Hepatocellular Carcinoma After HCV Eradication with Direct-Acting Antivirals: A Reappraisal Based on New Parameters to Assess the Persistence of Risk
Simple Summary
Abstract
1. Introduction
2. The Occurrence of Hepatocellular Carcinoma After the Cure of Chronic HCV Infection
2.1. Demographic Characteristics of the Patients Studied and Their Association with the Risk of HCC Occurrence
2.2. Other Variables Associated with Increased Risk of HCC Occurrence
2.3. Are There Variables That Allow Us to Identify Patients with a Lower Risk of HCC Occurrence?
2.4. A Second Cause of Chronic Liver Disease: The Risk of HCC Due to a Concurrent Cause of Liver Disease
3. Risk-Based Surveillance Strategies for HCC
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HCV | hepatitis C virus |
HCC | hepatocellular carcinoma |
DAAs | direct-acting antivirals |
AFP | alpha-fetoprotein |
MRI | magnetic resonance imaging |
SVR | sustained virological response |
USA | United States of America |
EASL | European Association for the Study of the Liver |
US | ultrasound |
cACLD | compensated advanced chronic liver disease |
LSM | liver stiffness measurement |
ARFI | acoustic radiation force impulse |
HR | hazard ratio |
ROC | receiver operating characteristic |
CHB | chronic hepatitis B |
MASLD | metabolic dysfunction-associated fatty liver disease |
CAP | controlled attenuation parameter |
MASH | metabolic dysfunction-associated steatohepatitis |
GLP-1 RA | glucagon-like peptide-1 receptor agonists |
FU | follow-up |
AMRI | abbreviated magnetic resonance imaging |
NC-AMRI | non-contrast AMRI |
DEC-AMRI | dynamic extra-cellular contrast-enhanced AMRI |
HBP-AMRI | hepatobiliary phase contrast-enhanced AMRI |
References
- Yang, J.D.; Larson, J.J.; Watt, K.D.; Allen, A.M.; Wiesner, R.H.; Gores, G.J.; Roberts, L.R.; Heimbach, J.A.; Leise, M.D. Hepatocellular carcinoma is the most common indication for liver transplantation and placement on the waitlist in the United States. Clin. Gastroenterol. Hepatol. 2017, 15, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Santi, V.; Buccione, D.; Di Micoli, A.; Fatti, G.; Frigerio, M.; Farinati, F.; Del Poggio, P.; Rapaccini, G.; Di Nolfo, M.A.; Benvegnù, L.; et al. The changing scenario of hepatocellular carcinoma over the last two decades in Italy. J. Hepatol. 2012, 56, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Sada, Y.H.; El-Serag, H.B.; Kanwal, F.; Duan, Z.; Temple, S.; May, S.B.; Kramer, J.R.; Richardson, P.A.; Davila, J.A. Temporal trends of nonalcoholic fatty liver disease–related hepatocellular carcinoma in the Veteran Affairs population. Clin. Gastroenterol. Hepatol. 2015, 13, 594–601. [Google Scholar] [CrossRef]
- Fassio, E.; Díaz, S.; Santa, C.; Reig, M.E.; Martínez Artola, Y.; Alves de Mattos, A.; Míguez, C.; Galizzi, J.; Zapata, R.; Ridruejo, E.; et al. Etiology of hepatocellular carcinoma in Latin America: A prospective, multicenter, international study. Ann. Hepatol. 2010, 9, 63–69. [Google Scholar] [CrossRef]
- Carrilho, F.J.; Kikuchi, L.; Branco, F.; Goncalves, C.S.; Alves de Mattos, A.; Brazilian HCC Study Group. Clinical and epidemiological aspects of hepatocellular carcinoma in Brazil. Clinics 2010, 65, 1285–1290. [Google Scholar] [CrossRef]
- Forns, X.; Lee, S.S.; Valdes, J.; Lens, S.; Ghalib, R.; Aguilaret, H.; Felizarta, F.; Hassanein, T.; Hinrichsen, H.; Rincon, D.; et al. Glecaprevir plus pibrentasvir for chronic hepatitis C virus genotype 1, 2, 4, 5, or 6 infection in adults with compensated cirrhosis (EXPEDITION-1): A single-arm, open-label, multicentre phase 3 trial. Lancet Infect. Dis. 2017, 17, 1062–1068. [Google Scholar] [CrossRef]
- Feld, J.J.; Jacobson, I.M.; Hézode, C.; Asselah, T.; Ruane, P.J.; Gruener, N.; Abergel, A.; Mangia, A.; Lai, C.L.; Chan, H.L.Y.; et al. Sofosbuvir and velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. N. Engl. J. Med. 2015, 373, 2599–2607. [Google Scholar] [CrossRef]
- Afdhal, N.; Zeuzem, S.; Kwo, P.; Chojkier, M.; Gitlin, N.; Puoti, M.; Romero-Gomez, M.; Zarski, J.P.; Agarwal, K.; Buggisch, P.; et al. Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. N. Engl. J. Med. 2014, 370, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Zeuzem, S.; Ghalib, R.; Reddy, K.R.; Pockros, P.J.; Ari, Z.B.; Zhao, Y.; Brown, D.D.; Wan, S.; DiNubile, M.J.; Nguyen, B.Y.; et al. Grazoprevir–elbasvir combination therapy for treatment-naïve cirrhotic and noncirrhotic patients with chronic hepatitis C virus genotype 1, 4, or 6 infection. A randomized trial. Ann. Intern. Med. 2015, 163, 1–13. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Beste, L.A.; Chang, M.F.; Green, P.K.; Lowy, E.; Tsui, J.I.; Su, F.; Berry, K. Effectiveness of sofosbuvir, ledipasvir/sofosbuvir, or paritaprevir/ritonavir/ombitasvir and dasabuvir regimens for treatment of patients with hepatitis C in the Veterans Affairs National Health Care System. Gastroenterology 2016, 151, 457–471. [Google Scholar] [CrossRef]
