Predictive Factors for Sentinel Lymph Node Positivity in Melanoma Patients—The Role of Liquid Biopsy, MicroRNA and Gene Expression Profile Panels
Simple Summary
Abstract
1. Introduction
2. Methods
- PUBMED
- Ovid MEDLINE
3. Liquid Biopsy
3.1. Circulating Tumor DNA (ctDNA)
3.2. Circulating Tumor Cells (CTCs)
3.3. Extracellular Vesicles (EVs)
4. Prognostic MicroRNAs in Melanoma
5. Gene Expression Profiling (GEP)
5.1. The 31-GEP Test
5.2. The Clinicopathologic and Gene Expression Profile Model (CP-GEP, MerlinTM)
5.3. The 8-GEP Test (MelaGenix)
6. Clinicopathological (CP) Features
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strouse, J.J.; Fears, T.R.; Tucker, M.A.; Wayne, A.S. Pediatric Melanoma: Risk Factor and Survival Analysis of the Surveillance, Epidemiology and End Results Database. J. Clin. Oncol. 2005, 23, 4735–4741. [Google Scholar] [CrossRef]
- Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological Trends in Skin Cancer. Dermatol. Pract. Concept. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, V.; Magnaterra, E.; Zuccaro, B.; Magi, S.; Magliulo, M.; Medri, M.; Mazzoni, L.; Venturi, F.; Silvestri, F.; Tomassini, G.M.; et al. Is Pediatric Melanoma Really That Different from Adult Melanoma? A Multicenter Epidemiological, Clinical and Dermoscopic Study. Cancers 2023, 15, 1835. [Google Scholar] [CrossRef]
- De Giorgi, V.; Scarfì, F.; Gori, A.; Silvestri, F.; Trane, L.; Maida, P.; Venturi, F.; Covarelli, P. Short-Term Teledermoscopic Monitoring of Atypical Melanocytic Lesions in the Early Diagnosis of Melanoma: Utility More Apparent than Real. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e398–e399. [Google Scholar] [CrossRef] [PubMed]
- Zocchi, L.; Lontano, A.; Merli, M.; Dika, E.; Nagore, E.; Quaglino, P.; Puig, S.; Ribero, S. Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management. J. Clin. Med. 2021, 10, 3760. [Google Scholar] [CrossRef] [PubMed]
- Faldetta, C.; Kaleci, S.; Chester, J.; Ruini, C.; Ciardo, S.; Manfredini, M.; Guida, S.; Chello, C.; Cantisani, C.; Young, J.N.; et al. Melanoma Clinicopathological Groups Characterized and Compared with Dermoscopy and Reflectance Confocal Microscopy. J. Am. Acad. Dermatol. 2024, 90, 309–318. [Google Scholar] [CrossRef]
- Faries, M.B.; Thompson, J.F.; Cochran, A.J.; Andtbacka, R.H.; Mozzillo, N.; Zager, J.S.; Jahkola, T.; Bowles, T.L.; Testori, A.; Beitsch, P.D.; et al. Completion Dissection or Observation for Sentinel-Node Metastasis in Melanoma. N. Engl. J. Med. 2017, 376, 2211–2222. [Google Scholar] [CrossRef]
- Bello, D.M.; Faries, M.B. The Landmark Series: MSLT-1, MSLT-2 and DeCOG (Management of Lymph Nodes). Ann. Surg. Oncol. 2020, 27, 15–21. [Google Scholar] [CrossRef]
- Balch, C.M.; Gershenwald, J.E. Clinical Value of the Sentinel-Node Biopsy in Primary Cutaneous Melanoma. N. Engl. J. Med. 2014, 370, 663–664. [Google Scholar] [CrossRef]
- van Akkooi, A.C.J.; Eggermont, A.M.M. Melanoma: MSLT-1--SNB Is a Biomarker, Not a Therapeutic Intervention. Nat. Rev. Clin. Oncol. 2014, 11, 248–249. [Google Scholar] [CrossRef]
