahmood, N.; Raza, M.A.; Mushtaq, Z.; Saeed, F.; Afzaal, M.; Hussain, M.; Amjad, H.W.; Al-Awadi, H.M. Gut Microbiota and Their Derivatives in the Progression of Colorectal Cancer: Mechanisms of Action, Genome and Epigenome Contributions. Heliyon 2024, 10, e29495. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.R.; Shohag, S.; Ahasan, M.T.; Sarkar, N.; Khan, H.; Hasan, A.M.; Cavalu, S.; Rauf, A. Microbiome in Cancer: Role in Carcinogenesis and Impact in Therapeutic Strategies. Biomed. Pharmacother. 2022, 149, 112898. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Xia, Q. Role of Gut Microbiome in Cancer Immunotherapy: From Predictive Biomarker to Therapeutic Target. Exp. Hematol. Oncol. 2023, 12, 84. [Google Scholar] [CrossRef]
- Clavijo-Salomon, M.A.; Trinchieri, G. Unlocking the Power of the Microbiome for Successful Cancer Immunotherapy. J. Immunother. Cancer 2025, 13, e011281. [Google Scholar] [CrossRef]
- Nejman, D.; Livyatan, I.; Fuks, G.; Gavert, N.; Zwang, Y.; Geller, L.T.; Rotter-Maskowitz, A.; Weiser, R.; Mallel, G.; Gigi, E.; et al. The Human Tumor Microbiome Is Composed of Tumor Type–Specific Intracellular Bacteria. Science 2020, 368, 973–980. [Google Scholar] [CrossRef]
- Xue, C.; Chu, Q.; Zheng, Q.; Yuan, X.; Su, Y.; Bao, Z.; Lu, J.; Li, L. Current Understanding of the Intratumoral Microbiome in Various Tumors. Cell Rep. Med. 2023, 4, 100884. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Z.; Zhang, K.; Tang, H.; Wang, G.; Gao, J.; He, G.; Liang, B.; Li, L.; Yang, C.; et al. Whole-Tumor Clearing and Imaging of Intratumor Microbiota in Three Dimensions with miCDaL Strategy. Adv. Sci. 2024, 11, 2400694. [Google Scholar] [CrossRef]
- Eisenhofer, R.; Minich, J.J.; Marotz, C.; Cooper, A.; Knight, R.; Weyrich, L.S. Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. Trends Microbiol. 2019, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Kandalai, S.; Zhou, X.; Hossain, F.; Zheng, Q. Applying Multi-omics toward Tumor Microbiome Research. iMeta 2023, 2, e73. [Google Scholar] [CrossRef] [PubMed]
- Gihawi, A.; Ge, Y.; Lu, J.; Puiu, D.; Xu, A.; Cooper, C.S.; Brewer, D.S.; Pertea, M.; Salzberg, S.L. Major Data Analysis Errors Invalidate Cancer Microbiome Findings. mBio 2023, 14, e01607-23. [Google Scholar] [CrossRef]
- Triner, D.; Devenport, S.N.; Ramakrishnan, S.K.; Ma, X.; Frieler, R.A.; Greenson, J.K.; Inohara, N.; Nunez, G.; Colacino, J.A.; Mortensen, R.M.; et al. Neutrophils Restrict Tumor-Associated Microbiota to Reduce Growth and Invasion of Colon Tumors in Mice. Gastroenterology 2019, 156, 1467–1482. [Google Scholar] [CrossRef]
- Singh, R.P.; Kumari, N.; Gupta, S.; Jaiswal, R.; Mehrotra, D.; Singh, S.; Mukherjee, S.; Kumar, R. Intratumoral Microbiota Changes with Tumor Stage and Influences the Immune Signature of Oral Squamous Cell Carcinoma. Microbiol. Spectr. 2023, 11, e0459622. [Google Scholar] [CrossRef]
- Reynoso-García, J.; Miranda-Santiago, A.E.; Meléndez-Vázquez, N.M.; Acosta-Pagán, K.; Sánchez-Rosado, M.; Díaz-Rivera, J.; Rosado-Quiñones, A.M.; Acevedo-Márquez, L.; Cruz-Roldán, L.; Tosado-Rodríguez, E.L.; et al. A Complete Guide to Human Microbiomes: Body Niches, Transmission, Development, Dysbiosis, and Restoration. Front. Syst. Biol. 2022, 2, 951403. [Google Scholar] [CrossRef]
- Kitamoto, S.; Nagao-Kitamoto, H.; Hein, R.; Schmidt, T.M.; Kamada, N. The Bacterial Connection between the Oral Cavity and the Gut Diseases. J. Dent. Res. 2020, 99, 1021–1029. [Google Scholar] [CrossRef]
- Minalyan, A.; Gabrielyan, L.; Scott, D.; Jacobs, J.; Pisegna, J.R. The Gastric and Intestinal Microbiome: Role of Proton Pump Inhibitors. Curr. Gastroenterol. Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, S.; Sheng, H.; Zhen, Y.; Wu, B.; Li, Z.; Chen, D.; Zhou, H. Oral Fusobacterium Nucleatum Resists the Acidic pH of the Stomach Due to Membrane Erucic Acid Synthesized via Enoyl-CoA Hydratase-Related Protein FnFabM. J. Oral Microbiol. 2025, 17, 2453964. [Google Scholar] [CrossRef] [PubMed]
- Woelfel, S.; Silva, M.S.; Stecher, B. Intestinal Colonization Resistance in the Context of Environmental, Host, and Microbial Determinants. Cell Host Microbe 2024, 32, 820–836. [Google Scholar] [CrossRef]
- Rashidi, A.; Koyama, M.; Dey, N.; McLean, J.S.; Hill, G.R. Colonization Resistance Is Dispensable for Segregation of Oral and Gut Microbiota. BMC Med. Genomics 2023, 16, 31. [Google Scholar] [CrossRef]
- Rashidi, A.; Ebadi, M.; Weisdorf, D.J.; Costalonga, M.; Staley, C. No Evidence for Colonization of Oral Bacteria in the Distal Gut in Healthy Adults. Proc. Natl. Acad. Sci. USA 2021, 118, e2114152118. [Google Scholar] [CrossRef] [PubMed]
- Kunath, B.J.; De Rudder, C.; Laczny, C.C.; Letellier, E.; Wilmes, P. The Oral–Gut Microbiome Axis in Health and Disease. Nat. Rev. Microbiol. 2024, 22, 791–805. [Google Scholar] [CrossRef]
- Tortora, S.C.; Agurto, M.G.; Martello, L.A. The Oral-Gut-Circulatory Axis: From Homeostasis to Colon Cancer. Front. Cell. Infect. Microbiol. 2023, 13, 1289452. [Google Scholar] [CrossRef] [PubMed]