- Calleja, J.L.; Crespo, J.; Rincón, D.; Ruiz-Antorán, B.; Fernandez, I.; Perelló, C.; Gea, F.; Lens, S.; García-Samaniego, J.; Sacristán, B.; et al. Effectiveness, safety and clinical outcomes of direct-acting antiviral therapy in HCV genotype 1 infection: Results from a Spanish real-world cohort. J. Hepatol. 2017, 66, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Zu Siederdissen, C.H.; Buggisch, P.; Böker, C.; Schott, E.; Klinker, H.; Pathil, A.; Pfeiffer-Vornkahl, H.; Berg, T.; Sarrazin, C.; Hüppe, D.; et al. Treatment of hepatitis C genotype 1 infection in Germany: Effectiveness and safety of antiviral treatment in a real-world setting. United Eur. Gastroenterol. J. 2018, 6, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Charlton, M.; Everson, G.T.; Flamm, S.L.; Kumar, P.; Landis, C.; Brown, R.S., Jr.; Fried, M.W.; Terrault, N.A.; O’Leary, J.G.; Vargas, H.E.; et al. Ledipasvir and sofosbuvir plus ribavirin for treatment of HCV infection in patients with advanced liver disease. Gastroenterology 2015, 149, 649–659. [Google Scholar] [CrossRef]
- Curry, M.P.; O’Leary, J.G.; Bzowej, N.; Muir, A.J.; Korenblat, K.M.; Fenkel, J.M.; Reddy, K.R.; Lawitz, E.; Flamm, S.L.; Schiano, T.; et al. Sofosbuvir and velpatasvir for HCV in patients with decompensated cirrhosis. N. Engl. J. Med. 2015, 373, 2618–2628. [Google Scholar] [CrossRef]
- Belli, L.S.; Perricone, G.; Adam, R.; Cortesi, P.A.; Strazzabosco, M.; Facchetti, R.; Karam, V.; Salizzoni, M.; Lopez Andujar, R.; Fondevila, C.; et al. Impact of DAAs on liver transplantation: Major effects on the evolution of indications and results. An ELITA study based on the ELTR registry. J. Hepatol. 2018, 69, 810–817. [Google Scholar] [CrossRef]
- Backus, L.I.; Belperio, P.S.; Shahoumian, T.A.; Mole, L.A. Impact of sustained virologic response with direct-acting antiviral treatment on mortality in patients with advanced liver disease. Hepatology 2019, 69, 487–497. [Google Scholar] [CrossRef]
- Backus, L.I.; Belperio, P.S.; Shahoumian, T.A.; Mole, L.A. Direct-acting antiviral sustained virologic response: Impact on mortality in patients without advanced liver disease. Hepatology 2018, 68, 827–838. [Google Scholar] [CrossRef]
- Morgan, R.L.; Baack, B.; Smith, B.D.; Yartel, A.; Pitasi, M.; Falck-Ytter, Y. Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma. A meta-analysis of observational studies. Ann. Intern. Med. 2013, 158, 329–337. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Green, P.K.; Berry, K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J. Hepatol. 2018, 68, 25–32. [Google Scholar] [CrossRef]
- Kanwal, F.; Kramer, J.; Asch, S.M.; Chayanupatkul, M.; Cao, Y.; El-Serag, H.B. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents. Gastroenterology 2017, 153, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.N.; Zhang, P.; Zhang, Y.; Chayama, K. Molecular mechanisms of hepatocarcinogenesis following sustained virological response in patients with chronic hepatitis C virus infection. Viruses 2018, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Hamdane, N.; Juhling, F.; Crouchet, E.; El Saghire, H.; Thumann, C.; Oudot, M.A.; Bandiera, S.; Saviano, A.; Ponsolles, C.; Roca Suarez, A.A.; et al. HCV-induced epigenetic changes associated with liver cancer risk persist after sustained virologic response. Gastroenterology 2019, 156, 2313–2329.e7. [Google Scholar] [CrossRef]
- Facciorusso, A.; Del Prete, V.; Turco, A.; Buccino, R.V.; Nacchiero, M.C.; Muscatiello, N. Long-term liver stiffness assessment in hepatitis C virus patients undergoing antiviral therapy: Results from a 5-year cohort study. J. Gastroenterol. Hepatol. 2018, 33, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ayer, T.; Adee, M.G.; Wang, W.; Kanwal, F.; Chhatwal, J. Assessment of incidence of and surveillance burden for hepatocellular carcinoma among patients with hepatitis C in the era of direct-acting antiviral agents. JAMA Netw. Open 2020, 3, e2021173. [Google Scholar] [CrossRef]