- Morton, D.L.; Thompson, J.F.; Cochran, A.J.; Mozzillo, N.; Nieweg, O.E.; Roses, D.F.; Hoekstra, H.J.; Karakousis, C.P.; Puleo, C.A.; Coventry, B.J.; et al. Final Trial Report of Sentinel-Node Biopsy versus Nodal Observation in Melanoma. N. Engl. J. Med. 2014, 370, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Keung, E.Z.; Gershenwald, J.E. The Eighth Edition American Joint Committee on Cancer (AJCC) Melanoma Staging System: Implications for Melanoma Treatment and Care. Expert Rev. Anticancer Ther. 2018, 18, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Vikström, S.; Syriopoulou, E.; Andersson, T.M.-L.; Eriksson, H. Loss in Life Expectancy in Patients with Stage II-III Cutaneous Melanoma in Sweden: A Population-Based Cohort Study. J. Am. Acad. Dermatol. 2024, 90, 963–969. [Google Scholar] [CrossRef]
- Rajagopal, S.; Yao, X.; Abadir, W.; Baetz, T.D.; Easson, A.; Knight, G.; McWhirter, E.; Nessim, C.; Rosen, C.F.; Sun, A.; et al. Surveillance Evaluations in Patients with Stage I, II, III, or Resectable IV Melanoma Who Were Treated with Curative Intent: A Systematic Review. Surg. Oncol. 2024, 54, 102077. [Google Scholar] [CrossRef]
- Suciu, S.; Eggermont, A.M.M.; Lorigan, P.; Kirkwood, J.M.; Markovic, S.N.; Garbe, C.; Cameron, D.; Kotapati, S.; Chen, T.-T.; Wheatley, K.; et al. Relapse-Free Survival as a Surrogate for Overall Survival in the Evaluation of Stage II-III Melanoma Adjuvant Therapy. JNCI: J. Natl. Cancer Inst. 2018, 110, 87–96. [Google Scholar] [CrossRef]
- Zijlker, L.P.; van Akkooi, A.C.J. Stage III Melanoma: Role of Lymph Node Dissection and (Neo-)Adjuvant Systemic Therapies. Br. J. Surg. 2022, 109, 397–398. [Google Scholar] [CrossRef]
- Lee, R.; Mandala, M.; Long, G.V.; Eggermont, A.M.; van Akkooi, A.C.; Sandhu, S.; Garbe, C.; Lorigan, P. Adjuvant Therapy for Stage II Melanoma: The Need for Further Studies. Eur. J. Cancer 2023, 189, 112914. [Google Scholar] [CrossRef]
- Gogas, H.; Eggermont, A.M.M.; Hauschild, A.; Hersey, P.; Mohr, P.; Schadendorf, D.; Spatz, A.; Dummer, R. Biomarkers in Melanoma. Ann. Oncol. 2009, 20 (Suppl. S6), vi8–vi13. [Google Scholar] [CrossRef]
- Dixon, A.J.; Kyrgidis, A.; Steinman, H.K.; Dixon, J.B.; Sladden, M.; Garbe, C.; Lallas, A.; Zachary, C.B.; Leiter-Stöppke, U.; Smith, H.; et al. Sentinel Lymph Node Biopsy Is Unreliable in Predicting Melanoma Mortality for Both Younger and Older Patients. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 741–751. [Google Scholar] [CrossRef]
- Vetto, J.T.; Hsueh, E.C.; Gastman, B.R.; Dillon, L.D.; Monzon, F.A.; Cook, R.W.; Keller, J.; Huang, X.; Fleming, A.; Hewgley, P.; et al. Guidance of Sentinel Lymph Node Biopsy Decisions in Patients with T1-T2 Melanoma Using Gene Expression Profiling. Future Oncol. 2019, 15, 1207–1217. [Google Scholar] [CrossRef]
- Vergara, I.A.; Stark, M.S. One Step Closer to Improving Melanoma Diagnosis and Prognosis with Liquid Biopsies. Br. J. Dermatol. 2023, 189, 255–259. [Google Scholar] [CrossRef]
- Van Laar, R.; Latif, B.; King, S.; Love, C.; Taubenheim, N.; Kalansooriya, E.; Wang, W.; Saad, M.; Winship, I.; Azzi, A.; et al. Validation of a microRNA Liquid Biopsy Assay for Diagnosis and Risk Stratification of Invasive Cutaneous Melanoma. Br. J. Dermatol. 2023, 189, 292–301, Erratum in Br. J. Dermatol. 2023, 189, e79. [Google Scholar] [CrossRef] [PubMed]
- Naddeo, M.; Broseghini, E.; Venturi, F.; Vaccari, S.; Corti, B.; Lambertini, M.; Ricci, C.; Fontana, B.; Durante, G.; Pariali, M.; et al. Association of miR-146a-5p and miR-21-5p with Prognostic Features in Melanomas. Cancers 2024, 16, 1688. [Google Scholar] [CrossRef] [PubMed]