- De Pessemier, B.; Grine, L.; Debaere, M.; Maes, A.; Paetzold, B.; Callewaert, C. Gut–Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Elkafas, H.; Walls, M.; Al-Hendy, A.; Ismail, N. Gut and Genital Tract Microbiomes: Dysbiosis and Link to Gynecological Disorders. Front. Cell. Infect. Microbiol. 2022, 12, 1059825. [Google Scholar] [CrossRef]
- Mahmud, R.; Akter, S.; Tamanna, S.K.; Mazumder, L.; Esti, I.Z.; Banerjee, S.; Akter, S.; Hasan, R.; Acharjee, M.; Hossain, S.; et al. Impact of Gut Microbiome on Skin Health: Gut-Skin Axis Observed through the Lenses of Therapeutics and Skin Diseases. Gut Microbes 2022, 14, 2096995. [Google Scholar] [CrossRef]
- Somodi, C.; Dora, D.; Horváth, M.; Szegvari, G.; Lohinai, Z. Gut Microbiome Changes and Cancer Immunotherapy Outcomes Associated with Dietary Interventions: A Systematic Review of Preclinical and Clinical Evidence. J. Transl. Med. 2025, 23, 756. [Google Scholar] [CrossRef]
- Dokoshi, T.; Chen, Y.; Cavagnero, K.J.; Rahman, G.; Hakim, D.; Brinton, S.; Schwarz, H.; Brown, E.A.; O’Neill, A.; Nakamura, Y.; et al. Dermal Injury Drives a Skin to Gut Axis That Disrupts the Intestinal Microbiome and Intestinal Immune Homeostasis in Mice. Nat. Commun. 2024, 15, 3009. [Google Scholar] [CrossRef]
- Dang, A.T.; Marsland, B.J. Microbes, Metabolites, and the Gut–Lung Axis. Mucosal Immunol. 2019, 12, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Yang, J.; Zhang, H.; Shuai, D.; Li, M.; Chen, L.; Liu, L. Emerging Roles of Intratumoral Microbiota: A Key to Novel Cancer Therapies. Front. Oncol. 2025, 15, 1506577. [Google Scholar] [CrossRef]
- Ivleva, E.A.; Grivennikov, S.I. Microbiota-Driven Mechanisms at Different Stages of Cancer Development. Neoplasia 2022, 32, 100829. [Google Scholar] [CrossRef]
- Dapito, D.H.; Mencin, A.; Gwak, G.-Y.; Pradere, J.-P.; Jang, M.-K.; Mederacke, I.; Caviglia, J.M.; Khiabanian, H.; Adeyemi, A.; Bataller, R.; et al. Promotion of Hepatocellular Carcinoma by the Intestinal Microbiota and TLR4. Cancer Cell 2012, 21, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Bertocchi, A.; Carloni, S.; Ravenda, P.S.; Bertalot, G.; Spadoni, I.; Lo Cascio, A.; Gandini, S.; Lizier, M.; Braga, D.; Asnicar, F.; et al. Gut Vascular Barrier Impairment Leads to Intestinal Bacteria Dissemination and Colorectal Cancer Metastasis to Liver. Cancer Cell 2021, 39, 708–724.e11. [Google Scholar] [CrossRef]
- Bullman, S.; Pedamallu, C.S.; Sicinska, E.; Clancy, T.E.; Zhang, X.; Cai, D.; Neuberg, D.; Huang, K.; Guevara, F.; Nelson, T.; et al. Analysis of Fusobacterium Persistence and Antibiotic Response in Colorectal Cancer. Science 2017, 358, 1443–1448. [Google Scholar] [CrossRef]
- Senthakumaran, T.; Moen, A.E.F.; Tannæs, T.M.; Endres, A.; Brackmann, S.A.; Rounge, T.B.; Bemanian, V.; Tunsjø, H.S. Microbial Dynamics with CRC Progression: A Study of the Mucosal Microbiota at Multiple Sites in Cancers, Adenomatous Polyps, and Healthy Controls. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, G.G.; Sichel, L.; López, M.d.C.; Hernández, Y.; Arteaga, E.; Rodríguez, M.; Fleites, V.; Fernández, L.T.; Cano, R.D.J. From Colon Wall to Tumor Niche: Unraveling the Microbiome’s Role in Colorectal Cancer Progression. PLoS ONE 2024, 19, e0311233. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, W.; Wang, M.; Wang, X.; Wang, S. Causal Roles of Skin Microbiota in Skin Cancers Suggested by Genetic Study. Front. Microbiol. 2024, 15, 1426807. [Google Scholar] [CrossRef]
- Tsay, J.-C.J.; Wu, B.G.; Sulaiman, I.; Gershner, K.; Schluger, R.; Li, Y.; Yie, T.-A.; Meyn, P.; Olsen, E.; Perez, L.; et al. Lower Airway Dysbiosis Affects Lung Cancer Progression. Cancer Discov. 2021, 11, 293–307. [Google Scholar] [CrossRef]
- Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambirinis, C.P.; Kurz, E.; Mishra, A.; Mohan, N.; Aykut, B.; Usyk, M.; Torres, L.E.; et al. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov. 2018, 8, 403–416. [Google Scholar] [CrossRef]
- Meng, Y.-F.; Fan, Z.-Y.; Zhou, B.; Zhan, H.-X. Role of the Intratumoral Microbiome in Tumor Progression and Therapeutics Implications. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 189014. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, Z.; Liu, Y.; Gu, Y.; Niu, J.; Lv, K. Intratumoral Microbiota: Implications for Cancer Progression and Treatment. Front. Microbiol. 2025, 16, 1551515. [Google Scholar] [CrossRef] [PubMed]
- Narunsky-Haziza, L.; Sepich-Poore, G.D.; Livyatan, I.; Asraf, O.; Martino, C.; Nejman, D.; Gavert, N.; Stajich, J.E.; Amit, G.; González, A.; et al. Pan-Cancer Analyses Reveal Cancer-Type-Specific Fungal Ecologies and Bacteriome Interactions. Cell 2022, 185, 3789–3806.e17. [Google Scholar] [CrossRef]
- Rottner, K.; Stradal, T.E.B.; Wehland, J. Bacteria-Host-Cell Interactions at the Plasma Membrane: Stories on Actin Cytoskeleton Subversion. Dev. Cell 2005, 9, 3–17. [Google Scholar] [CrossRef]
- Colonne, P.M.; Winchell, C.G.; Voth, D.E. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens. Front. Cell. Infect. Microbiol. 2016, 6, 107. [Google Scholar] [CrossRef]
- Weiss, G.; Schaible, U.E. Macrophage Defense Mechanisms against Intracellular Bacteria. Immunol. Rev. 2015, 264, 182–203. [Google Scholar] [CrossRef] [PubMed]