- Singal, A.G.; Llovet, J.M.; Yarchoan, M.; Mehta, N.; Heimbach, J.K.; Dawson, L.A.; Jou, J.H.; Kulik, L.M.; Agopian, V.G.; Marrero, J.A. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023, 78, 1922–1965. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236, Erratum in J. Hepatol. 2019, 70, 17. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma. J. Hepatol. 2025, 82, 315–374. [Google Scholar] [CrossRef]
- Zangneh, H.F.; Wong, W.W.L.; Sander, B.; Bell, C.M.; Mumtaz, K.; Kowgier, M.; van der Meer, A.J.; Cleary, S.P.; Janssen, H.L.A.; Chan, K.K.W.; et al. Cost effectiveness of hepatocellular carcinoma surveillance after a sustained virologic response to therapy in patients with hepatitis C virus infection and advanced fibrosis. Clin. Gastroenterol. Hepatol. 2019, 17, 1840–1849.e16. [Google Scholar] [CrossRef]
- Abdel-hameed, E.A.; Rouster, S.D.; Kottilil, S.; Sherman, K.E. The Enhanced Liver Fibrosis Index Predicts Hepatic Fibrosis Superior to FIB4 and APRI in HIV/HCV Infected Patients. Clin. Infect. Dis. 2021, 73, 450–459. [Google Scholar] [CrossRef]
- Peters, M.G.; Bacchetti, P.; Boylan, R.; French, A.L.; Tien, P.C.; Plankey, M.W.; Glesby, M.J.; Augenbraun, M.; Golub, E.T.; Karim, R.; et al. Enhanced Liver Fibrosis marker as a non-invasive predictor of mortality in HIV/HCV-coinfected women from the Women’s Interagency HIV Study. AIDS 2016, 30, 723–729. [Google Scholar] [CrossRef]
- Guidelines for the Screening, Care and Treatment of Persons with Chronic Hepatitis C Infection. Available online: https://iris.who.int/bitstream/handle/10665/205035/9789241549615_eng.pdf?sequence=1 (accessed on 15 March 2025).
- Wai, C.T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S.F. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Beste, L.A.; Green, P.K.; Singal, A.G.; Tapper, E.B.; Waljee, A.K.; Sterling, R.K.; Feld, J.J.; Kaplan, D.E.; Taddei, T.H.; et al. Increased risk for hepatocellular carcinoma persists up to 10 years after HCV eradication in patients with baseline cirrhosis or high FIB-4 scores. Gastroenterology 2019, 157, 1264–1278. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver; Asociación Latinoamericana para el Estudio del Hígado. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J. Hepatol. 2015, 63, 237–264. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Green, P.K.; Beste, L.A.; Mun, E.J.; Kerr, K.F.; Berry, K. Development of models estimating the risk of hepatocellular carcinoma after antiviral treatment for hepatitis C. J. Hepatol. 2018, 69, 1088–1098. [Google Scholar] [CrossRef]
- Kanwal, F.; Kramer, J.R.; Asch, S.M.; Cao, Y.; Li, L.; El-Serag, H.B. Long-term risk of hepatocellular carcinoma in HCV patients treated with direct acting antiviral agents. Hepatology 2020, 71, 44–55. [Google Scholar] [CrossRef]
- Conti, F.; Buonfiglioli, F.; Scuteri, A.; Crespi, C.; Bolondi, L.; Caraceni, P.; Foschi, F.G.; Lenzi, M.; Mazzella, G.; Verucchi, G.; et al. Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals. J. Hepatol. 2016, 65, 727–733. [Google Scholar] [CrossRef]
- Calvaruso, V.; Cabibbo, G.; Cacciola, I.; Petta, S.; Madonia, S.; Bellia, A.; Tinè, F.; Distefano, M.; Licata, A.; Giannitrapani, L.; et al. Incidence of hepatocellular carcinoma in patients with HCV-associated cirrhosis treated with direct-acting antiviral agents. Gastroenterology 2018, 155, 411–421.e4. [Google Scholar] [CrossRef]
- Romano, A.; Angeli, P.; Piovesan, S.; Noventa, F.; Anastassopoulos, G.; Chemello, L.; Cavalletto, L.; Gambato, M.; Russo, F.P.; Burra, P.; et al. Newly diagnosed hepatocellular carcinoma in patients with advanced hepatitis C treated with DAAs: A prospective population study. J. Hepatol. 2018, 69, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Lleo, A.; Aglitti, A.; Aghemo, A.; Maisonneuve, P.; Bruno, S.; Persico, M.; Rendina, M.; Ciancio, A.; Lampertico, P.; Brunetto, M.R.; et al. Predictors of hepatocellular carcinoma in HCV cirrhotic patients treated with direct acting antivirals. Dig. Liver Dis. 2019, 51, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Degasperi, E.; D’Ambrosio, R.; Iavarone, M.; Sangiovanni, A.; Aghemo, A.; Soffredini, R.; Borghi, M.; Lunghi, G.; Colombo, M.; Lampertico, P.; et al. Factors associated with increased risk of de novo or recurrent hepatocellular carcinoma in patients with cirrhosis treated with direct-acting antivirals for HCV infection. Clin. Gastroenterol. Hepatol. 2019, 17, 1183–1191. [Google Scholar] [CrossRef]
