Microsatellite Instability as a Risk Factor for Occult Lymph Node Metastasis in Early-Stage Endometrial Cancer: A Retrospective Multicenter Study
Simple Summary
Abstract
1. Introduction
Objective
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Variables
2.5. Laboratory
2.6. Statistical Analysis
2.7. Risk of Bias
3. Results
3.1. Outcomes
3.2. Sub-Analysis for Heterodimeric Genes
4. Discussion
4.1. Interpretation of the Results
4.2. Comparison with the Existing Literature
4.3. Clinical Implication
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ART | Assisted Reproductive Technology |
BIC | Bayesian Information Criterion |
BMI | Body Mass Index |
CI | Confidence Interval |
CT | Computed Tomography |
EC | Endometrial Cancer |
EMT | Epithelial-Mesenchymal Transition |
FST | Fertility-Sparing Treatment |
IHC | Immunohistochemistry |
ITC | Isolated Tumor Cells |
LNM | Lymph Node Metastasis |
LVSI | Lymphovascular Space Invasion |
MRI | Magnetic Resonance Imaging |
MMR | Mismatch Repair |
MMRd | Mismatch Repair Deficient |
MSI | Microsatellite Instability |
MSS | Microsatellite Stability |
NSMP | No Specific Molecular Profile |
OR | Odds Ratio |
PET-CT | Positron Emission Tomography—Computed Tomography |
POLEmut | Polymerase Epsilon Mutant |
ProMisE | Proactive Molecular Risk Classifier for Endometrial Cancer |
SLN | Sentinel Lymph Node |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
TCGA | The Cancer Genome Atlas |
wt | Wild Type |
References
- Gao, S.; Wang, J.; Li, Z.; Wang, T.; Wang, J. Global Trends in Incidence and Mortality Rates of Endometrial Cancer Among Individuals Aged 55 years and Above from 1990 to 2021: An Analysis of the Global Burden of Disease. Int. J. Women’s Health 2025, 17, 651–662. [Google Scholar] [CrossRef]
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; González-Martín, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO consensus conference on endometrial cancer: Diagnosis, treatment and follow-up. Int. J. Gynecol. Cancer 2016, 26, 2–30. [Google Scholar] [PubMed]
- Bellaminutti, S.; Bonollo, M.; Gasparri, M.L.; Clivio, L.; Migliora, P.; Mazzucchelli, L.; Papadia, A. Sentinel lymph node intraoperative analysis in endometrial cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 3199–3205. [Google Scholar]
- DiSaia, P.J.; Creasman, W.T.; Boronow, R.C.; Blessing, J.A. Risk factors and recurrent patterns in stage I endometrial cancer. Am. J. Obstet. Gynecol. 1985, 151, 1009–1015. [Google Scholar] [PubMed]
- Cheng, W.F.; Chen, C.A.; Lee, C.N.; Chen, T.M.; Huang, K.T.; Hsieh, C.Y.; Hsieh, F.J. Preoperative ultrasound study in predicting lymph node metastasis for endometrial cancer patients. Gynecol. Oncol. 1998, 71, 424–427. [Google Scholar]
- La Fianza, A.; Di Maggio, E.M.; Preda, L.; Coscia, D.; Tateo, S.; Campani, R. Clinical usefulness of CT in the treatment of stage I endometrial carcinoma. La Radiol. Medica 1997, 93, 567–571. [Google Scholar]
- Frei, K.A.; Kinkel, K.; Bonél, H.M.; Lu, Y.; Zaloudek, C.; Hricak, H. Prediction of deep myometrial invasion in patients with endometrial cancer: Clinical utility of contrast-enhanced MR imaging-a meta-analysis and Bayesian analysis. Radiology 2000, 216, 444–449. [Google Scholar] [CrossRef]
