Temporal Validation of an FDG-PET-Radiomic Model for Distant-Relapse-Free-Survival After Radio-Chemotherapy for Pancreatic Adenocarcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Image Acquisition and Tumor Segmentation
2.3. Extraction of Radiomic Features
2.4. Model Creation
2.5. Model Validation
2.6. Data Set Harmonization
3. Results
3.1. Mori Model Validation
3.2. Fine-Tuned Models Validation
3.3. Model After Harmonization
3.4. Addition of Grading
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Facts & Figures 2020. Atlanta: American Cancer Society. 2020. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf (accessed on 11 March 2025).
- European Cancer Information System. 2022 New Cancer Cases and Cancer Death on the Rise in the EU. Available online: https://ecis.jrc.ec.europa.eu/en (accessed on 11 March 2025).
- Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet 2011, 378, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Milella, M.; Bassi, C.; Boggi, U.; Brunetti, O.; Cavaliere, A.; Crippa, S.; De Vita, F.; Falconi, M.; Frassineti, G.L.; Giommoni, E.; et al. Evolving pancreatic cancer treatment: From diagnosis to healthcare management. Crit. Rev. Oncol. Hematol. 2022, 169, 103571. [Google Scholar] [CrossRef]
- Ben-Josef, E.; Schipper, M.; Francis, I.R.; Hadley, S.; Ten-Haken, R.; Lawrence, T.; Normolle, D.; Simeone, D.M.; Sonnenday, C.; Abrams, R.; et al. A phase I/II trial of intensity modulated radiation (IMRT) dose escalation with concurrent fixed-dose rate gemcitabine (FDR-G) in patients with unresectable pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 1166–1171. [Google Scholar] [CrossRef]
- Berger, A.C.; Garcia, M., Jr.; Hoffman, J.P.; Regine, W.F.; Abrams, R.A.; Safran, H.; Konski, A.; Benson, A.B., 3rd; MacDonald, J.; Willett, C.G. Postresection CA 19-9 predicts overall survival in patients with pancreatic cancer treated with adjuvant chemoradiation: A prospective validation by RTOG 9704. J. Clin. Oncol. 2008, 26, 5918–5922. [Google Scholar] [CrossRef]
- Hammel, P.; Huguet, F.; van Laethem, J.L.; Goldstein, D.; Glimelius, B.; Artru, P.; Borbath, I.; Bouché, O.; Shannon, J.; André, T.; et al. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA 2016, 315, 1844–1853. [Google Scholar] [CrossRef]
- Suker, M.; Beumer, B.R.; Sadot, E.; Marthey, L.; Faris, J.E.; Mellon, E.A.; El-Rayes, B.F.; Wang-Gillam, A.; Lacy, J.; Hosein, P.J.; et al. FOLFIRINOX for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis. Lancet Oncol. 2016, 17, 801–810. [Google Scholar] [CrossRef]
- Krishnan, S.; Chadha, A.S.; Suh, Y.; Chen, H.C.; Rao, A.; Das, P.; Minsky, B.D.; Mahmood, U.; Delclos, M.E.; Sawakuchi, G.O.; et al. Focal Radiation Therapy Dose Escalation Improves Overall Survival in Locally Advanced Pancreatic Cancer Patients Receiving Induction Chemotherapy and Consolidative Chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 755–765. [Google Scholar] [CrossRef]
- Colbert, L.E.; Moningi, S.; Chadha, A.; Amer, A.; Lee, Y.; Wolff, R.A.; Varadhachary, G.; Fleming, J.; Katz, M.; Das, P.; et al. Dose escalation with an IMRT technique in 15 to 28 fractions is better tolerated than standard doses of 3DCRT for LAPC. Adv. Radiat. Oncol. 2017, 2, 403–415. [Google Scholar] [CrossRef]