- Durante, G.; Broseghini, E.; Comito, F.; Naddeo, M.; Milani, M.; Salamon, I.; Campione, E.; Dika, E.; Ferracin, M. Circulating microRNA Biomarkers in Melanoma and Non-Melanoma Skin Cancer. Expert Rev. Mol. Diagn. 2022, 22, 305–318. [Google Scholar] [CrossRef]
- Kamińska, P.; Buszka, K.; Zabel, M.; Nowicki, M.; Alix-Panabières, C.; Budna-Tukan, J. Liquid Biopsy in Melanoma: Significance in Diagnostics, Prediction and Treatment Monitoring. Int. J. Mol. Sci. 2021, 22, 9714. [Google Scholar] [CrossRef]
- Boyer, M.; Cayrefourcq, L.; Dereure, O.; Meunier, L.; Becquart, O.; Alix-Panabières, C. Clinical Relevance of Liquid Biopsy in Melanoma and Merkel Cell Carcinoma. Cancers 2020, 12, 960. [Google Scholar] [CrossRef] [PubMed]
- Kanemaru, H.; Mizukami, Y.; Kaneko, A.; Kajihara, I.; Fukushima, S. Promising Blood-Based Biomarkers for Melanoma: Recent Progress of Liquid Biopsy and Its Future Perspectives. Curr. Treat. Options Oncol. 2022, 23, 562–577. [Google Scholar] [CrossRef]
- Dika, E.; Broseghini, E.; Porcellini, E.; Lambertini, M.; Riefolo, M.; Durante, G.; Loher, P.; Roncarati, R.; Bassi, C.; Misciali, C.; et al. Unraveling the Role of microRNA/isomiR Network in Multiple Primary Melanoma Pathogenesis. Cell Death Dis. 2021, 12, 473. [Google Scholar] [CrossRef]
- Dika, E.; Riefolo, M.; Porcellini, E.; Broseghini, E.; Ribero, S.; Senetta, R.; Osella-Abate, S.; Scarfì, F.; Lambertini, M.; Veronesi, G.; et al. Defining the Prognostic Role of MicroRNAs in Cutaneous Melanoma. J. Investig. Dermatol. 2020, 140, 2260–2267. [Google Scholar] [CrossRef]
- van Akkooi, A.C.; Schadendorf, D.; Eggermont, A.M. Alternatives and Reduced Need for Sentinel Lymph Node Biopsy (SLNB) Staging for Melanoma. Eur. J. Cancer 2023, 182, 163–169. [Google Scholar] [CrossRef]
- Gracie, L.; Pan, Y.; Atenafu, E.G.; Ward, D.G.; Teng, M.; Pallan, L.; Stevens, N.M.; Khoja, L. Circulating Tumour DNA (ctDNA) in Metastatic Melanoma, a Systematic Review and Meta-Analysis. Eur. J. Cancer 2021, 158, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Pikturniene, R.; Cesas, A.; Jarmalaite, S.; Razbadauskas, A.; Urbonas, V. Harnessing ctDNA in Advanced Melanoma: A Promising Tool for Informed Clinical Decisions. Cancers 2024, 16, 1197. [Google Scholar] [CrossRef]
- Han, M.; Watts, J.A.; Jamshidi-Parsian, A.; Nadeem, U.; Sarimollaoglu, M.; Siegel, E.R.; Zharov, V.P.; Galanzha, E.I. In Vivo Lymphatic Circulating Tumor Cells and Progression of Metastatic Disease. Cancers 2020, 12, 2866. [Google Scholar] [CrossRef]
- Hoshimoto, S.; Shingai, T.; Morton, D.L.; Kuo, C.; Faries, M.B.; Chong, K.; Elashoff, D.; Wang, H.-J.; Elashoff, R.M.; Hoon, D.S. Association between Circulating Tumor Cells and Prognosis in Patients with Stage III Melanoma with Sentinel Lymph Node Metastasis in a Phase III International Multicenter Trial. J. Clin. Oncol. 2012, 30, 3819–3826. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.S.; Ross, M.; Bauldry, J.B.B.; Upshaw, J.; Karhade, M.G.; Royal, R.; Patel, S.; Lucci, A. Circulating Tumor Cells in Stage IV Melanoma Patients. J. Am. Coll. Surg. 2018, 227, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Maus, R.L.; Jakub, J.W.; Hieken, T.J.; Nevala, W.K.; Christensen, T.A.; Sutor, S.L.; Flotte, T.J.; Markovic, S.N. Identification of Novel, Immune-Mediating Extracellular Vesicles in Human Lymphatic Effluent Draining Primary Cutaneous Melanoma. Oncoimmunology 2019, 8, e1667742. [Google Scholar] [CrossRef]
