The Effect of Intraoperative Hypothermia on Anastomotic Leakage After Esophagectomy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
- Histologically confirmed diagnosis of adenocarcinoma or squamous cell carcinoma (SCC) of the medium and distal third of the esophagus, with clinical eligibility for surgery (any T, any N, M0); IL esophagectomy regardless of the surgical approach (i.e., either laparoscopic, open or hybrid);
- Aged ≥ 18 years;
- Any multimodal strategy (i.e., either neoadjuvant therapy or upfront surgery);
- Standardized management, including perioperative multidisciplinary assessments and the ERAS-based clinical protocol [13];
- Full availability of electronic records regarding intraoperative temperature.
2.2. Surgical Procedure
2.3. Perioperative Standardized Protocol
2.4. Definition of Outcomes
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Characteristics of Groups According to Postoperative AL
3.3. Analysis of BMI and Operative Times According to Pathological Features
3.4. Predictors of AL and Intraoperative Severe Hypothermia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.; Gisbertz, S.S.; Voeten, D.M.; Gutschow, C.A.; Fuchs, H.F.; van Berge Henegouwen, M.I. Surgical therapy of esophageal adenocarcinoma-current standards and future perspectives. Cancers 2021, 13, 5834. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Onaitis, M. Minimally invasive and robotic ivor lewis esophagectomy. J. Thorac. Dis. 2014, 6 (Suppl. S3), S314–S321. [Google Scholar] [CrossRef]
- Low, D.E.; Kuppusamy, M.K.; Alderson, D.; Cecconello, I.; Chang, A.C.; Darling, G.; Davies, A.; D’journo, X.B.; Gisbertz, S.S.; Griffin, S.M.; et al. Benchmarking complications associated with esophagectomy. Ann. Surg. 2019, 269, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Carroll, P.A.; Jacob, N.; Yeung, J.C.; Darling, G.E. Using benchmarking standards to evaluate transition to minimally invasive esophagectomy. Ann. Thorac. Surg. 2020, 109, 383–388. [Google Scholar] [CrossRef]
- Kuppusamy, M.K.; Low, D.E. Evaluation of international contemporary operative outcomes and management trends associated with esophagectomy: A 4-year study of >6000 patients using eccg definitions and the online esodata database. Ann. Surg. 2022, 275, 515–525. [Google Scholar] [CrossRef]
- Messager, M.; Warlaumont, M.; Renaud, F.; Marin, H.; Branche, J.; Piessen, G.; Mariette, C. Recent improvements in the management of esophageal anastomotic leak after surgery for cancer. Eur. J. Surg. Oncol. 2017, 43, 258–269. [Google Scholar] [CrossRef]
- Riley, C.; Andrzejowski, J. Inadvertent perioperative hypothermia. BJA Educ. 2018, 18, 227–233. [Google Scholar] [CrossRef]
- Sessler, D.I. Perioperative thermoregulation and heat balance. Lancet 2016, 387, 2655–2664. [Google Scholar] [CrossRef]
- Oliveira, J.C.; Oliveira, C.H.; Oliveira, H.E.; Pereira, A.; Maraschin, M.; d’Acâmpora, A.J. Effects of perioperative hypothermia and reactive oxygen species in the healing of colonic anastomosis in rats. Acta Cir. Bras. 2014, 29, 742–747. [Google Scholar] [CrossRef]