- Chung, S.Y.; Chang, J.S.; Lee, B.M.; Kim, K.H.; Lee, K.J.; Seong, J. Dose escalation in locally advanced pancreatic cancer patients receiving chemoradiotherapy. Radiother. Oncol. 2017, 123, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Reyngold, M.; O’Reilly, E.M.; Varghese, A.M.; Fiasconaro, M.; Zinovoy, M.; Romesser, P.B.; Wu, A.; Hajj, C.; Cuaron, J.J.; Tuli, R.; et al. Association of Ablative Radiation Therapy With Survival Among Patients With Inoperable Pancreatic Cancer. JAMA Oncol. 2021, 7, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Passoni, P.; Reni, M.; Cattaneo, G.M.; Slim, N.; Cereda, S.; Balzano, G.; Castoldi, R.; Longobardi, B.; Bettinardi, V.; Gianolli, L.; et al. Hypofractionated image-guided IMRT in advanced pancreatic cancer with simultaneous integrated boost to infiltrated vessels concomitant with capecitabine: A phase I study. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Reyngold, M.; Parikh, P.; Crane, C.H. Ablative radiation therapy for locally advanced pancreatic cancer: Techniques and results. Radiat. Oncol. 2019, 14, 95. [Google Scholar] [CrossRef]
- Passoni, P.; Reni, M.; Broggi, S.; Slim, N.; Fodor, A.; Macchini, M.; Orsi, G.; Peretti, U.; Balzano, G.; Tamburrino, D.; et al. Hypofractionated radiotherapy concomitant to capecitabine after induction chemotherapy for advanced pancreatic adenocarcinoma. Clin. Transl. Radiat. Oncol. 2024, 47, 100778. [Google Scholar] [CrossRef]
- Elkhamisy, S.A.; Valentini, C.; Lattermann, A.; Radhakrishna, G.; Künzel, L.A.; Löck, S.; Troost, E.G.C. Normo- or Hypo-Fractionated Photon or Proton Radiotherapy in the Management of Locally Advanced Unresectable Pancreatic Cancer: A Systematic Review. Cancers 2023, 15, 3771. [Google Scholar] [CrossRef]
- Brunner, T.B.; Nestle, U.; Grosu, A.L.; Partridge, M. SBRT in pancreatic cancer: What is the therapeutic window? Radiother. Oncol. 2015, 114, 109–116. [Google Scholar] [CrossRef]
- de Geus, S.W.L.; Eskander, M.F.; Kasumova, G.G.; Ng, S.C.; Kent, T.S.; Mancias, J.D.; Callery, M.P.; Mahadevan, A.; Tseng, J.F. Stereotactic body radiotherapy for unresected pancreatic cancer: A nationwide review. Cancer 2017, 123, 4158–4167. [Google Scholar] [CrossRef]
- Herman, J.M.; Chang, D.T.; Goodman, K.A.; Dholakia, A.S.; Raman, S.P.; Hacker-Prietz, A.; Iacobuzio-Donahue, C.A.; Griffith, M.E.; Pawlik, T.M.; Pai, J.S.; et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 2015, 121, 1128–1137. [Google Scholar] [CrossRef]
- Liu, J.; Sidiqi, B.; McComas, K.; Gogineni, E.; Andraos, T.; Crane, C.H.; Chang, D.T.; Goodman, K.A.; Hall, W.A.; Hoffe, S.; et al. SBRT for Pancreatic Cancer: A Radiosurgery Society Case-Based Practical Guidelines to Challenging Cases. Pract. Radiat. Oncol. 2024, 14, 555–573. [Google Scholar] [CrossRef]
- Parisi, S.; Ferini, G.; Cacciola, A.; Lillo, S.; Tamburella, C.; Santacaterina, A.; Bottari, A.; Brogna, A.; Ferrantelli, G.; Pontoriero, A.; et al. A non-surgical COMBO-therapy approach for locally advanced unresectable pancreatic adenocarcinoma: Preliminary results of a prospective study. Radiol. Med. 2022, 127, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Comito, T.; Ghidini, A.; Torri, V.; Scorsetti, M.; Barni, S. Stereotactic Body Radiation Therapy for Locally Advanced Pancreatic Cancer: A Systematic Review and Pooled Analysis of 19 Trials. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Tchelebi, L.T.; Lehrer, E.J.; Trifiletti, D.M.; Sharma, N.K.; Gusani, N.J.; Crane, C.H.; Zaorsky, N.G. Conventionally fractionated radiation therapy versus stereotactic body radiation therapy for locally advanced pancreatic cancer (CRiSP): An international systematic review and meta-analysis. Cancer 2020, 126, 2120–2131. [Google Scholar] [CrossRef] [PubMed]
- Zaorsky, N.G.; Lehrer, E.J.; Handorf, E.; Meyer, J.E. Dose Escalation in Stereotactic Body Radiation Therapy for Pancreatic Cancer: A Meta-Analysis. Am. J. Clin. Oncol. 2019, 42, 46–55. [Google Scholar] [CrossRef]
- Broggi, S.; Passoni, P.; Tiberio, P.; Cicchetti, A.; Cattaneo, G.M.; Longobardi, B.; Mori, M.; Reni, M.; Slim, N.; Del Vecchio, A.; et al. Stomach and duodenum dose-volume constraints for locally advanced pancreatic cancer patients treated in 15 fractions in combination with chemotherapy. Front. Oncol. 2023, 12, 983984. [Google Scholar] [CrossRef]