- Benito-Martín, A.; Jasiulionis, M.G.; García-Silva, S. Extracellular Vesicles and Melanoma: New Perspectives on Tumor Microenvironment and Metastasis. Front. Cell Dev. Biol. 2022, 10, 1061982. [Google Scholar] [CrossRef]
- Medhin, L.B.; Beasley, A.B.; Warburton, L.; Amanuel, B.; Gray, E.S. Extracellular Vesicles as a Liquid Biopsy for Melanoma: Are We There Yet? Semin. Cancer Biol. 2023, 89, 92–98. [Google Scholar] [CrossRef]
- Suman, S.; Markovic, S.N. Melanoma-Derived Mediators Can Foster the Premetastatic Niche: Crossroad to Lymphatic Metastasis. Trends Immunol. 2023, 44, 724–743. [Google Scholar] [CrossRef]
- Broseghini, E.; Dika, E.; Londin, E.; Ferracin, M. MicroRNA Isoforms Contribution to Melanoma Pathogenesis. Noncoding RNA 2021, 7, 63. [Google Scholar] [CrossRef]
- Durante, G.; Comito, F.; Lambertini, M.; Broseghini, E.; Dika, E.; Ferracin, M. Non-Coding RNA Dysregulation in Skin Cancers. Essays Biochem. 2021, 65, 641–655. [Google Scholar] [CrossRef]
- Huber, V.; Vallacchi, V.; Fleming, V.; Hu, X.; Cova, A.; Dugo, M.; Shahaj, E.; Sulsenti, R.; Vergani, E.; Filipazzi, P.; et al. Tumor-Derived microRNAs Induce Myeloid Suppressor Cells and Predict Immunotherapy Resistance in Melanoma. J. Clin. Investig. 2018, 128, 5505–5516. [Google Scholar] [CrossRef] [PubMed]
- Fattore, L.; Costantini, S.; Malpicci, D.; Ruggiero, C.F.; Ascierto, P.A.; Croce, C.M.; Mancini, R.; Ciliberto, G. MicroRNAs in Melanoma Development and Resistance to Target Therapy. Oncotarget 2017, 8, 22262–22278. [Google Scholar] [CrossRef]
- Sánchez-Sendra, B.; González-Muñoz, J.F.; Pérez-Debén, S.; Monteagudo, C. The Prognostic Value of miR-125b, miR-200c and miR-205 in Primary Cutaneous Malignant Melanoma Is Independent of BRAF Mutational Status. Cancers 2022, 14, 1532. [Google Scholar] [CrossRef]
- Wang, T.; Li, W.; Yin, S.; Chen, W. MiR-125b Acts as a Tumor Suppressor of Melanoma by Targeting NCAM. J. BUON 2021, 26, 182–188. [Google Scholar]
- Li, H.; Song, J.-B.; Chen, H.-X.; Wang, Q.-Q.; Meng, L.-X.; Li, Y. MiR-155 Inhibits Proliferation, Invasion and Migration of Melanoma via Targeting CBL. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 9525–9534. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, T.; Huang, C.; Xu, Z.; Wang, L.; Jiang, E.; Wang, H.; Chen, Y.; Liu, K.; Shao, Z.; et al. Melanoma Cell-Secreted Exosomal miR-155-5p Induce Proangiogenic Switch of Cancer-Associated Fibroblasts via SOCS1/JAK2/STAT3 Signaling Pathway. J. Exp. Clin. Cancer Res. 2018, 37, 242. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Li, L.; Ye, Z.-Y.; Zhao, Z.-S.; Yan, Z.-L. MicroRNA-10b Promotes Migration and Invasion through Hoxd10 in Human Gastric Cancer. World J. Surg. Oncol. 2015, 13, 259. [Google Scholar] [CrossRef]
- Bai, M.; Zhang, H.; Si, L.; Yu, N.; Zeng, A.; Zhao, R. Upregulation of Serum miR-10b Is Associated with Poor Prognosis in Patients with Melanoma. J. Cancer 2017, 8, 2487–2491. [Google Scholar] [CrossRef]
- Liang, T.; Han, L.; Guo, L. Rewired Functional Regulatory Networks among miRNA Isoforms (isomiRs) from Let-7 and miR-10 Gene Families in Cancer. Comput. Struct. Biotechnol. J. 2020, 18, 1238–1248. [Google Scholar] [CrossRef]