- Aliko, A.; Kamińska, M.; Bergum, B.; Gawron, K.; Benedyk, M.; Lamont, R.J.; Malicki, S.; Delaleu, N.; Potempa, J.; Mydel, P. Impact of Porphyromonas Gingivalis Peptidylarginine Deiminase on Bacterial Biofilm Formation, Epithelial Cell Invasion, and Epithelial Cell Transcriptional Landscape. Sci. Rep. 2018, 8, 14144. [Google Scholar] [CrossRef]
- Kellermann, M.; Scharte, F.; Hensel, M. Manipulation of Host Cell Organelles by Intracellular Pathogens. Int. J. Mol. Sci. 2021, 22, 6484. [Google Scholar] [CrossRef] [PubMed]
- Weddle, E.; Agaisse, H. Principles of Intracellular Bacterial Pathogen Spread from Cell to Cell. PLoS Pathog. 2018, 14, e1007380. [Google Scholar] [CrossRef]
- Galeano Niño, J.L.; Wu, H.; LaCourse, K.D.; Kempchinsky, A.G.; Baryiames, A.; Barber, B.; Futran, N.; Houlton, J.; Sather, C.; Sicinska, E.; et al. Effect of the Intratumoral Microbiota on Spatial and Cellular Heterogeneity in Cancer. Nature 2022, 611, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Wang, X.; Wang, Y.; Li, R.; Li, G.; He, Y.; Liu, S.; Luo, Y.; Wang, L.; Lei, Z. Helicobacter Pylori Promotes Gastric Cancer Progression by Upregulating Semaphorin 5A Expression via ERK/MMP9 Signaling. Mol. Ther. Oncolytics 2021, 22, 256–264. [Google Scholar] [CrossRef]
- Zhou, Z.; Lv, Y.; Zuo, A.; Zhu, X.; Xu, Y.; Zuo, L.; Xu, H.; Liu, S.; Zhang, Y.; Weng, S.; et al. Interactions between Microbiota and Innate Immunity in Tumor Microenvironment: Novel Insights into Cancer Progression and Immunotherapy. hLife 2025, 3, 462–493. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, Z.; Dai, J.; Wu, T.; Jiao, Z.; Yu, Y.; Ning, K.; Chen, W.; Yang, A. Intratumor Microbiome: Selective Colonization in the Tumor Microenvironment and a Vital Regulator of Tumor Biology. MedComm 2023, 4, e376. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, F.-H.; Wu, P.-Q.; Xing, H.-Y.; Ma, T. The Role of The Tumor Microbiome in Tumor Development and Its Treatment. Front. Immunol. 2022, 13, 935846. [Google Scholar] [CrossRef] [PubMed]
- Dohlman, A.B.; Mendoza, D.A.; Ding, S.; Gao, M.; Dressman, H.; Iliev, I.D.; Lipkin, S.M.; Shen, X. The Cancer Microbiome Atlas: A Pan-Cancer Comparative Analysis to Distinguish Tissue-Resident Microbiota from Contaminants. Cell Host Microbe 2021, 29, 281–298.e5. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chandra, V.; McAllister, F. Tumor-Resident Microbes: The New Kids on the Microenvironment Block. Trends Cancer 2024, 10, 347–355. [Google Scholar] [CrossRef]
- Dejea, C.M.; Wick, E.C.; Hechenbleikner, E.M.; White, J.R.; Mark Welch, J.L.; Rossetti, B.J.; Peterson, S.N.; Snesrud, E.C.; Borisy, G.G.; Lazarev, M.; et al. Microbiota Organization Is a Distinct Feature of Proximal Colorectal Cancers. Proc. Natl. Acad. Sci. USA 2014, 111, 18321–18326. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Li, Z.; Gao, X.; Huang, D. Global Analysis of Microbiota Signatures in Four Major Types of Gastrointestinal Cancer. Front. Oncol. 2021, 11, 685641. [Google Scholar] [CrossRef]
- Wong-Rolle, A.; Dong, Q.; Zhu, Y.; Divakar, P.; Hor, J.L.; Kedei, N.; Wong, M.; Tillo, D.; Conner, E.A.; Rajan, A.; et al. Spatial Meta-Transcriptomics Reveal Associations of Intratumor Bacteria Burden with Lung Cancer Cells Showing a Distinct Oncogenic Signature. J. Immunother. Cancer 2022, 10, e004698. [Google Scholar] [CrossRef]
- Yu, G.; Gail, M.H.; Consonni, D.; Carugno, M.; Humphrys, M.; Pesatori, A.C.; Caporaso, N.E.; Goedert, J.J.; Ravel, J.; Landi, M.T. Characterizing Human Lung Tissue Microbiota and Its Relationship to Epidemiological and Clinical Features. Genome Biol. 2016, 17, 163. [Google Scholar] [CrossRef]
- Xie, Y.; Xie, F.; Zhou, X.; Zhang, L.; Yang, B.; Huang, J.; Wang, F.; Yan, H.; Zeng, L.; Zhang, L.; et al. Microbiota in Tumors: From Understanding to Application. Adv. Sci. 2022, 9, 2200470. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Gao, X.; Wang, J. The Intratumor Microbiota Signatures Associate With Subtype, Tumor Stage, and Survival Status of Esophageal Carcinoma. Front. Oncol. 2021, 11, 754788. [Google Scholar] [CrossRef]
- Rajasekaran, K.; Carey, R.M.; Lin, X.; Seckar, T.D.; Wei, Z.; Chorath, K.; Newman, J.G.; O’Malley, B.W.; Weinstein, G.S.; Feldman, M.D.; et al. The Microbiome of HPV-Positive Tonsil Squamous Cell Carcinoma and Neck Metastasis. Oral Oncol. 2021, 117, 105305. [Google Scholar] [CrossRef]
- Chiba, A.; Bawaneh, A.; Velazquez, C.; Clear, K.Y.J.; Wilson, A.S.; Howard-McNatt, M.; Levine, E.A.; Levi-Polyachenko, N.; Yates-Alston, S.A.; Diggle, S.P.; et al. Neoadjuvant Chemotherapy Shifts Breast Tumor Microbiota Populations to Regulate Drug Responsiveness and the Development of Metastasis. Mol. Cancer Res. MCR 2020, 18, 130–139. [Google Scholar] [CrossRef]
- Zhang, W.; Xiang, Y.; Ren, H.; Liu, Y.; Wang, Q.; Ran, M.; Zhou, W.; Tian, L.; Zheng, X.; Qiao, C.; et al. The Tumor Microbiome in Cancer Progression: Mechanisms and Therapeutic Potential. Mol. Cancer 2025, 24, 195. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, X.; Yi, Y.; Wang, X.; Zhu, L.; Shen, Y.; Lin, D.; Wu, C. Tumor Initiation and Early Tumorigenesis: Molecular Mechanisms and Interventional Targets. Signal Transduct. Target. Ther. 2024, 9, 149. [Google Scholar] [CrossRef]