- Creasman, W.T.; Morrow, C.P.; Bundy, B.N.; Homesley, H.D.; Graham, J.E.; Heller, P.B. Surgical pathologic spread patterns of endometrial cancer: A Gynecologic Oncology Group study. Cancer 1987, 60 (Suppl. S8), 2035–2041. [Google Scholar] [CrossRef]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Yang, W.; Lum, A.; Senz, J.; Boyd, N.; Pike, J.; Anglesio, M.; Kwon, J.S.; et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017, 123, 802–813. [Google Scholar]
- Levine, D.A.; Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Bayramoglu, D.; Seçilmiş Kerimoğlu, Ö.; Bayramoğlu, Z.; Çintesun, E.; Şahin, G.; Karabağlı, P.; Çelik, Ç. Classification of high-grade endometrium carcinomas using molecular and immunohistochemical methods. Ginekol. Pol. 2023, 94, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, K.; Murakami, K.; Yamasaki, E.; Kaji, Y.; Sugimura, K. Accuracy of integrated FDG-PET/contrast-enhanced CT in detecting pelvic and paraaortic lymph node metastasis in patients with uterine cancer. Eur. Radiol. 2009, 19, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, A.; Thompson, E.F.; Huvila, J.; Leung, S.; Lum, A.; Morin, C.; Ennour-Idrissi, K.; Sebastianelli, A.; Renaud, M.-C.; Gregoire, J.; et al. Endometrial carcinoma molecular subtype correlates with the presence of lymph node metastases. Gynecol. Oncol. 2022, 165, 376–384. [Google Scholar]
- Bogani, G.; Lalli, L.; Casarin, J.; Ghezzi, F.; Chiappa, V.; Fanfani, F.; Scambia, G.; Raspagliesi, F. Predicting the Risk of nOdal disease with histological and Molecular features in Endometrial cancer: The prospective PROME trial. Int. J. Gynecol. Cancer 2024, 34, 1366–1372. [Google Scholar] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the reporting of observational studies in epidemiology (STROBE): Explanation and elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef]
- Matsuo, K.; Chen, L.; Neuman, M.K.; Klar, M.; Carlson, J.W.; Roman, L.D.; Wright, J.D. Lymph Node Isolated Tumor Cells in Patients with Endometrial Cancer. JAMA Netw. Open 2024, 7, e240988. [Google Scholar] [CrossRef]
- Barrow, E.; Jagger, E.; Brierley, J.; Wallace, A.; Evans, G.; Hill, J.; McMahon, R. Semiquantitative assessment of immunohistochemistry for mismatch repair proteins in Lynch syndrome. Histopathology 2010, 56, 331–344. [Google Scholar] [CrossRef]
- Hall, G.; Clarkson, A.; Shi, A.; Langford, E.; Leung, H.; Eckstein, R.P.; Gill, A.J. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma. Pathology 2010, 42, 409–413. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Fisher, R.A. On the interpretation of χ2 from contingency tables, and the calculation of P. J. R. Stat. Soc. 1922, 85, 87–94. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Casella, G.; Berger, R.L. Statistical Inference; Duxbury Press: New York, NY, USA, 2002; Volume 2. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Bosse, T.; Peters, E.E.; Creutzberg, C.L.; Jürgenliemk-Schulz, I.M.; Jobsen, J.J.; Mens, J.W.; Lutgens, L.C.; van der Steen-Banasik, E.M.; Smit, V.T.; Nout, R.A. Substantial lymph-vascular space invasion (LVSI) is a significant risk factor for recurrence in endometrial cancer--A pooled analysis of PORTEC 1 and 2 trials. Eur. J. Cancer 2015, 51, 1742–1750. [Google Scholar] [CrossRef]