- Ge, X.; Li, G.-Y.; Jiang, L.; Jia, L.; Zhang, Z.; Li, X.; Wang, R.; Zhou, M.; Zhou, Y.; Zeng, Z.; et al. Long Noncoding RNA CAR10 Promotes Lung Adenocarcinoma Metastasis via miR-203/30/SNAI Axis. Oncogene 2019, 38, 3061–3076. [Google Scholar] [CrossRef]
- Lohcharoenkal, W.; Das Mahapatra, K.; Pasquali, L.; Crudden, C.; Kular, L.; Ulum, Y.Z.A.; Zhang, L.; Landén, N.X.; Girnita, L.; Jagodic, M.; et al. Genome-Wide Screen for MicroRNAs Reveals a Role for miR-203 in Melanoma Metastasis. J. Investig. Dermatol. 2018, 138, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Andreucci, E.; Ruzzolini, J.; Bianchini, F.; Versienti, G.; Biagioni, A.; Lulli, M.; Guasti, D.; Nardini, P.; Serratì, S.; Margheri, F.; et al. miR-214-Enriched Extracellular Vesicles Released by Acid-Adapted Melanoma Cells Promote Inflammatory Macrophage-Dependent Tumor Trans-Endothelial Migration. Cancers 2022, 14, 5090. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Chijiwa, T.; Inoue, Y.; Abe, Y.; Suemizu, H.; Kawai, K.; Wakui, M.; Furukawa, D.; Mukai, M.; Kuwao, S.; et al. Overexpression of the miR-34 Family Suppresses Invasive Growth of Malignant Melanoma with the Wild-Type P53 Gene. Exp. Ther. Med. 2012, 3, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, H.; Wu, G.; Cui, S. miR-182 Promotes Cell Proliferation and Invasion by Inhibiting APC in Melanoma. Int. J. Clin. Exp. Pathol. 2018, 11, 1900–1908. [Google Scholar]
- Gerloff, D.; Kewitz-Hempel, S.; Hause, G.; Ehrenreich, J.; Golle, L.; Kingreen, T.; Sunderkötter, C. Comprehensive Analyses of miRNAs Revealed miR-92b-3p, miR-182-5p and miR-183-5p as Potential Novel Biomarkers in Melanoma-Derived Extracellular Vesicles. Front. Oncol. 2022, 12, 935816. [Google Scholar] [CrossRef]
- Dubin, D.P.; Dinehart, S.M.; Farberg, A.S. Level of Evidence Review for a Gene Expression Profile Test for Cutaneous Melanoma. Am. J. Clin. Dermatol. 2019, 20, 763–770. [Google Scholar] [CrossRef]
- Marchetti, M.A.; Coit, D.G.; Dusza, S.W.; Yu, A.; McLean, L.; Hu, Y.; Nanda, J.K.; Matsoukas, K.; Mancebo, S.E.; Bartlett, E.K. Performance of Gene Expression Profile Tests for Prognosis in Patients With Localized Cutaneous Melanoma: A Systematic Review and Meta-Analysis. JAMA Dermatol. 2020, 156, 953–962. [Google Scholar] [CrossRef]
- Vasile, G.; Ilyas, M.; Lazzara, D.; Jacobs, D.; Matin, T.; Saleeby, E.; Weiss, E. Using 31-Gene Expression Profile in Melanoma Risk Prognosis. J. Drugs Dermatol. 2021, 20, 585–586. [Google Scholar] [CrossRef]
- Knackstedt, R.W.; Knackstedt, T.; Gastman, B. Gene Expression Profiling in Melanoma: Past Results and Future Potential. Future Oncol. 2019, 15, 791–800. [Google Scholar] [CrossRef]
- Fastner, S.; Shen, N.; Hartman, R.I.; Chu, E.Y.; Kim, C.C.; Kirkwood, J.M.; Grossman, D. Prognostic Gene Expression Profile Testing to Inform Use of Adjuvant Therapy: A Survey of Melanoma Experts. Cancer Med. 2023, 12, 22103–22108. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Karasaki, K.M.; Farma, J.M. The Use of Gene Expression Profiling and Biomarkers in Melanoma Diagnosis and Predicting Recurrence: Implications for Surveillance and Treatment. Cancers 2024, 16, 583. [Google Scholar] [CrossRef]