- de Oliveira, J.C.C.; de Oliveira, C.H.; de Oliveira, H.E.; Colombeli, G.L.; Heck, N.D.B.; Pereira, A.; D’acâmpora, A.J. Effects of perioperative hypothermia on healing of anastomosis of the colon in rats. Int. J. Color. Dis. 2013, 28, 705–712. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (strobe) statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Salvans, S.; Grande, L.; Dal Cero, M.; Pera, M. State of the art of enhanced recovery after surgery (eras) protocols in esophagogastric cancer surgery: The western experience. Updates Surg. 2023, 75, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Mayhew, D.; Mendonca, V.; Murthy, B.V.S. A review of asa physical status—Historical perspectives and modern developments. Anaesthesia 2019, 74, 373–379. [Google Scholar] [CrossRef]
- Puccetti, F.; Battaglia, S.; Carresi, A.; Cinelli, L.; Turi, S.; Elmore, U.; Rosati, R.; The OSR CCeR Collaborative Group. Surgical Technique and Implementation of Total Minimally Invasive (Laparo-Thoracoscopic) Ivor Lewis Esophagectomy for Cancer. Cancers 2024, 16, 3281. [Google Scholar] [CrossRef]
- Puccetti, F.; Cinelli, L.; Barbieri, L.A.; Socci, D.; Clelia, D.S.; De Cobelli, F.; Elmore, U.; Rosati, R.; OSR CCeR Collaborative Group. The Near-Infrared Visualization and Preemptive Ligation of the Thoracic Duct Effectively Reduce the Chyle Leak Incidence After Minimally Invasive Esophagectomy. Ann. Surg. 2024, 280, 780–787. [Google Scholar] [CrossRef]
- Low, D.E.; Allum, W.; De Manzoni, G.; Ferri, L.; Immanuel, A.; Kuppusamy, M.; Law, S.; Lindblad, M.; Maynard, N.; Neal, J.; et al. Guidelines for perioperative care in esophagectomy: Enhanced recovery after surgery (eras®) society recommendations. World J. Surg. 2019, 43, 299–330. [Google Scholar] [CrossRef]
- Mukai, A.; Suehiro, K.; Watanabe, R.; Juri, T.; Hayashi, Y.; Tanaka, K.; Fujii, T.; Ohira, N.; Oda, Y.; Okutani, R.; et al. Impact of intraoperative goal-directed fluid therapy on major morbidity and mortality after transthoracic oesophagectomy: A multicentre, randomised controlled trial. Br. J. Anaesth. 2020, 125, 953–961. [Google Scholar] [CrossRef]
- Veelo, D.P.; Henegouwen, M.I.v.B.; Ouwehand, K.S.; Geerts, B.F.; Anderegg, M.C.J.; van Dieren, S.; Preckel, B.; Binnekade, J.M.; Gisbertz, S.S.; Hollmann, M.W. Effect of goal-directed therapy on outcome after esophageal surgery: A quality improvement study. PLoS ONE 2017, 12, e0172806. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Isaka, M.; Ando, K.; Mori, K.; Kojima, H.; Maniwa, T.; Takahashi, S.; Ando, E.; Ohde, Y. Continuous paravertebral block using a thoracoscopic catheter-insertion technique for postoperative pain after thoracotomy: A retrospective case-control study. J. Cardiothorac. Surg. 2017, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Apfel, C.; Heidrich, F.; Jukar-Rao, S.; Jalota, L.; Hornuss, C.; Whelan, R.; Zhang, K.; Cakmakkaya, O. Evidence-based analysis of risk factors for postoperative nausea and vomiting. Br. J. Anaesth. 2012, 109, 742–753. [Google Scholar] [CrossRef]
- Deni, F.; Greco, M.; Turi, S.; Meani, R.; Comotti, L.; Perotti, V.; Mello, A.; Colnaghi, E.; Pasculli, N.; Nardelli, P.; et al. Acute pain service: A 10-year experience. Pain Pract. 2019, 19, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Walters, M.J.; Tanios, M.; Koyuncu, O.; Mao, G.; Valente, M.A.; Sessler, D.I. Intraoperative core temperature and infectious complications after colorectal surgery: A registry analysis. J. Clin. Anesth. 2020, 63, 109758. [Google Scholar] [CrossRef]