- Loi, M.; Magallon-Baro, A.; Suker, M.; van Eijck, C.; Sharma, A.; Hoogeman, M.; Nuyttens, J. Pancreatic cancer treated with SBRT: Effect of anatomical interfraction variations on dose to organs at risk. Radiother. Oncol. 2019, 134, 67–73. [Google Scholar] [CrossRef]
- Hall, W.A.; Small, C.; Paulson, E.; Koay, E.J.; Crane, C.; Intven, M.; Daamen, L.A.; Meijer, G.J.; Heerkens, H.D.; Bassetti, M.; et al. Magnetic Resonance Guided Radiation Therapy for Pancreatic Adenocarcinoma, Advantages, Challenges, Current Approaches, and Future Directions. Front. Oncol. 2021, 11, 628155. [Google Scholar] [CrossRef]
- Grimbergen, G.; Eijkelenkamp, H.; Snoeren, L.M.W.; Bahij, R.; Bernchou, U.; van der Bijl, E.; Heerkens, H.D.; Binda, S.; Ng, S.S.W.; Bouchart, C.; et al. Treatment planning for MR-guided SBRT of pancreatic tumors on a 1.5 T MR-Linac: A global consensus protocol. Clin. Transl. Radiat. Oncol. 2024, 47, 100797. [Google Scholar] [CrossRef]
- Nierer, L.; Eze, C.; da Silva Mendes, V.; Braun, J.; Thum, P.; von Bestenbostel, R.; Kurz, C.; Landry, G.; Reiner, M.; Niyazi, M.; et al. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: Liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat. Oncol. 2022, 17, 53. [Google Scholar] [CrossRef]
- Teoh, S.; Ooms, A.; George, B.; Owens, R.; Chu, K.Y.; Drabble, J.; Robinson, M.; Parkes, M.J.; Swan, L.; Griffiths, L.; et al. Evaluation of hypofractionated adaptive radiotherapy using the MR Linac in localised pancreatic cancer: Protocol summary of the Emerald-Pancreas phase 1/expansion study located at Oxford University Hospital, UK. BMJ Open 2023, 13, e068906. [Google Scholar] [CrossRef] [PubMed]
- Jan, I.S.; Ch’ang, H.J. Selection of patients with pancreatic adenocarcinoma who may benefit from radiotherapy. Radiat. Oncol. 2023, 18, 137. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 2010, 362, 1605–1617. [Google Scholar] [CrossRef] [PubMed]
- Fong, Z.V.; Winter, J.M. Biomarkers in pancreatic cancer: Diagnostic, prognostic, and predictive. Cancer J. 2012, 18, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Harsha, H.C.; Kandasamy, K.; Ranganathan, P.; Rani, S.; Ramabadran, S.; Gollapudi, S.; Balakrishnan, L.; Dwivedi, S.B.; Telikicherla, D.; Selvan, L.D.; et al. A compendium of potential biomarkers of pancreatic cancer. PLoS Med. 2009, 6, e1000046. [Google Scholar] [CrossRef]
- Nasief, H.; Hall, W.; Zheng, C.; Tsai, S.; Wang, L.; Erickson, B.; Li, X.A. Improving Treatment Response Prediction for Chemoradiation Therapy of Pancreatic Cancer Using a Combination of Delta-Radiomics and the Clinical Biomarker CA19-9. Front. Oncol. 2020, 9, 1464. [Google Scholar] [CrossRef]
- Fiore, M.; Taralli, S.; Trecca, P.; Scolozzi, V.; Marinelli, L.; Triumbari, E.K.A.; Caputo, D.; Angeletti, S.; Ciccozzi, M.; Coppola, A.; et al. A Bio-Imaging Signature as a Predictor of Clinical Outcomes in Locally Advanced Pancreatic Cancer. Cancers 2020, 12, 2016. [Google Scholar] [CrossRef]
- Wilson, J.M.; Mukherjee, S.; Brunner, T.B.; Partridge, M.; Hawkins, M.A. Correlation of 18F-Fluorodeoxyglucose Positron Emission Tomography Parameters with Patterns of Disease Progression in Locally Advanced Pancreatic Cancer after Definitive Chemoradiotherapy. Clin. Oncol. (R. Coll. Radiol.) 2017, 29, 370–377. [Google Scholar] [CrossRef]
- Mellon, E.A.; Jin, W.H.; Frakes, J.M.; Centeno, B.A.; Strom, T.J.; Springett, G.M.; Malafa, M.P.; Shridhar, R.; Hodul, P.J.; Hoffe, S.E. Predictors and survival for pathologic tumor response grade in borderline resectable and locally advanced pancreatic cancer treated with induction chemotherapy and neoadjuvant stereotactic body radiotherapy. Acta Oncol. 2017, 56, 391–397. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Konert, T.; Everitt, S.; La Fontaine, M.D.; van de Kamer, J.B.; MacManus, M.P.; Vogel, W.V.; Callahan, J.; Sonke, J.J. Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any? PLoS ONE 2020, 15, e0228793. [Google Scholar] [CrossRef]