- Arnot, S.P.; Han, G.; Fortino, J.; Han, D.; Fowler, G.; Vetto, J.T. Utility of a 31-Gene Expression Profile for Predicting Outcomes in Patients with Primary Cutaneous Melanoma Referred for Sentinel Node Biopsy. Am. J. Surg. 2021, 221, 1195–1199. [Google Scholar] [CrossRef]
- Bartlett, E.K.; Marchetti, M.A.; Coit, D.G. Gene Expression Profile-Based Risk Modeling to Select Patients With Melanoma Who Can Avoid Sentinel Lymph Node Biopsy: Are We There Yet? JCO Precis. Oncol. 2020, 4, 988–989. [Google Scholar] [CrossRef] [PubMed]
- Johansson, I.; Tempel, D.; Dwarkasing, J.T.; Rentroia-Pacheco, B.; Mattsson, J.; Ny, L.; Bagge, R.O. Validation of a Clinicopathological and Gene Expression Profile Model to Identify Patients with Cutaneous Melanoma Where Sentinel Lymph Node Biopsy Is Unnecessary. Eur. J. Surg. Oncol. 2022, 48, 320–325. [Google Scholar] [CrossRef]
- Guenther, J.M.; Ward, A.; Martin, B.J.; Cripe, M.; Sharma, R.; Leong, S.P.; Clark, J.I.; Hamner, J.; Beard, T. A Prospective, Multicenter Analysis of the Integrated 31-Gene Expression Profile Test for Sentinel Lymph Node Biopsy (I31-GEP for SLNB) Test Demonstrates Reduced Number of Unnecessary SLNBs in Patients with Cutaneous Melanoma. World J. Surg. Oncol. 2025, 23, 5. [Google Scholar] [CrossRef]
- Bailey, C.N.; Martin, B.J.; Petkov, V.I.; Schussler, N.C.; Stevens, J.L.; Bentler, S.; Cress, R.D.; Doherty, J.A.; Durbin, E.B.; Gomez, S.L.; et al. 31-Gene Expression Profile Testing in Cutaneous Melanoma and Survival Outcomes in a Population-Based Analysis: A SEER Collaboration. JCO Precis. Oncol. 2023, 7, e2300044. [Google Scholar] [CrossRef] [PubMed]
- Jarell, A.; Gastman, B.R.; Dillon, L.D.; Hsueh, E.C.; Podlipnik, S.; Covington, K.R.; Cook, R.W.; Bailey, C.N.; Quick, A.P.; Martin, B.J.; et al. Optimizing Treatment Approaches for Patients with Cutaneous Melanoma by Integrating Clinical and Pathologic Features with the 31-Gene Expression Profile Test. J. Am. Acad. Dermatol. 2022, 87, 1312–1320. [Google Scholar] [CrossRef]
- Pazhava, A.; Yu, W.Y.; Jing, F.Z.; Hill, S.; Rohr, B.R.; Honda, K.S.; Tjien-Fooh, F.; Wever, R.; Dwarkasing, J.; Hieken, T.J.; et al. Enhanced Risk Stratification for Sentinel Lymph Node Biopsy in Head and Neck Melanoma Using the Merlin Assay (CP-GEP). Ann. Surg. Oncol. 2025, 332, 2748–2755. [Google Scholar] [CrossRef]
- Stassen, R.C.; Mulder, E.E.; Mooyaart, A.L.; Francken, A.B.; van der Hage, J.; Aarts, M.J.; van der Veldt, A.A.; Verhoef, C.; Grünhagen, D.J. Clinical Evaluation of the Clinicopathologic and Gene Expression Profile (CP-GEP) in Patients with Melanoma Eligible for Sentinel Lymph Node Biopsy: A Multicenter Prospective Dutch Study. Eur. J. Surg. Oncol. 2023, 49, 107249. [Google Scholar] [CrossRef]
- Farberg, A.S.; Marson, J.W.; Glazer, A.; Litchman, G.H.; Svoboda, R.; Winkelmann, R.R.; Brownstone, N.; Rigel, D.S.; Skin Cancer Prevention Working Group. Expert Consensus on the Use of Prognostic Gene Expression Profiling Tests for the Management of Cutaneous Melanoma: Consensus from the Skin Cancer Prevention Working Group. Dermatol. Ther. 2022, 12, 807–823. [Google Scholar] [CrossRef]
- Maloberti, T.; De Leo, A.; Coluccelli, S.; Sanza, V.; Gruppioni, E.; Altimari, A.; Comito, F.; Melotti, B.; Marchese, P.V.; Dika, E.; et al. Molecular Characterization of Advanced-Stage Melanomas in Clinical Practice Using a Laboratory-Developed Next-Generation Sequencing Panel. Diagnostics 2024, 14, 800. [Google Scholar] [CrossRef] [PubMed]