- Yang, L.; Li, A.; Wang, Y.; Zhang, Y. Intratumoral Microbiota: Roles in Cancer Initiation, Development and Therapeutic Efficacy. Signal Transduct. Target. Ther. 2023, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, A.C.; Shields, C.E.D.; Wu, S.; Huso, D.L.; Wu, X.; Murray-Stewart, T.R.; Hacker-Prietz, A.; Rabizadeh, S.; Woster, P.M.; Sears, C.L.; et al. Polyamine Catabolism Contributes to Enterotoxigenic Bacteroides Fragilis-Induced Colon Tumorigenesis. Proc. Natl. Acad. Sci. USA 2011, 108, 15354–15359. [Google Scholar] [CrossRef] [PubMed]
- Sevcikova, A.; Mladosievicova, B.; Mego, M.; Ciernikova, S. Exploring the Role of the Gut and Intratumoral Microbiomes in Tumor Progression and Metastasis. Int. J. Mol. Sci. 2023, 24, 17199. [Google Scholar] [CrossRef]
- Ji, Y.; Lv, J.; Sun, D.; Huang, Y. Therapeutic Strategies Targeting Wnt/Β-catenin Signaling for Colorectal Cancer (Review). Int. J. Mol. Med. 2022, 49, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wang, S.; Han, L. Relevance of Harmful Intratumoral Microbiota in Cancer Progression and Its Clinical Application. Biomed. Pharmacother. 2024, 178, 117238. [Google Scholar] [CrossRef]
- Tsay, J.-C.J.; Wu, B.G.; Badri, M.H.; Clemente, J.C.; Shen, N.; Meyn, P.; Li, Y.; Yie, T.-A.; Lhakhang, T.; Olsen, E.; et al. Airway Microbiota Is Associated with Upregulation of the PI3K Pathway in Lung Cancer. Am. J. Respir. Crit. Care Med. 2018, 198, 1188–1198. [Google Scholar] [CrossRef]
- Pandya, G.; Kirtonia, A.; Singh, A.; Goel, A.; Mohan, C.D.; Rangappa, K.S.; Pandey, A.K.; Kapoor, S.; Tandon, S.; Sethi, G.; et al. A Comprehensive Review of the Multifaceted Role of the Microbiota in Human Pancreatic Carcinoma. Semin. Cancer Biol. 2022, 86, 682–692. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduct. Target. Ther. 2024, 9, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Meng, F.; Hu, R.; Chen, L.; Chang, J.; Zhao, K.; Ren, H.; Liu, Z.; Hu, P.; Wang, G.; et al. Inhibition of the NF-κB/HIF-1α Signaling Pathway in Colorectal Cancer by Tyrosol: A Gut Microbiota-Derived Metabolite. J. Immunother. Cancer 2024, 12, e008831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, J.; Jiang, Z.; Tong, H.; Ma, X.; Liu, Y. Tumor Microbiome: Roles in Tumor Initiation, Progression, and Therapy. Mol. Biomed. 2025, 6, 9. [Google Scholar] [CrossRef]
- Fu, A.; Yao, B.; Dong, T.; Chen, Y.; Yao, J.; Liu, Y.; Li, H.; Bai, H.; Liu, X.; Zhang, Y.; et al. Tumor-Resident Intracellular Microbiota Promotes Metastatic Colonization in Breast Cancer. Cell 2022, 185, 1356–1372.e26. [Google Scholar] [CrossRef]
- Naghavian, R.; Faigle, W.; Oldrati, P.; Wang, J.; Toussaint, N.C.; Qiu, Y.; Medici, G.; Wacker, M.; Freudenmann, L.K.; Bonté, P.-E.; et al. Microbial Peptides Activate Tumour-Infiltrating Lymphocytes in Glioblastoma. Nature 2023, 617, 807–817. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, L.; Leiliang, X.; Qu, C.; Wu, W.; Wen, R.; Huang, N.; He, Q.; Cheng, Q.; Liu, G.; et al. Beyond the Gut: The Intratumoral Microbiome’s Influence on Tumorigenesis and Treatment Response. Cancer Commun. 2024, 44, 1130–1167. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, D. Unveiling the Microbial Influence: Bacteria’s Dual Role in Tumor Metastasis. Front. Oncol. 2025, 15, 1524887. [Google Scholar] [CrossRef]
- Fan, H.; Wang, Y.; Han, M.; Wang, L.; Li, X.; Kuang, X.; Du, J.; Peng, F. Multi-Omics-Based Investigation of Bifidobacterium’s Inhibitory Effect on Glioma: Regulation of Tumor and Gut Microbiota, and MEK/ERK Cascade. Front. Microbiol. 2024, 15, 1344284. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, J.; Kong, D.; Sun, Y.; Zhang, Q.; Xiang, R.; Lu, S.; Yang, W.; Feng, L.; Zhang, H. Immunometabolism: Crosstalk with Tumor Metabolism and Implications for Cancer Immunotherapy. Mol. Cancer 2025, 24, 249. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, T.H. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef]
- Zhang, J.; You, Z.; Li, X.; Hu, J.; Li, J.; Jing, Z. Harnessing Intratumoral Microbiota: New Horizons in Immune Microenvironment and Immunotherapy. J. Transl. Med. 2025, 23, 897. [Google Scholar] [CrossRef]
- Qiao, H.; Tan, X.-R.; Li, H.; Li, J.-Y.; Chen, X.-Z.; Li, Y.-Q.; Li, W.-F.; Tang, L.-L.; Zhou, G.-Q.; Zhang, Y.; et al. Association of Intratumoral Microbiota With Prognosis in Patients With Nasopharyngeal Carcinoma From 2 Hospitals in China. JAMA Oncol. 2022, 8, 1301–1309. [Google Scholar] [CrossRef]
- Xu, S.; Wu, X.; Zhang, X.; Chen, C.; Chen, H.; She, F. CagA Orchestrates eEF1A1 and PKCδ to Induce Interleukin-6 Expression in Helicobacter Pylori-Infected Gastric Epithelial Cells. Gut Pathog. 2020, 12, 31. [Google Scholar] [CrossRef]
- Gur, C.; Ibrahim, Y.; Isaacson, B.; Yamin, R.; Abed, J.; Gamliel, M.; Enk, J.; Bar-On, Y.; Stanietsky-Kaynan, N.; Coppenhagen-Glazer, S.; et al. Binding of the Fap2 Protein of Fusobacterium Nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell Attack. Immunity 2015, 42, 344. [Google Scholar] [CrossRef]
- Sun, J.; Tang, Q.; Yu, S.; Xie, M.; Zheng, W.; Chen, G.; Yin, Y.; Huang, X.; Wo, K.; Lei, H.; et al. F. Nucleatum Facilitates Oral Squamous Cell Carcinoma Progression via GLUT1-Driven Lactate Production. eBioMedicine 2023, 88, 104444. [Google Scholar] [CrossRef]