- Low, D.E.; Alderson, D.; Cecconello, I.; Chang, A.C.; Darling, G.; D’journo, X.B.; Griffin, S.M.; Hölscher, A.H.; Hofstetter, W.L.; Jobe, B.A.; et al. International consensus on standardization of data collection for complications associated with esophagectomy: Esophagectomy complications consensus group (eccg). Ann. Surg. 2015, 262, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar]
- Konradsson, M.; Nilsson, M. Delayed emptying of the gastric conduit after esophagectomy. J. Thorac. Dis. 2019, 11 (Suppl. S5), S835–S844. [Google Scholar] [CrossRef]
- Benedix, F.; Willems, T.; Kropf, S.; Schubert, D.; Stübs, P.; Wolff, S. Risk factors for delayed gastric emptying after esophagectomy. Langenbecks Arch. Surg. 2017, 402, 547–554. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, S.C.; Miao, J.B.; Lee, H. Risk factors for delayed gastric emptying in patients undergoing esophagectomy without pyloric drainage. J. Surg. Res. 2017, 213, 46–50. [Google Scholar] [CrossRef]
- Ju, J.; Park, S.J.; Yoon, S.; Lee, H.; Kim, H.; Lee, H.; Kim, W.H.; Jang, J. Detrimental effect of intraoperative hypothermia on pancreatic fistula after pancreaticoduodenectomy: A single-centre retrospective study. J. Hepatobiliary Pancreat. Sci. 2021, 28, 983–992. [Google Scholar] [CrossRef]
- Chen, H.Y.; Su, L.J.; Wu, H.Z.; Zou, H.; Yang, R.; Zhu, Y.X. Risk factors for inadvertent intraoperative hypothermia in patients undergoing laparoscopic surgery: A prospective cohort study. PLoS ONE 2021, 16, e0257816. [Google Scholar] [CrossRef]
- Cinelli, L.; Felli, E.; Baratelli, L.; Ségaud, S.; Baiocchini, A.; Okamoto, N.; Rodríguez-Luna, M.R.; Elmore, U.; Rosati, R.; Partelli, S.; et al. Single snapshot imaging of optical properties (ssop) for perfusion assessment during gastric conduit creation for esophagectomy: An experimental study on pigs. Cancers 2021, 13, 6079. [Google Scholar] [CrossRef] [PubMed]
- Beilin, B.; Shavit, Y.; Razumovsky, J.; Wolloch, Y.; Zeidel, A.; Bessler, H. Effects of mild perioperative hypothermia on cellular immune responses. Anesthesiology 1998, 89, 1133–1140. [Google Scholar] [CrossRef]
- Zhang, F.; Qiao, S.; Li, C.; Wu, B.; Reischl, S.; Neumann, P.A. The immunologic changes during different phases of intestinal anastomotic healing. J. Clin. Lab. Anal. 2020, 34, e23493. [Google Scholar] [CrossRef]
- Hu, Z.; Li, W.; Liang, C.; Li, K. Risk factors and prediction model for inadvertent intraoperative hypothermia in patients undergoing robotic surgery: A retrospective analysis. Sci. Rep. 2023, 13, 3687. [Google Scholar] [CrossRef]
- Ito, Y.; Kudo, D.; Kushimoto, S. Association between low body temperature on admission and in-hospital mortality according to body mass index categories of patients with sepsis. Medicine 2022, 101, e31657. [Google Scholar] [CrossRef]
- Lahmann, P.H.; Pandeya, N.; Webb, P.M.; Green, A.C.; Whiteman, D.C.; Australian Cancer Study. Body mass index, long-term weight change, and esophageal squamous cell carcinoma: Is the inverse association modified by smoking status? Cancer 2012, 118, 1901–1909. [Google Scholar]
- Tran, G.D.; Sun, X.; Abnet, C.C.; Fan, J.; Dawsey, S.M.; Dong, Z.; Mark, S.D.; Qiao, Y.; Taylor, P.R. Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int. J. Cancer 2005, 113, 456–463. [Google Scholar]
- Cook, M.B.; Freedman, N.D.; Gamborg, M.; Sorensen, T.I.; Baker, J.L. Childhood body mass index in relation to future risk of oesophageal adenocarcinoma. Br. J. Cancer 2015, 112, 601–607. [Google Scholar]