- Ronsini, C.; Iavarone, I.; Braca, E.; Vastarella, M.G.; Della Corte, L.; Vitale, C.; Andreoli, G.; La Mantia, E.; Cobellis, L.; de Franciscis, P. Deep Myometrial Infiltration leads to a measurable Inflammatory Response in Endometrial Cancer. A Prospective Observational Study. Semin. Oncol. 2024, 51, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Atjimakul, T.; Wattanapaisal, P.; Suwiwat, S.; Wanichsuwan, W.; Hanprasertpong, J. Microsatellite instability and oncological outcomes in Thai patients with endometrial cancer. J. Obstet. Gynaecol. J. Inst. Obstet. Gynaecol. 2022, 42, 3117–3123. [Google Scholar] [CrossRef]
- Amor, D.R.; Solé, R.V. Catastrophic shifts and lethal thresholds in a propagating front model of unstable tumor progression. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2014, 90, 022710. [Google Scholar] [CrossRef]
- Rhim, A.D.; Mirek, E.T.; Aiello, N.M.; Maitra, A.; Bailey, J.M.; McAllister, F.; Reichert, M.; Beatty, G.L.; Rustgi, A.K.; Vonderheide, R.H.; et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012, 148, 349–361. [Google Scholar] [CrossRef]
- Restaino, S.; Ronsini, C.; Finelli, A.; Perrone, E.; Scambia, G.; Fanfani, F. Role of blue dye for sentinel lymph node detection in early endometrial cancer. Gynecol. Surg. 2017, 14, 23. [Google Scholar] [CrossRef]
- Rossi, E.C.; Kowalski, L.D.; Scalici, J.; Cantrell, L.; Schuler, K.; Hanna, R.K.; Method, M.; Ade, M.; Ivanova, A.; Boggess, J.F. A comparison of sentinel lymph node biopsy to lymphadenectomy for endometrial cancer staging (FIRES trial): A multicentre, prospective, cohort study. The Lancet. Oncology 2017, 18, 384–392. [Google Scholar] [CrossRef]
- Ronsini, C.; Mosca, L.; Iavarone, I.; Nicoletti, R.; Vinci, D.; Carotenuto, R.M.; Pasanisi, F.; Solazzo, M.C.; De Franciscis, P.; Torella, M.; et al. Oncological outcomes in fertility-sparing treatment in stage IA-G2 endometrial cancer. Front. Oncol. 2022, 12, 965029. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, F.; Li, H.; Ma, D.; Liu, Q.; Li, X. Endometrial cancer G3 harbored the most MMR mutations among endometrial cancer. J. Clin. Oncol. 2020, 38 (Suppl. S15), e18100. [Google Scholar] [CrossRef]
Characteristic | MSS, N = 180 1 | MSI, N = 57 1 | p-Value |
---|---|---|---|
Age | 62 (56; 71) | 64 (59; 71) | 0.142 |
BMI | 29 (25; 32) | 30 (27; 34) | 0.166 |
Missing | 1 | 0 | |
Ethnicity | >0.999 | ||
Caucasian | 178 (99%) | 57 (100%) | |
Hispanic | 1 (0.6%) | 0 (0%) | |
Indian | 1 (0.6%) | 0 (0%) | |
Histology | 0.369 | ||
Endometrioid | 155 (86%) | 52 (91%) | |
Serous | 25 (14%) | 5 (8.8%) | |
Grading | 0.001 | ||
1 | 66 (37%) | 7 (12%) | |
2 | 66 (37%) | 28 (49%) | |
3 | 48 (27%) | 22 (39%) | |
LVSI | 0.296 | ||
Negative | 123 (69%) | 35 (61%) | |
Focal | 16 (9.0%) | 9 (16%) | |
Diffuse | 39 (22%) | 13 (23%) | |
Missing | 2 | 0 | |
Myometrial Invasion | <0.001 | ||
No Infiltration | 2 (1.1%) | 2 (3.5%) | |
<50% | 134 (74%) | 28 (49%) | |
≥50% | 44 (24%) | 27 (47%) | |
p53 | 0.646 | ||
mut | 21 (12%) | 8 (14%) | |
wt | 159 (88%) | 49 (86%) |
Characteristic | MSS, N = 180 | MSI, N = 57 | p-Value |
---|---|---|---|
Lymph node, n (%) | 0.005 | ||
Negative | 168, (93%) | 46, (81%) | |
Positive | 12, (6.7%) | 11, (19%) |
Variable | Estimate | Std. Error | z Value | p-Value | conf.low | conf.high | Odds Ratio | OR 95% CI |
---|---|---|---|---|---|---|---|---|