- Schöpf, F.; Marongiu, G.L.; Milaj, K.; Sprink, T.; Kikhney, J.; Moter, A.; Roderer, D. Structural Basis of Fusobacterium Nucleatum Adhesin Fap2 Interaction with Receptors on Cancer and Immune Cells. Nat. Commun. 2025, 16, 8104. [Google Scholar] [CrossRef]
- Wang, M.; Yu, F.; Li, P. Intratumor Microbiota in Cancer Pathogenesis and Immunity: From Mechanisms of Action to Therapeutic Opportunities. Front. Immunol. 2023, 14, 1269054. [Google Scholar] [CrossRef] [PubMed]
- Nagler, A.; Kalaora, S.; Rosenberg, D.G.; Alon, M.; Barnea, E.; Levy, R.; Vervier, K.; Trabish, S.; Dadosh, T.; Zaidman, S.; et al. 672 Identification of Microbial-Derived HLA-Bound Peptides in Melanoma. J. Immunother. Cancer 2020, 8, A710. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Y.; Wen, L.; Mu, W.; Wu, X.; Liu, T.; Liu, X.; Fang, J.; Luan, Y.; Chen, P.; et al. Porphyromonas Gingivalis Promotes Colorectal Carcinoma by Activating the Hematopoietic NLRP3 Inflammasome. Cancer Res. 2021, 81, 2745–2759. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, X.; Peng, X.; Li, M.; Ren, B.; Cheng, G.; Cheng, L. Porphyromonas Gingivalis Promotes Immunoevasion of Oral Cancer by Protecting Cancer from Macrophage Attack. J. Immunol. 2020, 205, 282–289. [Google Scholar] [CrossRef]
- Yijia, Z.; Li, X.; Ma, L.; Wang, S.; Du, H.; Wu, Y.; Yu, J.; Xiang, Y.; Xiong, D.; Shan, H.; et al. Identification of Intratumoral Microbiome-Driven Immune Modulation and Therapeutic Implications in Diffuse Large B-Cell Lymphoma. Cancer Immunol. Immunother. 2025, 74, 131. [Google Scholar] [CrossRef]
- Xu, Z.; Lv, Z.; Chen, F.; Zhang, Y.; Xu, Z.; Huo, J.; Liu, W.; Yu, S.; Tuersun, A.; Zhao, J.; et al. Dysbiosis of Human Tumor Microbiome and Aberrant Residence of Actinomyces in Tumor-Associated Fibroblasts in Young-Onset Colorectal Cancer. Front. Immunol. 2022, 13, 1008975. [Google Scholar] [CrossRef]
- Alam, A.; Levanduski, E.; Denz, P.; Villavicencio, H.S.; Bhatta, M.; Alhorebi, L.; Zhang, Y.; Gomez, E.C.; Morreale, B.; Senchanthisai, S.; et al. Fungal Mycobiome Drives IL-33 Secretion and Type 2 Immunity in Pancreatic Cancer. Cancer Cell 2022, 40, 153–167.e11. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, L.; Huang, Y.; Zhu, T.; Zhang, L.; Cheng, M.; Wu, C.; Li, P.; Liang, M.; Zhang, X.; et al. Intratumoral Microbiota Predicts the Response to Neoadjuvant Chemoimmunotherapy in Triple-Negative Breast Cancer. J. Immunother. Cancer 2025, 13, e010365. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, S.; Carlsson, J.; Greenberg, L.; Wijkander, J.; Söderquist, B.; Erlandsson, A. Cutibacterium Acnes Induces the Expression of Immunosuppressive Genes in Macrophages and Is Associated with an Increase of Regulatory T-Cells in Prostate Cancer. Microbiol. Spectr. 2021, 9, e01497-21. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, X.; Zhang, H.; Zhang, H.; Yi, Z.; Zhang, Q.; Liu, Q.; Liu, X. Multi-Omics Analysis Reveals Intratumor Microbes as Immunomodulators in Colorectal Cancer. Microbiol. Spectr. 2023, 11, e05038-22. [Google Scholar] [CrossRef]
- Lim, S.-K.; Lin, W.-C.; Huang, S.-W.; Pan, Y.-C.; Hu, C.-W.; Mou, C.-Y.; Hu, C.-M.J.; Mou, K.Y. Bacteria Colonization in Tumor Microenvironment Creates a Favorable Niche for Immunogenic Chemotherapy. EMBO Mol. Med. 2024, 16, 416–428. [Google Scholar] [CrossRef]
- Guo, F.; Das, J.K.; Kobayashi, K.S.; Qin, Q.-M.; A Ficht, T.; Alaniz, R.C.; Song, J.; Figueiredo, P.D. Live Attenuated Bacterium Limits Cancer Resistance to CAR-T Therapy by Remodeling the Tumor Microenvironment. J. Immunother. Cancer 2022, 10, e003760. [Google Scholar] [CrossRef]
- Vincent, R.L.; Gurbatri, C.R.; Li, F.; Vardoshvili, A.; Coker, C.; Im, J.; Ballister, E.R.; Rouanne, M.; Savage, T.; de los Santos-Alexis, K.; et al. Probiotic-Guided CAR-T Cells for Solid Tumor Targeting. Science 2023, 382, 211–218. [Google Scholar] [CrossRef]
- Lam, K.C.; Araya, R.E.; Huang, A.; Chen, Q.; Modica, M.D.; Rodrigues, R.R.; Lopès, A.; Johnson, S.B.; Schwarz, B.; Bohrnsen, E.; et al. Microbiota Triggers STING-Type I IFN-Dependent Monocyte Reprogramming of the Tumor Microenvironment. Cell 2021, 184, 5338–5356.e21. [Google Scholar] [CrossRef]
- Zhu, G.; Su, H.; Johnson, C.H.; Khan, S.A.; Kluger, H.; Lu, L. Intratumour Microbiome Associated with the Infiltration of Cytotoxic CD8+ T Cells and Patient Survival in Cutaneous Melanoma. Eur. J. Cancer Oxf. Engl. 1990 2021, 151, 25–34. [Google Scholar] [CrossRef]
- Riquelme, E.; Zhang, Y.; Zhang, L.; Montiel, M.; Zoltan, M.; Dong, W.; Quesada, P.; Sahin, I.; Chandra, V.; Lucas, A.S.; et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell 2019, 178, 795–806.e12. [Google Scholar] [CrossRef]
- Sfanos, K.S. Intratumoral Bacteria as Mediators of Cancer Immunotherapy Response. Cancer Res. 2023, 83, 2985–2986. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Chen, H. Effects of Intratumoral Microbiota on Tumorigenesis, Anti-Tumor Immunity, and Microbe-Based Cancer Therapy. Front. Oncol. 2024, 14, 1429722. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Su, Y.; Cai, F.; Xu, D.; Xu, Y. From Mechanisms to Precision Medicine: The Role of Organoids in Studying the Gut Microbiota-Tumor Microenvironment Axis. Front. Microbiol. 2025, 16, 1669482. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, X.; Jin, C.; Yue, K.; Sheng, D.; Zhang, T.; Dou, X.; Liu, J.; Jing, H.; Zhang, L.; et al. Prospective, Longitudinal Analysis of the Gut Microbiome in Patients with Locally Advanced Rectal Cancer Predicts Response to Neoadjuvant Concurrent Chemoradiotherapy. J. Transl. Med. 2023, 21, 221. [Google Scholar] [CrossRef]