- Zhu, A.; Lee, D.; Shim, H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin. Oncol. 2011, 38, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Osipov, A.; Fraass, B.; Sandler, H.; Zhang, X.; Nissen, N.; Hendifar, A.; Tuli, R. Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET images for pancreatic cancer patients. J. Gastrointest. Oncol. 2017, 8, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Yang, W.; Fraass, B.; Sandler, H.M.; Tuli, R. Prognostic modeling of locally advanced pancreatic cancer treated with radiation therapy using [18F] FDG-PET features and CA-19-9. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 2361. [Google Scholar] [CrossRef]
- Cui, Y.; Song, J.; Pollom, E.; Alagappan, M.; Shirato, H.; Chang, D.T.; Koong, A.C.; Li, R. Quantitative Analysis of (18)F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 102–109. [Google Scholar] [CrossRef]
- Zhang, A.; Ren, S.; Yuan, Y.; Li, X.; Zhu, X.; Jiang, L.; Li, D.; Zuo, C. Prognostic values of 18F-FDG PET/CT metabolic parameters and clinical figures in locally advanced pancreatic cancer underwent chemotherapy combined with stereotactic body radiation therapy. Medicine 2019, 98, e15064. [Google Scholar] [CrossRef]
- Ren, S.; Zhu, X.; Zhang, A.; Li, D.; Zuo, C.; Zhang, H. Prognostic value of 18F-FDG PET /CT metabolic parameters in patients with locally advanced pancreatic Cancer treated with stereotactic body radiation therapy. Cancer Imaging 2020, 20, 22. [Google Scholar] [CrossRef]
- Wang, F.; Cheng, C.; Ren, S.; Wu, Z.; Wang, T.; Yang, X.; Zuo, C.; Yan, Z.; Liu, Z. Prognostic Evaluation Based on Dual-Time 18F-FDG PET/CT Radiomics Features in Patients with Locally Advanced Pancreatic Cancer Treated by Stereotactic Body Radiation Therapy. J. Oncol. 2022, 2022, 6528865. [Google Scholar] [CrossRef]
- Belli, M.L.; Mori, M.; Broggi, S.; Cattaneo, G.M.; Bettinardi, V.; Dell’Oca, I.; Fallanca, F.; Passoni, P.; Vanoli, E.G.; Calandrino, R.; et al. Quantifying the robustness of [18F]FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients. Phys. Med. 2018, 49, 105–111. [Google Scholar] [CrossRef]
- Bogowicz, M.; Vuong, D.; Huellner, M.W.; Pavic, M.; Andratschke, N.; Gabrys, H.S.; Guckenberger, M.; Tanadini-Lang, S. CT radiomics and PET radiomics: Ready for clinical implementation? Q. J. Nucl. Med. Mol. Imaging 2019, 63, 355–370. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, S.H.; Ahn, H.; Lee, S.M.; Jang, S.J. Predicting Survival in Patients with Pancreatic Cancer by Integrating Bone Marrow FDG Uptake and Radiomic Features of Primary Tumor in PET/CT. Cancers 2021, 13, 3563. [Google Scholar] [CrossRef]
- Park, Y.J.; Park, Y.S.; Kim, S.T.; Hyun, S.H. A Machine Learning Approach Using [18F]FDG PET-Based Radiomics for Prediction of Tumor Grade and Prognosis in Pancreatic Neuroendocrine Tumor. Mol. Imaging Biol. 2023, 25, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Valukas, C.; Chawla, A. Measuring response to neoadjuvant therapy using biomarkers in pancreatic cancer: A narrative review. Chin. Clin. Oncol. 2022, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Gu, B.; Song, S.; Zhang, B.; Wang, W.; Xu, J.; Yu, X.; Shi, S. A Novel Validated Recurrence Stratification System Based on 18F-FDG PET/CT Radiomics to Guide Surveillance After Resection of Pancreatic Cancer. Front. Oncol. 2021, 11, 650266. [Google Scholar] [CrossRef]