- Watanabe, T.; Tokumoto, Y.; Joko, K.; Michitaka, K.; Horiike, N.; Tanaka, Y.; Tada, F.; Kisaka, Y.; Nakanishi, S.; Yamauchi, K.; et al. Predictors of hepatocellular carcinoma occurrence after direct-acting antiviral therapy in patients with HCV infection. Hepatol. Res. 2019, 49, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, M.G.; Ferrigno, L.; Monti, M.; Filomia, R.; Biliotti, E.; Iannone, A.; Migliorino, G.; Coco, B.; Morisco, F.; Vinci, M.; et al. Advanced liver disease outcomes after hepatitis C eradication by human immunodeficiency virus infection in PITER cohort. Hepatol. Int. 2020, 14, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Alonso López, S.; Manzano, M.L.; Gea, F.; Gutiérrez, M.L.; Ahumada, A.M.; Devesa, M.J.; Olveira, A.; Polo, B.A.; Márquez, L.; Fernández, I.; et al. A model based on noninvasive markers predicts very low hepatocellular carcinoma risk after viral response in hepatitis C virus–advanced fibrosis. Hepatology 2020, 72, 1924–1934. [Google Scholar] [CrossRef]
- Ogawa, E.; Nomura, H.; Nakamuta, M.; Furusyo, N.; Kajiwara, E.; Dohmen, K.; Kawano, A.; Ooho, A.; Azuma, K.; Takahashi, K.; et al. Incidence of hepatocellular carcinoma after treatment with sofosbuvir-based or sofosbuvir-free regimens in patients with chronic hepatitis C. Cancers 2020, 12, 2602. [Google Scholar] [CrossRef]
- Ogawa, E.; Takayama, K.; Hiramine, S.; Hayashi, T.; Toyoda, K. Association between steatohepatitis biomarkers and hepatocellular carcinoma after hepatitis C elimination. Aliment. Pharmacol. Ther. 2020, 52, 866–876. [Google Scholar] [CrossRef]
- Pons, M.; Rodríguez-Tajes, S.; Esteban, J.I.; Mariño, Z.; Vargas, V.; Lens, S.; Buti, M.; Augustin, S.; Forns, X.; Mínguez, B.; et al. Non-invasive prediction of liver related events in HCV compensated advanced chronic liver disease patients after oral antivirals. J. Hepatol. 2020, 72, 472–480. [Google Scholar] [CrossRef]
- Nabatchikova, E.; Abdurakhmanov, D.; Rozina, T.; Nikulkina, E.; Tanaschuk, E.; Moiseev, S. Hepatocellular carcinoma surveillance after hepatitis C virus eradication: Is liver stiffness measurement more useful than laboratory fibrosis markers? J. Hepatol. 2020, 73, 469–470. [Google Scholar] [CrossRef]
- Tachi, Y.; Hirai, T.; Kojima, Y.; Ishizu, Y.; Honda, T.; Kuzuya, T.; Hayashi, K.; Ishigami, M.; Goto, H. Liver stiffness measurement predicts hepatocellular carcinoma development in patients treated with direct-acting antivirals. JGH Open 2017, 1, 44–49. [Google Scholar] [CrossRef]
- Tamaki, N.; Higuchi, M.; Kurosaki, M.; Kirino, S.; Osawa, L.; Watakabe, K.; Wang, W.; Okada, M.; Shimizu, T.; Takaura, K.; et al. Risk assessment of hepatocellular carcinoma development by magnetic resonance elastography in chronic hepatitis C patients who achieved sustained virological responses by direct-acting antivirals. J. Viral Hepat. 2019, 26, 893–899. [Google Scholar] [CrossRef]
- Rinaldi, L.; Guarino, M.; Perrella, A.; Pafundi, P.C.; Valente, G.; Fontanella, L.; Nevola, R.; Guerrera, B.; Iuliano, N.; Imparato, M.; et al. Role of Liver Stiffness Measurement in Predicting HCC Occurrence in Direct-Acting Antivirals Setting: A Real-Life Experience. Dig. Dis. Sci. 2019, 64, 3013–3019. [Google Scholar] [CrossRef]
- Ravaioli, F.; Conti, F.; Brillanti, S.; Andreone, P.; Mazzella, G.; Buonfiglioli, F.; Serio, I.; Verrucchi, G.; Bacchi Reggiani, M.L.; Colli, A.; et al. Hepatocellular carcinoma risk assessment by the measurement of liver stiffness variations in HCV cirrhotics treated with direct acting antivirals. Dig. Liver Dis. 2018, 50, 573–579. [Google Scholar] [CrossRef]
- Peleg, N.; Issachar, A.; Arbib, O.S.; Cohen-Naftaly, M.; Harif, Y.; Oxtrud, E.; Braun, M.; Leshno, M.; Barsheshet, A.; Shlomai, A.; et al. Liver steatosis is a major predictor of poor outcomes in chronic hepatitis C patients with sustained virological response. J. Viral Hepat. 2019, 26, 1257–1265. [Google Scholar] [CrossRef]
- Shili, S.; Giovanna, S.; Foucher, J.; Anne, V.; Jean-Baptiste, H.; Francois, M.; Regnault, H.; Hiriart, J.B.; Chermak, F.; Amaddeo, G.; et al. Post-treatment liver stiffness measurement is not useful to predict hepatocellular carcinoma in HCV patients who achieve SVR. J. Hepatol. 2018, 68, S1–S36. [Google Scholar] [CrossRef]