- Harmak, Z.; Kone, A.-S.; Ghouzlani, A.; Ghazi, B.; Badou, A. Beyond Tumor Borders: Intratumoral Microbiome Effects on Tumor Behavior and Therapeutic Responses. Immune Netw. 2024, 24, e40. [Google Scholar] [CrossRef]
- Chowell, D.; Morris, L.G.T.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N.; et al. Patient HLA Class I Genotype Influences Cancer Response to Checkpoint Blockade Immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef]
- Liu, R.; Zou, Y.; Wang, W.-Q.; Chen, J.-H.; Zhang, L.; Feng, J.; Yin, J.-Y.; Mao, X.-Y.; Li, Q.; Luo, Z.-Y.; et al. Gut Microbial Structural Variation Associates with Immune Checkpoint Inhibitor Response. Nat. Commun. 2023, 14, 7421. [Google Scholar] [CrossRef]
- Wang, N.; Wu, S.; Huang, L.; Hu, Y.; He, X.; He, J.; Hu, B.; Xu, Y.; Rong, Y.; Yuan, C.; et al. Intratumoral Microbiome: Implications for Immune Modulation and Innovative Therapeutic Strategies in Cancer. J. Biomed. Sci. 2025, 32, 23. [Google Scholar] [CrossRef] [PubMed]
- Luke, J.J.; Piha-Paul, S.A.; Medina, T.; Verschraegen, C.F.; Varterasian, M.; Brennan, A.M.; Riese, R.J.; Sokolovska, A.; Strauss, J.; Hava, D.L.; et al. Phase I Study of SYNB1891, an Engineered E. coli Nissle Strain Expressing STING Agonist, with and without Atezolizumab in Advanced Malignancies. Clin. Cancer Res. 2023, 29, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Gurbatri, C.R.; Arpaia, N.; Danino, T. Engineering Bacteria as Interactive Cancer Therapies. Science 2022, 378, 858–864. [Google Scholar] [CrossRef] [PubMed]

| Year | Disease/ Model | Population | Brief Results | Implication for Therapy | References |
|---|---|---|---|---|---|
| 2024 | Colorectal cancer | Data from The Cancer Genome Atlas (TCGA) database | Network analysis revealed significant interactions between microbial abundance and genes involved in CTL evasion. Among these, suppressor of cytokine signaling 1 (SOCS1) exhibited the highest number of negative correlations, particularly with the genera Phascolarctobacterium, Sneathia, and Intestinimonas. Additionally, the genus Oscillibacter was negatively associated with exon skipping in the CD74 gene, indicating that the tumor-associated microbiota may influence the regulation of antigen presentation and thereby modulate the antitumor immune response. Furthermore, the analysis revealed that Clostridium was enriched in CRC patients who demonstrated resistance to ICB therapy. | The results suggest that profiling intratumor microbes alongside key tumor-infiltrating immune cells (notably MAIT cells) could be used in practice to stratify colorectal cancer patients by prognosis and likely responsiveness to immune checkpoint blockade. | Liu et al. [117] |
| 2024 | Breast cancer | Female MMTV-PyMT transgenic mice | Both three-dimensional imaging and X-Y optical sections revealed spatial segregation between the intratumor microbiome and CD4+ and/or CD8+ T cell clusters, indicating the exclusion of activated T cells from bacterially colonized tumor regions. These data are consistent with the observed isolation of TLS and NK cells from microbe-enriched areas, highlighting the spatial compartmentalization of immune and microbial niches within tumor tissue. | miCDaL enables centimeter-scale 3D mapping of the entire tumor and quantification of endemic intratumoral bacteria in both mouse and human tumors, eliminating a key practical bottleneck. This facilitates more reliable detection of microbiota-associated tumor niches and may aid in stratifying advanced disease stages or selecting microbiota-targeted therapies. | Wang et al. [28] |
| 2022 | Lung cancer | 12 patients with early-stage lung cancer | The bacterial load was significantly higher in tumor cells compared to T cells, macrophages, other immune cells, and stromal components, forming a gradient that increased from normal lung tissue and tertiary lymphoid structures to tumor cells and the airways. This pattern suggests potential penetration of intratumoral bacteria through the respiratory tract. Moreover, bacterial load levels showed a positive correlation with the expression of oncogenic β-catenin, tumor histological type, and environmental exposures. | Bacterial load is highest in tumor cells (compared to immune/stromal cells) and closely correlates with tumor oncogenic pathways (in particular, with β-catenin), which supports the feasibility of therapeutic reduction in local intratumor bacterial load. | Wong-Rolle et al. [77] |