- Xing, H.; Hao, Z.; Zhu, W.; Sun, D.; Ding, J.; Zhang, H.; Liu, Y.; Huo, L. Preoperative prediction of pathological grade in pancreatic ductal adenocarcinoma based on 18F-FDG PET/CT radiomics. EJNMMI Res. 2021, 11, 19. [Google Scholar] [CrossRef]
- Mori, M.; Passoni, P.; Incerti, E.; Bettinardi, V.; Broggi, S.; Reni, M.; Whybra, P.; Spezi, E.; Vanoli, E.G.; Gianolli, L.; et al. Training and validation of a robust PET radiomic-based index to predict distant-relapse-free-survival after radio-chemotherapy for locally advanced pancreatic cancer. Radiother. Oncol. 2020, 153, 258–264. [Google Scholar] [CrossRef]
- Bilimoria, K.Y.; Bentrem, D.J.; Ko, C.Y.; Ritchey, J.; Stewart, A.K.; Winchester, D.P.; Talamonti, M.S. Validation of the 6th edition AJCC pancreatic cancer staging system. Report from the National Cancer Database. Cancer 2007, 110, 738–744. [Google Scholar] [CrossRef]
- Wiltberger, G.; Krenzien, F.; Benzing, C.; Atanasov, G.; Klein, F.; Hau, H.M.; Feldbrügge, L.; Pratschke, J.; Schmelzle, M.; Jonas, S. Prognostic Accuracy of the Seventh Edition of the TNM Classification Compared with the Fifth and Sixth Edition for Distal Cholangiocarcinoma. Ann. Surg. Oncol. 2016, 23, 1320–1326. [Google Scholar] [CrossRef]
- Reni, M.; Cereda, S.; Rognone, A.; Belli, C.; Ghidini, M.; Longoni, S.; Fugazza, C.; Rezzonico, S.; Passoni, P.; Slim, N.; et al. A randomized phase II trial of two different 4-drug combinations in advanced pancreatic adenocarcinoma: Cisplatin, capecitabine, gemcitabine plus either epirubicin or docetaxel (PEXG or PDXG regimen). Cancer Chemother. Pharmacol. 2012, 69, 115–123. [Google Scholar] [CrossRef]
- Whybra, P.; Parkinson, C.; Foley, K.; Staffurth, J.; Spezi, E. Assessing radiomic feature robustness to interpolation in 18F-FDG PET imaging. Sci. Rep. 2019, 9, 9649. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Leger, S.; Vallières, M.; Löck, S. Image biomarker standardisation initiative. Radiology 2016. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Presotto, L.; Bettinardi, V.; De Bernardi, E.; Belli, M.L.; Cattaneo, G.M.; Broggi, S.; Fiorino, C. PET textural features stability and pattern discrimination power for radiomics analysis: An “ad-hoc” phantoms study. Phys. Med. 2018, 50, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Tixier, F.; Hatt, M.; Le Rest, C.C.; Le Pogam, A.; Corcos, L.; Visvikis, D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J. Nucl. Med. 2012, 53, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Da-Ano, R.; Visvikis, D.; Hatt, M. Harmonization strategies for multicenter radiomics investigations. Phys. Med. Biol. 2020, 65, 24TR02. [Google Scholar] [CrossRef]
- Aide, N.; Lasnon, C.; Veit-Haibach, P.; Sera, T.; Sattler, B.; Boellaard, R. EANM/EARL harmonization strategies in PET quantification: From daily practice to multicentre oncological studies. Eur. J. Nucl. Med. Mol. Imaging. 2017, 44 (Suppl. S1), 17–31. [Google Scholar] [CrossRef]
- Kaalep, A.; Sera, T.; Rijnsdorp, S.; Yaqub, M.; Talsma, A.; Lodge, M.A.; Boellaard, R. Feasibility of state of the art PET/CT systems performance harmonisation. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1344–1361. [Google Scholar] [CrossRef]
- Orlhac, F.; Eertink, J.J.; Cottereau, A.S.; Zijlstra, J.M.; Thieblemont, C.; Meignan, M.; Boellaard, R.; Buvat, I. A Guide to ComBat Harmonization of Imaging Biomarkers in Multicenter Studies. J. Nucl. Med. 2022, 63, 172–179. [Google Scholar] [CrossRef]
- Rossi, G.; Altabella, L.; Simoni, N.; Benetti, G.; Rossi, R.; Venezia, M.; Paiella, S.; Malleo, G.; Salvia, R.; Guariglia, S.; et al. Computed tomography-based radiomic to predict resectability in locally advanced pancreatic cancer treated with chemotherapy and radiotherapy. World J. Gastrointest. Oncol. 2022, 14, 703–715. [Google Scholar] [CrossRef]