- Broseghini, E.; Veronesi, G.; Gardini, A.; Venturi, F.; Scotti, B.; Vespi, L.; Marchese, P.V.; Melotti, B.; Comito, F.; Corti, B.; et al. Defining High-Risk Patients: Beyond the 8the AJCC Melanoma Staging System. Arch. Dermatol. Res. 2024, 317, 78. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dréno, B.; et al. European Consensus-Based Interdisciplinary Guideline for Melanoma. Part 1: Diagnostics: Update 2022. Eur. J. Cancer 2022, 170, 236–255. [Google Scholar] [CrossRef]
- LINEE GUIDA MELANOMA. AIOM. Available online: https://www.aiom.it/linee-guida-aiom-2023-melanoma/ (accessed on 28 September 2023).
- Michielin, O.; van Akkooi, A.C.J.; Ascierto, P.A.; Dummer, R.; Keilholz, U.; ESMO Guidelines Committee. Electronic address: Clinicalguidelines@esmo.org. Cutaneous Melanoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019, 30, 1884–1901. [Google Scholar] [CrossRef]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dréno, B.; et al. European Consensus-Based Interdisciplinary Guideline for Melanoma. Part 2: Treatment—Update 2022. Eur. J. Cancer 2022, 170, 256–284. [Google Scholar] [CrossRef]
Liquid Biopsy Component | Description | Predictive Role for SLN Positivity | Advantages | Limitations | References |
---|---|---|---|---|---|
Circulating Tumor DNA (ctDNA) | DNA fragments shed by tumor cells into the bloodstream. | Contains tumor-specific mutations (e.g., BRAF, NRAS). | Correlates with tumor burden and micrometastases. Mutations like BRAF and NRAS are associated with SLN involvement. | Limited sensitivity in early-stage melanoma. False negatives in low tumor burden. High cost of testing. | [30,31,32] |
Circulating Tumor Cells (CTCs) | Intact tumor cells released into the bloodstream. | Detected using immunomagnetic enrichment or cytology. | Higher CTC counts are linked to SLN positivity. Reflects metastatic potential and tumor aggressiveness. | Rare in early-stage melanoma. Limited detection sensitivity. Requires advanced technology. | [33,34,35] |
Extracellular Vesicles (EVs) | Tumor-derived vesicles (e.g., exosomes) carrying DNA, RNA and and proteins. | Biomarkers include S100B and TYRP1. | EV content reflects melanoma progression. Presence of melanoma-specific markers linked to SLN involvement. | Limited clinical validation. Technologically complex assays. High cost. | [36,37,38,39] |
Circulating MicroRNAs (miRNAs) | Small, non-coding RNA molecules involved in gene regulation. | Specific miRNAs (e.g., MEL12 signature) are dysregulated in melanoma. | miRNA profiles correlate with SLN positivity. Can identify high-risk patients. | Limited sensitivity and specificity. Requires further standardization and validation. | [22] |
MicroRNA | Specific Function | Correlation with SLN Positivity | Notes | References |
---|---|---|---|---|
miR-21 | Promotes tumor progression by targeting tumor suppressors (PTEN and PDCD4). | Overexpression is significantly associated with SLN positivity | Frequently upregulated in melanoma. | [23] |
miR-205 | Suppresses EMT by targeting ZEB1 and ZEB2 and inhibits invasion and metastasis. | Downregulated in SLN-positive melanoma, contributing to increased EMT. | Acts as a tumor suppressor in melanoma. | [44] |