| 2024 | Colorectal cancer | C57BL/6 (B6) and Balb/c mice | The immunogenic chemotherapeutic agent oxaliplatin synergizes with E. coli, activating the innate and adaptive immune response in the colorectal tumor microenvironment, leading to complete remission and the formation of stable antitumor immunological memory in mice. The combined action of oxaliplatin and bacteria significantly enhances the expression of costimulatory and antigen-presenting molecules on antigen-presenting cells, facilitating the effective activation of cytotoxic T lymphocytes against tumor cells. | The combination of intratumoral E. coli with the immunogenic chemotherapeutic drug oxaliplatin (but not non-immunogenic 5-fluorouracil) can lead to complete tumor remission and induce durable antitumor immune memory associated with enhanced costimulation of antigen-presenting cells/antigen presentation and stronger CD8 T-cell activity. | Lim et al. [118] |
| 2022 | Colorectal cancer | C57BL/6 (B6) Thy 1.1 mice | The live attenuated Brucella melitensis strain (BmΔvjbR) was found to selectively colonize tumor tissue and remodel the tumor microenvironment by inducing proinflammatory polarization of M1 macrophages and enhancing both the number and activity of CD8+ cytotoxic T cells. In a colorectal adenocarcinoma model, treatment combining BmΔvjbR with adoptive transfer of tumor-specific CD8+ T cells almost completely suppressed tumor growth and achieved 100% animal survival. These findings highlight the potential of live attenuated bacteria to overcome tumor resistance to CAR-T therapy by remodeling the tumor microenvironment and activating macrophage-T-cell antitumor immunity. | An attenuated strain of BmvjbR migrates to tumors and shifts the tumor microenvironment toward proinflammatory immunity, and that the combination of BmvjbR with specific anti-CEA CAR-T cells in a mouse model of colon cancer almost completely suppresses tumor growth, with 100% survival reported. | Guo et al. [119] |
| 2023 | Leukemia | Non-obese diabetic scid gamma mice | A probiotic-targeted CAR-T cell (ProCAR) platform was developed in which tumor-colonizing probiotics secrete synthetic targets that mark tumor tissue for local lysis by CAR-T cells. Using the Escherichia coli Nissle 1917 strain with a synchronized lysis system (SLIC) enabled the release of synthetic targets directly into the tumor microenvironment, inducing safe and effective CAR-T cell activation in various cancer models. Additionally, an engineered strain co-expressing the chemokine mutant CXCL16K42A enhanced ProCAR-T cell recruitment and antitumor activity, resulting in increased hCD45+CD3+ T cell infiltration and significant tumor growth inhibition without toxic effects. | ProCAR, in which tumor-colonizing probiotic E. coli bacteria release synthetic CAR targets (and, in improved strains, chemokines) within tumors, enables antigen-independent activation/lysis of CAR T cells. Safety and antitumor efficacy have been demonstrated in various xenograft and syngeneic models of solid tumors. | Vincent et al. [120] |
| 2021 | Melanoma | C57BL/6NTac germ-free, BALB/cAnNCrl, B6-Ly5.1/Cr, B6-Ifnar1 (Ifnar1 KO) and C57BL/6J-Tmem173/J (STING KO) mice, 6 patients with melanoma | The microbiota regulates the immune compartment of the tumor microenvironment, reprogramming mononuclear phagocytes into immune-stimulatory monocytes and dendritic cells. The absence of microbiota shifts the balance of the tumor microbiome toward pro-tumorigenic macrophages, while microbial STING agonists induce type I interferon production, regulating macrophage polarization and NK cell–dendritic cell interactions. Modulation of the microbiota with a high-fiber diet activated the IFN-I–NK–DC axis and enhanced the efficacy of immune checkpoint blockade therapy, as confirmed in both experimental models and patients with melanoma. | Microbiota-derived STING agonists (particularly cyclic dinucleotides such as c-di-AMP, including those from Akkermansia muciniphila) stimulate intratumoral production of type I interferon by monocytes, which shifts the tumor microenvironment from pro-tumor macrophages to immune-stimulatory monocytes/dendritic cells and activates the NK–DC axis, improving the response to therapies such as immune checkpoint blockade. | Lam et al. [121] |
| 2022 | Pancreatic cancer | C57BL/6 mice | Oncogenic KrasG12D was shown to induce IL-33 expression in pancreatic ductal adenocarcinoma cells, which promotes the recruitment and activation of TH2 and ILC2 cells, which stimulate tumor growth. Ablation of IL-33 in tumor cells or antifungal therapy reduced TH2 and ILC2 cell infiltration, induced tumor regression, and increased survival. Thus, the intratumor mycobiome regulates IL-33 secretion and promotes the formation of a protumorigenic environment, opening up opportunities for targeted therapy for PDAC. | IL-33–ST2/type-2-immune axis and/or modulating tumor-associated fungi could reduce tumor burden and extend survival (shown preclinically), and that tumor IL-33 may help stratify patients for such interventions. | Alam et al. [114] |