- Morisco, F.; Federico, A.; Marignani, M.; Cannavò, M.; Pontillo, G.; Guarino, M.; Dallio, M.; Begini, P.; Benigno, R.G.; Lombardo, F.L.; et al. Risk Factors for Liver Decompensation and HCC in HCV-Cirrhotic Patients after DAAs: A Multicenter Prospective Study. Cancers 2021, 13, 3810. [Google Scholar] [CrossRef]
- Murakawa, M.; Nakagawa, M.; Nishimura, H.; Kaneko, S.; Miyoshi, M.; Kawai-Kitahata, F.; Nitta, S.; Tsuchiya, J.; Shimizu, T.; Watakabe, K.; et al. High serum gamma-glutamyltransferase level after hepatitis C virus elimination is a risk factor for the development of hepatocellular carcinoma. Hepatol. Res. 2024, 54, 1128–1138. [Google Scholar] [CrossRef]
- Tacke, F.; Klinker, H.; Boeker, K.H.W.; Merle, U.; Link, R.; Buggisch, P.; Hüppe, D.; Cornberg, M.; Sarrazin, C.; Wedemeyer, H.; et al. Elevated liver enzymes predict morbidity and mortality despite antiviral cure in patients with chronic hepatitis C: Data from the German Hepatitis C-Registry. Hepatol. Commun. 2022, 6, 2488–2495. [Google Scholar] [CrossRef]
- Abe, K.; Wakabayashi, H.; Nakayama, H.; Suzuki, T.; Kuroda, M.; Yoshida, N.; Tojo, J.; Kogure, A.; Rai, T.; Saito, H.; et al. Factors associated with hepatocellular carcinoma occurrence after HCV eradication in patients without cirrhosis or with compensated cirrhosis. PLoS ONE 2020, 15, e0243473. [Google Scholar] [CrossRef]
- Ogata, F.; Kobayashi, M.; Akuta, N.; Osawa, M.; Fujiyama, S.; Kawamura, Y.; Sezaki, H.; Hosaka, T.; Kobayashi, M.; Saitoh, S.; et al. Outcome of All-Oral Direct-Acting Antiviral Regimens on the Rate of Development of Hepatocellular Carcinoma in Patients with Hepatitis C Virus Genotype 1-Related Chronic Liver Disease. Oncology 2017, 93, 92–98. [Google Scholar] [CrossRef]
- Zou, Y.; Yue, M.; Jia, L.; Wang, Y.; Chen, H.; Wang, Y.; Zhang, M.; Feng, Y.; Yu, R.; Yang, S.; et al. Repeated Measurement of FIB-4 to Predict Long-Term Risk of HCC Development Up to 10 Years After SVR. J. Hepatocell. Carcinoma 2022, 9, 1433–1443. [Google Scholar] [CrossRef]
- Gardini, A.C.; Foschi, F.G.; Conti, F.; Petracci, E.; Vukotic, R.; Maris, G.; Buonfiglioli, F.; Vitale, G.; Ravaioli, F.; Gitto, S.; et al. Immune inflammation indicators and ALBI score to predict liver cancer in HCV-patients treated with direct-acting antivirals. Dig. Liver Dis. 2019, 51, 681–688. [Google Scholar] [CrossRef]
- Sanduzzi-Zamparelli, M.; Mariño, Z.; Lens, S.; Sapena, V.; Iserte, G.; Pla, A.; Granel, N.; Bartres, C.; Llarch, N.; Vilana, R.; et al. Liver cancer risk after HCV cure in patients with advanced liver disease without non-characterized nodules. J. Hepatol. 2022, 76, 874–882. [Google Scholar] [CrossRef]
- Kramer, J.R.; Cao, Y.; Li, L.; Smith, D.; Chhatwal, J.; El-Serag, H.B.; Kaiwal, F. Longitudinal associations of risk factors and hepatocellular cancer in patients with cured hepatitis C virus infection. Am. J. Gastroenterol. 2022, 117, 1834–1844. [Google Scholar] [CrossRef]
- Ampuero, J.; Carmona, I.; Sousa, F.; Rosales, J.M.; López-Garrido, Á.; Casado, M.; Figueruela, B.; Aparicio, A.; Andrade, R.; Guerra-Veloz, M.F.; et al. A 2-Step Strategy Combining FIB-4 With Transient Elastography and Ultrasound Predicted Liver Cancer After HCV Cure. Am. J. Gastroenterol. 2022, 117, 138–146. [Google Scholar] [CrossRef]
- Nagata, H.; Nakagawa, M.; Asahina, Y.; Sato, A.; Asano, Y.; Tsunoda, T.; Miyoshi, M.; Kaneko, S.; Otani, S.; Kawai-Kitahata, F.; et al. Effect of interferon based and -free therapy on early occurrence and recurrence of hepatocellular carcinoma in chronic hepatitis C. J. Hepatol. 2017, 67, 933–939. [Google Scholar] [CrossRef]
- Tamaki, N.; Kurosaki, M.; Yasui, Y.; Mori, N.; Tsuji, K.; Hasebe, C.; Joko, K.; Akahane, T.; Furuta, K.; Kobashi, H.; et al. Hepatocellular Carcinoma Risk Assessment for Patients With Advanced Fibrosis After Eradication of Hepatitis C Virus. Hepatol. Commun. 2022, 6, 461–472. [Google Scholar] [CrossRef]
- Shiha, G.; Waked, I.; Soliman, R.; Elbasiony, M.; Gomaa, A.; Mikhail, N.N.H.; Eslam, M. GES: A validated simple score to predict the risk of HCC in patients with HCV-GT4-associated advanced liver fibrosis after oral antivirals. Liver Int. 2020, 40, 2828–2833. [Google Scholar] [CrossRef]
- Vutien, P.; Kim, N.J.; Moon, A.M.; Johnson, K.M.; Berry, K.; Green, P.K.; Ioannou, G.N. Hepatocellular carcinoma risk decreases as time accrues following hepatitis C virus eradication. Aliment. Pharmacol. Ther. 2024, 59, 361–371. [Google Scholar] [CrossRef]