- Loi, S.; Mori, M.; Palumbo, D.; Crippa, S.; Palazzo, G.; Spezi, E.; Del Vecchio, A.; Falconi, M.; De Cobelli, F.; Fiorino, C. Limited impact of discretization/interpolation parameters on the predictive power of CT radiomic features in a surgical cohort of pancreatic cancer patients. Radiol. Med. 2023, 128, 799–807. [Google Scholar] [CrossRef]
- Qi, L.; Li, X.; Ni, J.; Du, Y.; Gu, Q.; Liu, B.; He, J.; Du, J. Construction of feature selection and efficacy prediction model for transformation therapy of locally advanced pancreatic cancer based on CT, 18F-FDG PET/CT, DNA mutation, and CA19.9. Cancer Cell Int. 2025, 25, 19. [Google Scholar] [CrossRef]
- Li, K.; Xiao, J.; Yang, J.; Li, M.; Xiong, X.; Nian, Y.; Qiao, L.; Wang, H.; Eresen, A.; Zhang, Z.; et al. Association of radiomic imaging features and gene expression profile as prognostic factors in pancreatic ductal adenocarcinoma. Am. J. Transl. Res. 2019, 11, 4491–4499. [Google Scholar] [PubMed]
- Kaissis, G.A.; Jungmann, F.; Ziegelmayer, S.; Lohöfer, F.K.; Harder, F.N.; Schlitter, A.M.; Muckenhuber, A.; Steiger, K.; Schirren, R.; Friess, H.; et al. Multiparametric Modelling of Survival in Pancreatic Ductal Adenocarcinoma Using Clinical, Histomorphological, Genetic and Image-Derived Parameters. J. Clin. Med. 2020, 9, 1250. [Google Scholar] [CrossRef]
- Bian, Y.; Zheng, Z.; Fang, X.; Jiang, H.; Zhu, M.; Yu, J.; Zhao, H.; Zhang, L.; Yao, J.; Lu, L.; et al. Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma. Radiology 2023, 306, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, H.; Li, Q.; Liu, F.; Fang, X.; Li, J.; Yu, J.; Feng, X.; Zhu, M.; Li, N.; et al. CT Radiomics and Machine-Learning Models for Predicting Tumor-Stroma Ratio in Patients With Pancreatic Ductal Adenocarcinoma. Front. Oncol. 2021, 11, 707288. [Google Scholar] [CrossRef]
- Salinas-Miranda, E.; Khalvati, F.; Namdar, K.; Deniffel, D.; Dong, X.; Abbas, E.; Wilson, J.M.; O’Kane, G.M.; Knox, J.; Gallinger, S.; et al. Validation of Prognostic Radiomic Features From Resectable Pancreatic Ductal Adenocarcinoma in Patients With Advanced Disease Undergoing Chemotherapy. Can. Assoc. Radiol. J. 2021, 72, 605–613. [Google Scholar] [CrossRef]
- Tikhonova, V.S.; Karmazanovsky, G.G.; Kondratyev, E.V.; Gruzdev, I.S.; Mikhaylyuk, K.A.; Sinelnikov, M.Y.; Revishvili, A.S. Radiomics model-based algorithm for preoperative prediction of pancreatic ductal adenocarcinoma grade. Eur. Radiol. 2023, 33, 1152–1161. [Google Scholar] [CrossRef]
- van den Boorn, H.G.; Dijksterhuis, W.P.M.; van der Geest, L.G.M.; de Vos-Geelen, J.; Besselink, M.G.; Wilmink, J.W.; van Oijen, M.G.H.; van Laarhoven, H.W.M. SOURCE-PANC: A Prediction Model for Patients With Metastatic Pancreatic Ductal Adenocarcinoma Based on Nationwide Population-Based Data. J. Natl. Compr. Cancer Netw. 2021, 19, 1045–1053. [Google Scholar] [CrossRef]
- Zhao, B.; Xia, C.; Xia, T.; Qiu, Y.; Zhu, L.; Cao, B.; Gao, Y.; Ge, R.; Cai, W.; Ding, Z.; et al. Development of a radiomics-based model to predict occult liver metastases of pancreatic ductal adenocarcinoma: A multicenter study. Int. J. Surg. 2024, 110, 740–749. [Google Scholar] [CrossRef]
- Mokhtari, A.; Casale, R.; Salahuddin, Z.; Paquier, Z.; Guiot, T.; Woodruff, H.C.; Lambin, P.; Van Laethem, J.-L.; Hendlisz, A.; Bali, M.A. Development of Clinical Radiomics-Based Models to Predict Survival Outcome in Pancreatic Ductal Adenocarcinoma: A Multicenter Retrospective Study. Diagnostics 2024, 14, 712. [Google Scholar] [CrossRef]
- Tamburrino, D.; Partelli, S.; Crippa, S.; Manzoni, A.; Maurizi, A.; Falconi, M. Selection criteria in resectable pancreatic cancer: A biological and morphological approach. World J. Gastroenterol. 2014, 20, 11210–11215. [Google Scholar] [CrossRef]