- Hoyo, C.; Cook, M.B.; Kamangar, F.; Freedman, N.D.; Whiteman, D.C.; Bernstein, L.; Brown, L.M.; A Risch, H.; Ye, W.; Sharp, L.; et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: A pooled analysis from the International BEACON Consortium. Int. J. Epidemiol. 2012, 41, 1706–1718. [Google Scholar]
- Choi, J.W.; Kim, D.K.; Kim, J.K.; Lee, E.J.; Kim, J.Y. A retrospective analysis on the relationship between intraoperative hypothermia and postoperative ileus after laparoscopic colorectal surgery. PLoS ONE 2018, 13, e0190711. [Google Scholar] [CrossRef]
- Borms, S.F.; Engelen, S.L.; Himpe, D.G.; Suy, M.R.; Theunissen, W.J. Bair hugger forced-air warming maintains normothermia more effectively than thermo-lite insulation. J. Clin. Anesth. 1994, 6, 303–307. [Google Scholar] [CrossRef]
- Madrid, E.; Urrútia, G.; i Figuls, M.R.; Pardo-Hernandez, H.; Campos, J.M.; Paniagua, P.; Maestre, L.; Alonso-Coello, P. Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults. Cochrane Database Syst. Rev. 2016, 4, Cd009016. [Google Scholar] [CrossRef]
- Pei, L.; Huang, Y.; Xu, Y.; Zheng, Y.; Sang, X.; Zhou, X.; Li, S.; Mao, G.; Mascha, E.J.; Sessler, D.I. Effects of ambient temperature and forced-air warming on intraoperative core temperature: A factorial randomized trial. Anesthesiology 2018, 128, 903–911. [Google Scholar] [CrossRef]
- Galante, D. Intraoperative hypothermia. Relation between general and regional anesthesia, upper- and lower-body warming: What strategies in pediatric anesthesia? Paediatr. Anaesth. 2007, 17, 821–823. [Google Scholar] [CrossRef]
- Bräuer, A.; English, M.J.M.; Lorenz, N.; Steinmetz, N.; Perl, T.; Braun, U.; Weyland, W. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body. Acta Anaesthesiol. Scand. 2003, 47, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Min, S.H.; Yoon, S.; Yoon, S.H.; Bahk, J.H.; Seo, J.H. Randomised trial comparing forced-air warming to the upper or lower body to prevent hypothermia during thoracoscopic surgery in the lateral decubitus position. Br. J. Anaesth. 2018, 120, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, Y.; Takeuchi, H.; Doki, Y.; Mine, S.; Terashima, M.; Yasuda, T.; Yoshida, K.; Daiko, H.; Sakuramoto, S.; Yoshikawa, T.; et al. Mapping of Lymph Node Metastasis From Esophagogastric Junction Tumors: A Prospective Nationwide Multicenter Study. Ann Surg. 2021, 274, 120–127. [Google Scholar]
- Powell, A.G.M.T.; Eley, C.; Abdelrahman, T.; Coxon, A.H.; Chin, C.; Appadurai, I.; Davies, R.; Bailey, D.M.; Lewis, W.G. Physiological performance and inflammatory markers as indicators of complications after oesophageal cancer surgery. BJS Open 2020, 4, 840–846. [Google Scholar] [CrossRef]
- Sivakumar, J.; Sivakumar, H.; Read, M.; Sinclair, R.C.F.; Snowden, C.P.; Hii, M.W. The role of cardiopulmonary exercise testing as a risk assessment tool in patients undergoing oesophagectomy: A systematic review and meta-analysis. Ann. Surg. Oncol. 2020, 27, 3783–3796. [Google Scholar] [CrossRef]
- Mäkinen, M.T. Comparison of body temperature changes during laparoscopic and open cholecystectomy. Acta Anaesthesiol. Scand. 1997, 41, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I.; Pei, L.; Li, K.; Cui, S.; Chan, M.T.V.; Huang, Y.; Wu, J.; He, X.; Bajracharya, G.R.; Rivas, E.; et al. Aggressive intraoperative warming versus routine thermal management during non-cardiac surgery (PROTECT): A multicentre, parallel group, superiority trial. Lancet 2022, 399, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