- Masuzaki, R.; Tateishi, R.; Yoshida, H.; Goto, E.; Sato, T.; Ohki, T.; Imamura, J.; Goto, T.; Kanai, F.; Kato, N.; et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology 2009, 49, 1954–1961. [Google Scholar] [CrossRef]
- Wang, H.M.; Hung, C.H.; Lu, S.N.; Chen, C.H.; Lee, C.M.; Hu, T.H.; Wang, J.H. Liver stiffness measurement as an alternative to fibrotic stage in risk assessment of hepatocellular carcinoma incidence for chronic hepatitis C patients. Liver Int. 2013, 33, 756–761. [Google Scholar] [CrossRef]
- Singh, S.; Fujii, L.L.; Murad, M.H.; Wang, Z.; Asrani, S.K.; Ehman, R.L.; Kamath, P.S.; Talwalkar, J.A. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2013, 11, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- You, M.W.; Kim, K.W.; Shim, J.J.; Pyo, J. Impact of liver-stiffness measurement on hepatocellular carcinoma development in chronic hepatitis C patients treated with direct-acting antivirals: A systematic review and time-to-event meta-analysis. J. Gastroenterol. Hepatol. 2021, 36, 601–608. [Google Scholar] [CrossRef]
- Sanchez-Azofra, M.; Fernández, I.; Garcia-Buey, M.L.; Domínguez-Domínguez, L.; Fernández-Rodríguez, C.M.; Mancebo, A.; Bonet, L.; Ryan, P.; Gea, F.; Díaz-Sánchez, A.; et al. Hepatocellular carcinoma risk in hepatitis C stage-3 fibrosis after sustained virological response with direct-acting antivirals. Liver Int. 2021, 41, 2885–2891. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Papatheodoridis, G.; Sun, J.; Innes, H.; Toyoda, H.; Xie, Q.; Mo, S.; Sypsa, V.; Guha, I.N.; Kumada, T.; et al. aMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis. J. Hepatol. 2020, 73, 1368–1378. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Shaw, T.W.G.; Yang, H.I.; Lu, S.N.; Jen, C.L.; Wang, L.Y.; Wong, K.H.; Chan, S.Y.; Yuan, Y.; L’Italien, G.; et al. Chronic hepatitis C virus infection and the risk for diabetes: A community-based prospective study. Liver Int. 2017, 37, 179–186. [Google Scholar] [CrossRef]
- Wang, C.S.; Wang, S.T.; Yao, W.J.; Chang, T.T.; Chou, P. Hepatitis C Virus Infection and the Development of Type 2 Diabetes in a Community-based Longitudinal Study. Am. J. Epidemiol. 2007, 166, 196–203. [Google Scholar] [CrossRef]
- Arase, Y.; Suzuki, F.; Suzuki, Y.; Akuta, N.; Kobayashi, M.; Kawamura, Y.; Yatsuji, H.; Sezaki, H.; Hosaka, T.; Hirakawa, M.; et al. Sustained Virological Response Reduces Incidence of Onset of Type 2 Diabetes in Chronic Hepatitis C. Hepatology 2009, 49, 739–744. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Price, J.K.; Owrangi, S.; Gundu-Rao, N.; Satchi, R.; Paik, J.M. The Global Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis Among Patients with Type 2 Diabetes. Clin. Gastroenterol. Hepatol. 2024, 22, 1999–2010.e8. [Google Scholar] [CrossRef]
- Newsome, P.N.; Sasso, M.; Deeks, J.J.; Paredes, A.; Boursier, J.; Chan, W.K.; Yilmaz, Y.; Czernichow, S.; Zheng, M.H.; Wong, V.W.-S.; et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: A prospective derivation and global validation study. Lancet Gastroenterol. Hepatol. 2020, 5, 362–373. [Google Scholar] [CrossRef]
- Ji, D.; Chen, G.F.; Niu, X.X.; Zhang, M.; Wang, C.; Shao, Q.; Wu, V.; Wang, Y.; Cheng, G.; Hurwitz, S.J.; et al. Non-alcoholic fatty liver disease is a risk factor for occurrence of hepatocellular carcinoma after sustained virologic response in chronic hepatitis C patients: A prospective four-years follow-up study. Metabol. Open 2021, 10, 100090. [Google Scholar] [CrossRef]
- Liu, C.H.; Cheng, P.N.; Fang, Y.J.; Liu, C.J.; Chen, P.J.; Kao, J.H.; Yang, S.S.; Shih, Y.L.; Peng, C.Y.; Chang, Y.P.; et al. Risk of de novo HCC in patients with MASLD following direct-acting antiviral-induced cure of HCV infection. J. Hepatol. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Vuppalanchi, R.; Desai, A.P.; Gawrieh, S.; Ghabril, M.; Saxena, R.; Cummings, O.W.; Chalasani, N. Long-term metformin use may improve clinical outcomes in diabetic patients with non-alcoholic steatohepatitis and bridging fibrosis or compensated cirrhosis. Aliment. Pharmacol. Ther. 2019, 50, 317–328. [Google Scholar] [CrossRef]
- Newsome, P.; Sanyal, A.; Kliers, I.; Østergaard, L.; Long, M.; Kjær, M.; Cali, A.M.G.; Bugianesi, E.; Rinella, M.; Roden, M.; et al. Phase 3 ESSENCE Trial: Semaglutide in Metabolic Dysfunction-Associated Steatohepatitis (MASH). AASLD Annual Meeting 2024, Late-Breaking Abstract Supplement 5018. Available online: https://www.aasld.org/sites/default/files/2024-11/TLM2024LBA_20241115A.pdf (accessed on 20 November 2024).