- Guo, S.-W.; Shen, J.; Gao, J.-H.; Shi, X.-H.; Gao, S.-Z.; Wang, H.; Li, B.; Yuan, W.-L.; Lin, L.; Jin, G. A preoperative risk model for early recurrence after radical resection may facilitate initial treatment decisions concerning the use of neoadjuvant therapy for patients with pancreatic ductal adenocarcinoma. Surgery 2020, 168, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.K.; Ha, S.; Jeong, J.B.; Oh, S.W. The value of PET/CT radiomics for predicting survival outcomes in patients with pancreatic ductal adenocarcinoma. Sci. Rep. 2024, 14, 28958. [Google Scholar] [CrossRef]
- Palumbo, D.; Mori, M.; Prato, F.; Crippa, S.; Belfiori, G.; Reni, M.; Mushtaq, J.; Aleotti, F.; Guazzarotti, G.; Cao, R.; et al. Prediction of Early Distant Recurrence in Upfront Resectable Pancreatic Adenocarcinoma: A Multidisciplinary, Machine Learning-Based Approach. Cancers 2021, 13, 4938. [Google Scholar] [CrossRef] [PubMed]
Train | Validation | MW p-Value | |
---|---|---|---|
N° of patients | 145 | 70 | |
Sex | |||
Male | 76 (52.41%) | 30 (42.86) | 0.190 |
Female | 69 (47.59%) | 40 (57.14%) | |
Age (median; range) (y) | 64.41 [44–85] | 66.55 [35–87] | 0.925 |
Tumor side | |||
Body | 15 (10.35%) | 6 (8.57%) | 0.684 |
Head | 44 (30.35%) | 35 (50%) | 0.005 * |
Tail | 1 (0.69%) | 2 (2.86%) | 0.207 |
Head-body | 34 (23.45%) | 15 (21.43%) | 0.742 |
Body-tail | 12 (8.27%) | 5 (7.14%) | 0.775 |
Missing | 39 (26.89%) | 7 (10%) | 0.005 * |
Histology | |||
Adenocarcinoma | 119 (82.07%) | 63 (90%) | 0.132 |
Cystoadenocarcinoma | 2 (1.38%) | 0 (0%) | 0.328 |
Missing | 24 (16.55%) | 7 (10%) | 0.202 |
Tumor stage | |||
III | 129 (88.97%) | 60 (85.71%) | 0.495 |
IV | 16 (11.03) | 10 (14.29) | |
Distant progression (DRFS) | |||
Yes | 90 (62.07%) | 41 (58.57%) | 0.624 |
No | 55 (37.93%) | 29 (41.43%) | |
Time of DRFS (median, range) (m) | 6.88 [0–33] | 7.52 [0.3–39.3] | 0.909 |
Local Progression (LRFS) | |||
Yes | 74 (51.03%) | 35 (50%) | 0.888 |
No | 42 (28.97%) | 21 (30%) | 0.877 |
Missing | 29 (20%) | 14 (20%) | 1.0 |
Time LRFS (median; range) (m) | 14.9 [4.76–46.96] | 14.92 [1.35–28] | 0.697 |
Overall Survival (median; range) (m) | 18.7 [4.76–51.83] | 21.06 [7.87–42.33] | 0.923 |
Follow-up (mean; range) (m) | 13.04 [0.35–166.8] | 15.33 [0.71–59.29] | 0.605 |
Scanner PET | |||
Discovery—ST | 31 (21.38%) | 7 (10%) | 0.041 * |
Discovery—STE | 84 (57.93%) | 49 (70%) | 0.089 |
Discovery—690 | 29 (20%) | 14 (20%) | 0.328 |
Other | 2 (1.38%) | 0 (0%) | 1.0 |
Before Harmonization | After Harmonization | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable * | Coeff. | p-Value Var. | p-Value Model | C-Index | HR | p-Value KM | Coeff. | p-Value Var. | p-Value Model | C-Index | HR | p-Value KM |
Mori model | ||||||||||||
Train | ||||||||||||
Morphological COMshift | −0.235 | 0.098 | 0.0009 | 0.603 | 1.85 | 0.005 | −0.298 | 0.026 | 0.0005 | 0.607 | 2.03 | 0.002 |
Statistical Percentile 10 | 1.42 × 10−4 | 0.0015 | 1.35 × 10−4 | 0.0043 | ||||||||
Validation | ||||||||||||
PI ** | 0.49 | 0.126 | 0.12 | 0.55 | 1.72 | 0.107 | 0.525 | 0.12 | 0.11 | 0.554 | 2.07 | 0.028 |
Model 2 | ||||||||||||
Train | ||||||||||||
Statistical Percentile 10 | 1.52 × 10−4 | 0.0007 | 0.0011 | 0.605 | 2.53 | 0.0002 | 1.46 × 10−4 | 0.0023 | 0.0033 | 0.6 | 1.81 | 0.007 |
Validation | ||||||||||||
PI ** | 0.644 | 0.059 | 0.0522 | 0.543 | 1.7 | 0.12 | 0.743 | 0.046 | 0.042 | 0.551 | 1.67 | 0.128 |
Model 3 | ||||||||||||
Train | ||||||||||||
Statistical min grey level | 1.97 × 10−4 | 0.0004 | 0.0008 | 0.589 | 2.83 | 0.0001 | 2.08 × 10−4 | 0.0009 | 0.0012 | 0.592 | 3.01 | < 0.0001 |
Intensity histogram coeff. of Variation | −3.86 | 0.0099 | −4.042 | 0.008 | ||||||||
Validation | ||||||||||||