miR-125b | Controls differentiation and proliferation by targeting NCAM. | Low levels are predictive of SLN metastasis. | Prognostic marker for melanoma. | [45] |
miR-155 | Enhances inflammation and immune evasion in the tumor microenvironment. | Correlated with increased risk of SLN metastasis. | Marker of poor prognosis. | [46,47] |
miR-10b | Facilitates cell migration and invasion by targeting HOXD10. | Overexpressed in SLN-positive melanoma cases. | Associated with metastatic potential. | [28,48,49,50] |
miR-203 | Regulates cell proliferation and epithelial-to-mesenchymal transition (EMT). | Downregulated in SLN-positive melanomas. | Loss may promote metastasis. | [51,52] |
miR-146a | Regulates immune response and NF-κB signaling. | Reduced expression linked to SLN positivity and immune suppression. | Acts as a tumor suppressor. | [23] |
miR-214 | Involved in cell survival and resistance to apoptosis. | Elevated levels associated with SLN positivity and melanoma progression. | Key in chemoresistance mechanisms. | [53] |
miR-34a | Tumor suppressor regulating cell cycle and apoptosis via p53. | Reduced expression observed in SLN-positive patients. | Promotes sensitivity to therapies. | [54] |
miR-182 | Enhances tumor growth, invasion, and angiogenesis. | Overexpression linked to SLN metastasis and aggressive tumor phenotype. | Frequently altered in late-stage melanoma. | [55,56] |
Test | Purpose | Risk Classification | Key Features | References |
---|---|---|---|---|
31-GEP (DecisionDx-Melanoma) | Stratifies melanoma patients into high/low metastatic risk. | Class 1A (lowest risk) to Class 2B (highest risk). | Uses gene expression differences between primary and metastatic melanomas. Integrated with i31-SLNB for SLN positivity risk.
| [66,67,68] |
CP-GEP (Merlin™) | Identifies patients with <5% risk of SLN metastasis. | Low risk vs. high risk of nodal metastasis. | Uses eight genes + clinicopathologic factors (age and Breslow depth).
| [69,70] |
8-GEP (MelaGenix) | Provides prognostic information for melanoma-specific survival (MSS). | Continuous score (−0.84 to 3.55) Low-risk (<1.3) vs. High-risk (≥1.3). |
| [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venturi, F.; Magnaterra, E.; Scotti, B.; Ferracin, M.; Dika, E. Predictive Factors for Sentinel Lymph Node Positivity in Melanoma Patients—The Role of Liquid Biopsy, MicroRNA and Gene Expression Profile Panels. Cancers 2025, 17, 1281. https://doi.org/10.3390/cancers17081281
Venturi F, Magnaterra E, Scotti B, Ferracin M, Dika E. Predictive Factors for Sentinel Lymph Node Positivity in Melanoma Patients—The Role of Liquid Biopsy, MicroRNA and Gene Expression Profile Panels. Cancers. 2025; 17(8):1281. https://doi.org/10.3390/cancers17081281
Chicago/Turabian StyleVenturi, Federico, Elisabetta Magnaterra, Biagio Scotti, Manuela Ferracin, and Emi Dika. 2025. "Predictive Factors for Sentinel Lymph Node Positivity in Melanoma Patients—The Role of Liquid Biopsy, MicroRNA and Gene Expression Profile Panels" Cancers 17, no. 8: 1281. https://doi.org/10.3390/cancers17081281
APA StyleVenturi, F., Magnaterra, E., Scotti, B., Ferracin, M., & Dika, E. (2025). Predictive Factors for Sentinel Lymph Node Positivity in Melanoma Patients—The Role of Liquid Biopsy, MicroRNA and Gene Expression Profile Panels. Cancers, 17(8), 1281. https://doi.org/10.3390/cancers17081281