- Wang, L.; Berger, N.A.; Kaelber, D.C.; Xu, R. Association of GLP-1 Receptor Agonists and Hepatocellular Carcinoma Incidence and Hepatic Decompensation in Patients With Type 2 Diabetes. Gastroenterology 2024, 167, 689–703. [Google Scholar] [CrossRef]
- Wang, L.; Xu, R.; Kaelber, D.C.; Berger, N.A. Glucagon-Like Peptide 1 Receptor Agonists and 13 Obesity-Associated Cancers in Patients With Type 2 Diabetes. JAMA Netw. Open 2024, 7, e2421305. [Google Scholar] [CrossRef]
- Islam, M.M.; Poly, T.N.; Walther, B.A.; Yang, H.C.; Jack Li, Y.C. Statin Use and the Risk of Hepatocellular Carcinoma: A Meta-Analysis of Observational Studies. Cancers 2020, 12, 671. [Google Scholar] [CrossRef]
- Semmler, G.; Meyer, E.L.; Kozbial, K.; Schwabl, P.; Hametner-Schreil, S.; Zanetto, A.; Bauer, D.; Chromy, D.; Simbrunner, B.; Scheiner, B.; et al. HCC risk stratification after cure of hepatitis C in patients with compensated advanced chronic liver disease. J. Hepatol. 2022, 76, 812–821. [Google Scholar] [CrossRef]
- Davila, J.A.; Morgan, R.O.; Richardson, P.A.; Du, X.L.; McGlynn, K.A.; El-Serag, H.B. Use of surveillance for hepatocellular carcinoma among patients with cirrhosis in the United States. Hepatology 2010, 52, 132–141. [Google Scholar] [CrossRef]
- Tzartzeva, K.; Obi, J.; Rich, N.E.; Parikh, N.D.; Marrero, J.A.; Yopp, A.; Waljee, A.K.; Singal, A.G. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: A meta-analysis. Gastroenterology 2018, 154, 1706–1718. [Google Scholar] [CrossRef]
- Kim, S.Y.; An, J.; Lim, Y.S.; Han, S.; Lee, J.Y.; Byun, J.H.; Won, H.J.; Lee, S.J.; Lee, H.C.; Lee, Y.S. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of hepatocellular carcinoma. JAMA Oncol. 2017, 3, 456–463. [Google Scholar] [CrossRef]
- Ronot, M.; Nahon, P.; Rimola, J. Screening of liver cancer with abbreviated MRI. Hepatology 2023, 78, 670–686. [Google Scholar] [CrossRef]
- Park, H.J.; Jang, H.Y.; Kim, S.Y.; Lee, S.J.; Won, H.J.; Byun, J.H.; Choi, S.H.; Lee, S.S.; An, J.; Lim, Y.S. Non-enhanced magnetic resonance imaging as a surveillance tool for hepatocellular carcinoma: Comparison with ultrasound. J. Hepatol. 2020, 72, 718–724. [Google Scholar] [CrossRef]
- Park, M.S.; Kim, S.; Patel, J.; Hajdu, C.H.; Do, R.K.G.; Mannelli, L.; Babb, J.S.; Taoulit, B. Hepatocellular carcinoma: Detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients. Hepatology 2012, 56, 140–148. [Google Scholar] [CrossRef]
- Marks, R.M.; Ryan, A.; Heba, E.R.; Tang, A.N.; Wolfson, T.J.; Gamst, A.C.; Sirlin, C.B.; Bashir, M.R. Diagnostic per-patient accuracy of an abbreviated hepatobiliary phase gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance. Am. J. Roentgenol. 2015, 204, 527–535. [Google Scholar] [CrossRef]
- Kim, D.H.; Yoon, J.H.; Choi, M.H.; Kim, K.A.; Lee, S.L.; Choi, J.I.; Ku, Y.M.; Lee, J.M.; Kim, S.H.; Kim, K.A.; et al. Comparison of non-contrast abbreviated MRI and ultrasound as surveillance modalities for HCC. J. Hepatol. 2024, 81, 461–470. [Google Scholar] [CrossRef]
- Goossens, N.; Singal, A.G.; King, L.Y.; Andersson, K.L.; Fuchs, B.C.; Besa, C.; Taouli, B.; Chung, R.T.; Hoshida, Y. Cost-effectiveness of risk score–stratified hepatocellular carcinoma screening in patients with cirrhosis. Clin. Transl. Gastroenterol. 2017, 8, e101. [Google Scholar] [CrossRef]