Severe Hypothermia | Mild Hypothermia | Normothermia | p Value | |
---|---|---|---|---|
Patients | 19 (20%) | 62 (65.3%) | 14 (14.7%) | |
Intraoperative average temperature, °C * | 34.6 ± 0.5 | 35.4 ± 0.3 | 36.2 ± 0.2 | |
Intraoperative TWA temperature, °C * | 34.2 ± 2.2 | 35.4 ± 0.5 | 36.3 ± 0.3 | |
Preoperative | ||||
Gender (male/female) | 15/4 | 50/12 | 13/1 | 0.539 |
Age, years ** | 63 (56–71) | 66 (60–73) | 63 (51–72) | 0.703 |
Body mass index, kg/m2 * | 22.3 ± 3.7 | 24.6 ± 4 | 28.2 ± 5.4 | 0.001 |
ASA physical status III | 10 (52.6%) | 32 (51.6%) | 8 (57.1%) | 0.954 |
aa-CCI > 4 | 1 (5.3%) | 12 (19.4%) | 4 (28.6%) | 0.215 |
Diagnosis | ||||
Adenocarcinoma | 12/79 (15.2%) | 54/79 (68.4%) | 13/79 (16.4%) | 0.029 |
Squamous cell carcinoma | 7/16 (43.8%) | 8/16 (50%) | 1/16 (6.2%) | |
Neoadjuvant chemotherapy | 17 (89.5%) | 51 (82.3%) | 10 (71.4%) | 0.385 |
Neoadjuvant radiation therapy | 8 (42.1%) | 20 (32.3%) | 2 (14.3%) | 0.244 |
Intraoperative | ||||
Minimally invasive/open approach | 16/3 | 47/15 | 10/4 | 0.655 |
Operation time (min) * | 258 ± 47 | 280 ± 53 | 306 ± 45 | 0.006 |
Intraoperative complications | 4 (21%) | 13 (21%) | 2 (14%) | 0.867 |
Blood loss, mL * | 118 ± 38 | 147 ± 59 | 189 ± 97 | 0.567 |
Blood transfusions | 0 (0%) | 2 (3.2%) | 1 (7.7%) | 0.581 |
Infusions, mL * | 2253 ± 954 | 2160 ± 1116 | 2650 ± 964 | 0.178 |
Intraoperative lactates (average) * | 3.15 ± 1.85 | 3.21 ± 1.51 | 3.44 ± 1.58 | 0.723 |
Intraoperative lactates (highest value) * | 4.42 ± 2.7 | 3.83 ± 1.78 | 4.5 ±2.1 | 0.549 |
Lymph node retrieval, n ** | 70 (61–85) | 70 (61–81) | 68 (62–90) | 0.281 |
Postoperative | ||||
Overall postoperative complications | 15 (78.9%) | 40 (64.5%) | 10 (71.4%) | 0.758 |
Severe complications (Clavien–Dindo ≥ 3a) | 10 (52.6%) | 27 (67.5%) | 6 (42.8%) | 0.649 |
Anastomotic leakage † | 6 (31.6%) | 4 (6.5%) | 2 (14.3%) | 0.015 |
Type I | 1 | 0 | 1 | |
Type II | 4 | 3 | 1 | |
Type III | 1 | 1 | 0 | |
Delayed gastric conduit emptying | 0 (0%) | 2 (3.2%) | 0 (0%) | 1.000 |
Overall respiratory complications | 7 (36.8%) | 30 (48.4%) | 5 (35.7%) | 0.564 |
Pneumonia | 2 (10.5%) | 6 (9.7%) | 1 (7.1%) | 1.000 |
Cardiovascular complications | 4 (21%) | 10 (16.1%) | 1 (7.1%) | 0.546 |
Surgical site infections | 4 (21%) | 16 (26.1%) | 3 (21.4%) | 0.940 |
ICU stay | 3 (15.8%) | 8 (12.9%) | 3 (21.4%) | 0.831 |
Postoperative WBC, ×109/L * | 7.2 ± 1.8 | 6.6 ± 2.3 | 8.1 ± 3 | 0.263 |
Postoperative hemoglobin, g/dL * | 12.4 ± 1.2 | 12.4 ± 1.7 | 12.6 ± 1.5 | 0.908 |
Postoperative lactates, mmol/L * | 2.07 ± 1.40 | 2.15 ± 0.94 | 2.52 ± 2.22 | 0.382 |
In-hospital readmission | 4 (21%) | 19 (30.6%) | 3 (21.4%) | 0.663 |
Anastomotic Leakage | |||
---|---|---|---|
Yes | No | p Value | |
Patients | 12/95 (12.6%) | 83/95 (87.4%) | |
Preoperative | |||
Gender (male/female) | 8/4 | 68/15 | 0.634 |
Body mass index, kg/m2 * | 22 (±2.3) | 25 (±4.6) | 0.012 |
Age, years ** | 69 (55–80) | 65 (59–75) | 0.295 |
ASA physical status III | 7 (58.3%) | 43 (51.8%) | 0.763 |
aa-CCI > 4 | 4 (33.3%) | 13 (15.7%) | 0.218 |
Adenocarcinoma | 7/79 (8.9%) | 72/79 (91.1%) | 0.028 |
Squamous cell carcinoma | 5/16 (31.2%) | 11/16 (68.8%) | |
Neoadjuvant chemotherapy | 9/12 (75%) | 3/12 (25%) | 0.687 |
Neoadjuvant radiation therapy | 3 (25%) | 27 (32.5%) | 0.747 |
Intraoperative | |||
Minimally invasive/open approach | 10/12 (83.3%) | 2/12 (16.7%) | 0.726 |