PI ** | 0.75 | 0.0232 | 0.021 | 0.592 | 1.87 | 0.049 | 0.83 | 0.012 | 0.0103 | 0.603 | 1.97 | 0.0415 |
Model 4 | ||||||||||||
Train | ||||||||||||
Statistical Percentile 10 | 1.89 × 10−4 | 0.0001 | 0.001 | 0.641 | 4.86 | < 0.0001 | ||||||
GLSZM3D grey level variance | −8.29 × 10−3 | 0.0104 | ||||||||||
Validation | ||||||||||||
PI ** | 0.385 | 0.0588 | 0.042 | 0.581 | 2.15 | 0.0276 |
Before Harmonization | After Harmonization | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable * | Coeff. | p-Value Var. | p-Value Model | C-Index | HR | p-Value KM | Coeff. | p-Value Var. | p-Value Model | C-Index | HR | p-Value KM |
Mori model | ||||||||||||
Train | ||||||||||||
Morphological COMshift | −0.266 | 0.0793 | 0.0002 | 0.633 | 3.02 | < 0.0001 | −0.293 | 0.057 | 0.002 | 0.632 | 2.88 | <0.0001 |
Statistical Percentile 10 | 1.86 × 10−4 | 0.003 | 1.79 × 10−4 | 0.0003 | ||||||||
Grading | 0.5001 | 0.107 | 0.508 | 0.102 | ||||||||
Validation | ||||||||||||
PI ** | 0.581 | 0.0636 | 0.068 | 0.582 | 1.74 | 0.18 | 0.63 | 0.0485 | 0.053 | 0.59 | 13.42 | 0.0188 |
Model 2 | ||||||||||||
Train | ||||||||||||
Statistical Percentile 10 | 2.02 × 10−4 | 0.0001 | 0.0004 | 0.624 | 2.20 | 0.001 | 1.94 × 10−4 | 0.0001 | 0.0004 | 0.619 | 2.26 | 0.0024 |
Grading | 0.431 | 0.161 | 0.433 | 0.159 | ||||||||
Validation | ||||||||||||
PI ** | 0.616 | 0.0514 | 0.057 | 0.0575 | 2.13 | 0.074 | 0.694 | 0.0348 | 0.0396 | 0.601 | 1.67 | 0.2103 |
Model 3 | ||||||||||||
Train | ||||||||||||
Statistical min grey level | 2.69 × 10−4 | <0.0001 | 0.0002 | 0.619 | 2.76 | 0.0001 | 2.62 × 10−4 | 0.0001 | 0.0002 | 0.617 | 3.27 | <0.0001 |
Intensity histogram coeff. of Variation | −4.624 | 0.0043 | −4.79 | 0.0035 | ||||||||
Grading | 0.560 | 0.0706 | 0.572 | 0.0655 | ||||||||
Validation | ||||||||||||
PI ** | 0.622 | 0.021 | 0.026 | 0.625 | 2.44 | 0.043 | 0.637 | 0.0063 | 0.0077 | 0.625 | 2.6 | 0.0417 |
Model 4 | ||||||||||||
Train | ||||||||||||
Statistical Percentile 10 | 2.36 × 10−4 | <0.0001 | 0.0001 | 0.654 | 4.48 | <0.0001 | ||||||
GLSZM3D grey level variance | −8.29 × 10−3 | 0.0172 | ||||||||||
Grading | 0.402 | 0.1936 | ||||||||||
Validation | ||||||||||||
PI ** | 0.597 | 0.0150 | 0.0072 | 0.623 | 2.34 | 0.0488 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincenzi, M.M.; Mori, M.; Passoni, P.; Tummineri, R.; Slim, N.; Midulla, M.; Palazzo, G.; Belardo, A.; Spezi, E.; Picchio, M.; et al. Temporal Validation of an FDG-PET-Radiomic Model for Distant-Relapse-Free-Survival After Radio-Chemotherapy for Pancreatic Adenocarcinoma. Cancers 2025, 17, 1036. https://doi.org/10.3390/cancers17061036
Vincenzi MM, Mori M, Passoni P, Tummineri R, Slim N, Midulla M, Palazzo G, Belardo A, Spezi E, Picchio M, et al. Temporal Validation of an FDG-PET-Radiomic Model for Distant-Relapse-Free-Survival After Radio-Chemotherapy for Pancreatic Adenocarcinoma. Cancers. 2025; 17(6):1036. https://doi.org/10.3390/cancers17061036
Chicago/Turabian StyleVincenzi, Monica Maria, Martina Mori, Paolo Passoni, Roberta Tummineri, Najla Slim, Martina Midulla, Gabriele Palazzo, Alfonso Belardo, Emiliano Spezi, Maria Picchio, and et al. 2025. "Temporal Validation of an FDG-PET-Radiomic Model for Distant-Relapse-Free-Survival After Radio-Chemotherapy for Pancreatic Adenocarcinoma" Cancers 17, no. 6: 1036. https://doi.org/10.3390/cancers17061036
APA StyleVincenzi, M. M., Mori, M., Passoni, P., Tummineri, R., Slim, N., Midulla, M., Palazzo, G., Belardo, A., Spezi, E., Picchio, M., Reni, M., Chiti, A., del Vecchio, A., Fiorino, C., & Di Muzio, N. G. (2025). Temporal Validation of an FDG-PET-Radiomic Model for Distant-Relapse-Free-Survival After Radio-Chemotherapy for Pancreatic Adenocarcinoma. Cancers, 17(6), 1036. https://doi.org/10.3390/cancers17061036