| 2025 | Breast cancer | 89 female patients | In patients with early-stage TNBC treated with neoadjuvant chemo-immunotherapy, the pCR group exhibited higher intratumoral microbiota diversity and load compared to the non-pCR group. Single-cell RNA sequencing revealed enhanced T cell infiltration and reduced tumor-associated macrophages in the pCR group. Microbiota load positively correlated with CD4+CXCL13+ T cells and negatively with CD68+SPP1+ macrophages. Combined 16S and scRNA-seq analyses confirmed bacterial presence in both cancer and immune cells. A predictive model integrating microbial and clinicopathological data accurately forecasted pCR outcomes. | Higher intratumor microbiota/diversity is associated with achieving pathological complete response (pCR) and with a more immune-activated tumor microenvironment (more T-cell infiltration, fewer tumor-associated macrophages). | Chen et al. [115] |
| 2022 | Cutaneous melanoma | Data from The Cancer Genome Atlas (TCGA) database | Low CD8+ T cell counts were associated with worse patient survival (OR = 1.57; 95% CI: 1.17–2.10; p = 0.002). The Lachnoclostridium genus showed the highest positive correlation with CD8+ T cell infiltration and expression of chemokines CXCL9, CXCL10, and CCL5, and its high level was associated with a reduced risk of mortality (p = 0.0003). | Both higher CD8 T cell infiltration and higher intratumoral Lachnoclostridium abundance were associated with better overall survival, supporting the idea that modulation of the intratumoral/gut microbiome could be used to “activate” tumors and potentially improve immunotherapy outcomes. | Zhu et al. [122] |
| 2021 | Prostate cancer | 137 male patients | Macrophages stimulated with Cutibacterium acnes in vitro were shown to increase the expression of PD-L1, CCL17, and CCL18 (p < 0.05), and the presence of C. acnes in prostate cancer patients was positively correlated with Tregs infiltration in the tumor stroma and epithelium (p = 0.0004 and p = 0.046). These data suggest that C. acnes contribute to the formation of an immunosuppressive tumor microenvironment that promotes prostate cancer progression. | C. acnes may contribute to the establishment or maintenance of an immunosuppressive prostate tumor microenvironment (via macrophage polarization/chemokine signaling and Treg recruitment), suggesting a potential microbial target or stratification factor for future prostate cancer immunomodulation strategies. | Davidsson et al. [116] |
| 2018 | Pancreatic cancer | KC, C57BL/6 (H-2Kb) mice | Pancreatic tumor tissue in mice and humans contains a significantly more abundant microbiome compared to normal tissue, with certain bacterial taxa selectively enriched compared to the intestine. Microbiome ablation prevented the development of pancreatic ductal adenocarcinoma and induced immune reprogramming of the microenvironment with increased M1 macrophage polarization and activation of CD4+ Th1 and CD8+ T cells. Furthermore, microbiome ablation enhanced the efficacy of immunotherapy by upregulating PD-1 expression, while the PDA microbiome induced a tolerogenic phenotype through activation of specific Toll-like receptors. | Microbiome ablation can enhance the sensitivity of PDAC to PD-1 checkpoint inhibitor therapy (a synergistic effect compared to either modality alone), supporting the feasibility of targeted microbiome modulation as a practical adjunctive strategy to overcome immunosuppression in PDAC. | Pushalkar et al. [58] |
| 2019 | Pancreatic cancer | 68 patients | Long-term survivor patients with pancreatic ductal adenocarcinoma exhibited higher alpha diversity of the tumor microbiome and a characteristic microbial signature (Pseudoxanthomonas–Streptomyces–Saccharopolyspora–Bacillus clausii) predicting a favorable prognosis. Transplantation of microbiota from long-term survivor donors into mice slowed tumor growth and enhanced immune infiltration. Immunohistochemistry analysis revealed that long-term survivor patients had significantly higher densities of CD3+, CD8+, and GzmB+ T cells (p = 0.0273; p < 0.0001; p = 0.04), which positively correlated with both overall survival and microbiome diversity, suggesting a link between microbial diversity, CD8+ T cell activation, and the antitumor immune response. | Fecal microbiota transplantation from long-term survivors can alter the tumor microbiome, enhance CD8 T cell-mediated antitumor immunity, and reduce tumor growth in mouse models, suggesting microbiome modulation as a potential adjunctive therapeutic strategy for pancreatic cancer. | Riquelme et al. [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Leonov, G.; Starodubova, A.; Makhnach, O.; Goldshtein, D.; Salikhova, D. Intratumoral Microbiome: Impact on Cancer Progression and Cellular Immunotherapy. Cancers 2026, 18, 100. https://doi.org/10.3390/cancers18010100
Leonov G, Starodubova A, Makhnach O, Goldshtein D, Salikhova D. Intratumoral Microbiome: Impact on Cancer Progression and Cellular Immunotherapy. Cancers. 2026; 18(1):100. https://doi.org/10.3390/cancers18010100
Chicago/Turabian StyleLeonov, Georgy, Antonina Starodubova, Oleg Makhnach, Dmitry Goldshtein, and Diana Salikhova. 2026. "Intratumoral Microbiome: Impact on Cancer Progression and Cellular Immunotherapy" Cancers 18, no. 1: 100. https://doi.org/10.3390/cancers18010100
APA StyleLeonov, G., Starodubova, A., Makhnach, O., Goldshtein, D., & Salikhova, D. (2026). Intratumoral Microbiome: Impact on Cancer Progression and Cellular Immunotherapy. Cancers, 18(1), 100. https://doi.org/10.3390/cancers18010100