Operation time (min) * | 269 ± 51 | 281 ± 53 | 0.433 |
Intraoperative complications | 4/12 (33.3%) | 8/12 (66.7%) | 0.250 |
Blood loss, mL * | 133 ± 89 | 195 ± 103 | 0.360 |
Blood transfusions | 1 (8.3%) | 2 (2.4%) | 0.587 |
Infusions, mL * | 1658 ± 823 | 1836 ± 1076 | 0.134 |
Intraoperative lactates, mmol/L (average) * | 3.28 ± 1.75 | 3.22 ± 1.56 | 0.918 |
Intraoperative lactates, mmol/L (highest value) * | 3.99 ± 2.44 | 4.06 ± 2 | 0.715 |
Lymph node retrieval, n ** | 62 (59–77) | 70 (61–81) | 0.222 |
Intraoperative temperature | |||
Normothermia | 2/14 (14.3%) | 12/14 (85.7%) | 0.015 |
Hypothermia | 4/62 (6.5%) | 58/62 (93.5%) | |
Severe hypothermia | 6/19 (31.6%) | 13/19 (68.4%) | |
Intraoperative TWA temperature ≤ 35 °C * | 6/19 (31.6%) | 13/19 (68.4%) | 0.013 |
Intraoperative TWA temperature > 35 °C * | 6/76 (7.9%) | 70/76 (92.1%) | |
Postoperative | |||
Postoperative WBC, ×109/L * | 7.9 ± 1.7 | 6.8 ± 2.4 | 0.183 |
Postoperative hemoglobin, g/dL * | 11.5 ± 1.6 | 12.5 ± 1.6 | 0.106 |
Postoperative lactates, mmol/L * | 3.05 ± 2.22 | 2.05 ± 1.02 | 0.179 |
Adenocarcinoma | Squamous Cell Carcinoma | p Value | |
---|---|---|---|
Body mass index, kg/m2 * | 24.2 ± 3.5 | 22.6 ± 4.7 | 0.267 |
Total operation (min) * | 285 ± 53 | 255 ± 41 | 0.016 |
Abdominal stage (min) * | 139 ± 50 | 114 ± 33 | 0.046 |
Thoracic stage (min) * | 139 ± 39 | 145 ± 39 | 0.454 |
Lymph node retrieval (n) ** | 70 (61–84) | 62 (61–72) | 0.174 |
Variable | Multivariate Analysis | ||
---|---|---|---|
OR | 95% CI | p Value | |
Gender (male vs. female) | – | – | – |
Age (≥75 years) | – | – | – |
Body mass index (Kg/m2) | – | – | – |
Diagnosis (adenocarcinoma vs. SCC) | – | – | – |
Neoadjuvant chemoradiotherapy | – | – | – |
Severe hypothermia (Intraoperative TWA temperature < 35 °C) | 5.385 | 1.502; 19.310 | 0.010 |
Variable | Multivariate Analysis | ||
---|---|---|---|
OR | 95% CI | p Value | |
Gender (male vs. female) | – | – | – |
Age (≥75 years) | – | – | – |
Body mass index (Kg/m2) | 0.818 | 0.723; 0.926 | 0.001 |
Diagnosis (adenocarcinoma vs. SCC) | – | – | – |
Neoadjuvant chemoradiotherapy | – | – | – |
Intraoperative blood loss | – | – | – |
Total intraoperative fluids (mL) | – | – | – |
Operation time (min) | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinelli, L.; Turi, S.; Puccetti, F.; Lee, Y.-H.; Rosati, R.; Elmore, U.; on behalf of the OSR CCeR Collaborative Group. The Effect of Intraoperative Hypothermia on Anastomotic Leakage After Esophagectomy. Cancers 2025, 17, 1166. https://doi.org/10.3390/cancers17071166
Cinelli L, Turi S, Puccetti F, Lee Y-H, Rosati R, Elmore U, on behalf of the OSR CCeR Collaborative Group. The Effect of Intraoperative Hypothermia on Anastomotic Leakage After Esophagectomy. Cancers. 2025; 17(7):1166. https://doi.org/10.3390/cancers17071166
Chicago/Turabian StyleCinelli, Lorenzo, Stefano Turi, Francesco Puccetti, Yong-Ha Lee, Riccardo Rosati, Ugo Elmore, and on behalf of the OSR CCeR Collaborative Group. 2025. "The Effect of Intraoperative Hypothermia on Anastomotic Leakage After Esophagectomy" Cancers 17, no. 7: 1166. https://doi.org/10.3390/cancers17071166
APA StyleCinelli, L., Turi, S., Puccetti, F., Lee, Y.-H., Rosati, R., Elmore, U., & on behalf of the OSR CCeR Collaborative Group. (2025). The Effect of Intraoperative Hypothermia on Anastomotic Leakage After Esophagectomy. Cancers, 17(7), 1166. https://doi.org/10.3390/cancers17071166