MSI | 0.126 | 0.044 | 2.843 | 0.005 | 0.039 | 0.213 | 1.134 | 1.04–1.237 |
Variable | Estimate | Std. Error | z Value | p-Value | conf.low | conf.high | Odds Ratio | OR 95% CI |
---|---|---|---|---|---|---|---|---|
MSI | 0.100 | 0.043 | 2.344 | 0.020 | 0.016 | 0.184 | 1.105 | 1.016–1.202 |
Grading 3 | 0.020 | 0.025 | 0.790 | 0.430 | −0.029 | 0.068 | 1.020 | 0.971–1.07 |
LVSI Diffuse | 0.216 | 0.046 | 4.676 | 0.001 | 0.126 | 0.307 | 1.24 | 1.134–1.359 |
Characteristic | Intact Nuclear Expression, n = 180 1 | Loss of Both Heterodimers, n = 8 1 | Loss of MLH1/PMS2, n = 38 1 | Loss of MSH2/MSH6, n = 11 1 | p-Value 2 |
---|---|---|---|---|---|
Lymphnode | 0.002 | ||||
Negative | 168 (93.3%) | 5 (63%) | 30 (79%) | 11 (100%) | |
Positive | 12 (6.6%) | 3 (38%) | 8 (21%) | 0 (0%) |
Variable | Estimate | Std. Error | z Value | p-Value | conf.low | conf.high | Odds Ratio | OR 95% CI |
---|---|---|---|---|---|---|---|---|
Loss of both heterodimers | 0.309 | 0.104 | 2.965 | 0.003 | 0.105 | 0.513 | 1.362 | 1.111–1.67 |
Loss of MLH1/PMS2 | 0.150 | 0.052 | 2.883 | 0.004 | 0.048 | 0.252 | 1.162 | 1.049–1.287 |
Loss of MSH2/MSH6 | −0.066 | 0.089 | −0.741 | 0.460 | −0.242 | 0.109 | 0.936 | 0.785–1.115 |
Variable | Estimate | Std. Error | t Value | p-Value | conf.low | conf.high | OR | OR 95% CI |
---|---|---|---|---|---|---|---|---|
Loss of both heterodimers | 0.286 | 0.098 | 2.920 | 0.004 | 0.094 | 0.478 | 1.331 | 1.099–1.613 |
Loss of MLH1/PMS2 | 0.113 | 0.050 | 2.271 | 0.024 | 0.015 | 0.211 | 1.120 | 1.015–1.235 |
Loss of MSH2/MSH6 | −0.065 | 0.084 | −0.777 | 0.438 | −0.230 | 0.100 | 0.937 | 0.795–1.105 |
Grading 3 | 0.020 | 0.024 | 0.821 | 0.412 | −0.028 | 0.068 | 1.020 | 0.972–1.07 |
LVSI Diffuse | 0.211 | 0.046 | 4.634 | 0.001 | 0.122 | 0.301 | 1.235 | 1.13–1.351 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronsini, C.; Restaino, S.; Paparcura, F.; Vizzielli, G.; Raffone, A.; Di Donna, M.C.; Cucinella, G.; Chiantera, V.; De Franciscis, P. Microsatellite Instability as a Risk Factor for Occult Lymph Node Metastasis in Early-Stage Endometrial Cancer: A Retrospective Multicenter Study. Cancers 2025, 17, 1162. https://doi.org/10.3390/cancers17071162
Ronsini C, Restaino S, Paparcura F, Vizzielli G, Raffone A, Di Donna MC, Cucinella G, Chiantera V, De Franciscis P. Microsatellite Instability as a Risk Factor for Occult Lymph Node Metastasis in Early-Stage Endometrial Cancer: A Retrospective Multicenter Study. Cancers. 2025; 17(7):1162. https://doi.org/10.3390/cancers17071162
Chicago/Turabian StyleRonsini, Carlo, Stefano Restaino, Federico Paparcura, Giuseppe Vizzielli, Antonio Raffone, Mariano Catello Di Donna, Giuseppe Cucinella, Vito Chiantera, and Pasquale De Franciscis. 2025. "Microsatellite Instability as a Risk Factor for Occult Lymph Node Metastasis in Early-Stage Endometrial Cancer: A Retrospective Multicenter Study" Cancers 17, no. 7: 1162. https://doi.org/10.3390/cancers17071162
APA StyleRonsini, C., Restaino, S., Paparcura, F., Vizzielli, G., Raffone, A., Di Donna, M. C., Cucinella, G., Chiantera, V., & De Franciscis, P. (2025). Microsatellite Instability as a Risk Factor for Occult Lymph Node Metastasis in Early-Stage Endometrial Cancer: A Retrospective Multicenter Study. Cancers, 17(7), 1162. https://doi.org/10.3390/cancers17071162