- Wong, G.L.H.; Chan, H.L.Y.; Tse, Y.K.; Chan, H.Y.; Tse, C.H.; Lo, A.O.S.; Wong, V.W.S. On-treatment alpha-fetoprotein is a specific tumor marker for hepatocellular carcinoma in patients with chronic hepatitis B receiving entecavir. Hepatology 2014, 59, 986–995. [Google Scholar] [CrossRef]
- Loglio, A.; Iavarone, M.; Viganò, M.; Orenti, A.; Facchetti, F.; Cortinovis, I.; Lunghi, G.; Ceriotti, F.; Occhipinti, V.; Rumi, M.G.; et al. Minimal increases of serum alpha-foetoprotein herald HCC detection in Caucasian HBV cirrhotic patients under long-term oral therapy. Liver Int. 2019, 39, 1964–1974. [Google Scholar] [CrossRef]
Study (Year; Reference) | N | Age (Years)/Males | Cirrhosis (%) | Follow-Up | Annual Incidence of HCC | Significant Baseline Variables [Adjusted HR (95% CI)] | Significant Post-SVR Variables [Adjusted HR (95% CI)] | ||
---|---|---|---|---|---|---|---|---|---|
Ioannou et al., 2019; [34] | 29,033 | 62/97% | 20 | 3.0 years | 2.2% | FIB4 > 3.25 | 2.14 (1.66–2.75) | ||
Kanwal et al., 2020; [37] | 18,076 | 62/96% | 38 | 2.9 years | 2.2% | Age Cirrhosis Genotype 3 Alcohol abuse | 1.03 (1.02–1.05) 4.13 (3.34–5.11) 1.60 (1.08–2.38) 1.24 (1.03–1.50) | Changes in FIB4 | 6.99 (4.98–9.81) a |
Conti et al., 2016; [38] | 285 | 63/60% | 100 | 24 weeks | NA | Child–Pugh | 4.18 (1.17–14.8) | ||
Calvaruso et al., 2018; [39] | 2249 | 65/57% | 100 | 14 months | 2.6% | Albumin < 3.5 g/dL Platelets < 120 × 109/L | 1.77 (1.12–2.82) 3.89 (2.11–7.15) | ||
Romano et al., 2018; [40] | 3917 | 58/62% | 70 | 75 weeks | 1.49% | APRI ≥ 2.5 HBsAg+ | 2.03 (1.14–3.61) 3.99 (1.24–12.91) | ||
Lleo et al., 2019; [41] | 1766 | 62/62% | 100 | 1 year | 2.4% | Age > 50 years Esophageal varices | 4.36 (1.04–18.3) b 4.97 (1.55–16.0) c | ||
Degasperi et al., 2019; [42] | 505 | 64/60% | 100 | 25 months | 3.4% | Male gender Diabetes LSM > 30 kPa FIB4 | 6.17 (1.44–26.47) 2.52 (1.08–5.87) 1.03 (1.01–1.06) 1.08 (1.01–1.14) | ||
Watanabe et al., 2019; [43] | 1174 | 65/46% | NA | 77 weeks | 1.9% | Male gender Serum albumin FIB4 > 4.0 | 2.46 (1.007–6.026) 0.229 (0.087–0.602) 1.069 (1.024–1.115) | AFP > 6 ng/mL | 1.11 (1.054–1.172) |
Quaranta et al., 2020; [44] | 1202 | 64/58% | 100 | 25 months | Age Male gender Serum albumin Genotype 3 Anti-HBc | 1.08 (1.04–1.13) 2.76 (1.28–5.96) 3.94 (1.81–8.58) 5.05 (1.75–14.57) 1.99 (1.01–3.95) | |||
Alonso et al., 2020; [45] | 993 | 62/56% | 100 | 45 months | 1.4% | Serum albumin LSM > 17.3 kPa | 0.400 (0.206–0.766) d 1.036 (1.015–1.057) | 1-year ΔLSM 1-year FIB4 | 0.988 (0.982–0.994) e 1.069 (1.001–1.142) |
Ogawa et al., 2020; [46] | 1670 | 67/43% | 26 | 3.5 years | Age > 70 years Male gender Cirrhosis | 2.39 (1.41–4.06) 2.07 (1.23–3.48) 2.97 (1.78–4.92) | Albumin < 3.5 g/dL AFP > 7 | 2.72 (1.39–5.33) 4.92 (2.72–8.88) | |
Pons et al., 2020; [48] | 572 | 64/49% | cACLD | 2.9 years | 1.5% | Albumin < 4 g/dL | 3.27 (1.45–7.36) | Albumin < 4.4 g/dL LSM > 20 kPa | 2.36 (1.02–5.47) 4.53 (1.36–15.08) f |
Nabatchikova et al., 2020; [49] | 229 | 54/49% | 100 | 30 months | 3.1% | Bilirubin > 34 µmol/L | 3.42 (1.17–9.97) | FIB4 > 3.25 | 15.15 (1.94–118.18) |
Tachi et al., 2017; [50] | 233 | 71/46% | 19 | 18 months | 2.3% | LSM ≥ 1.73 m/s g | 8.35 (1.62–43.09) | ||
Tamaki et al., 2019; [51] | 346 | 68/36% | 11 | 26 months | NA | Age AFP > 6.5 LSM ≥ 3.75 kPa h | 1.72 (1.06–2.78) 2.7 (1.15–6.37) 3.51 (1.24–9.99) | ||
Rinaldi et al., 2019; [52] | 258 | 68/55% | 100 | NA | NA | Age Platelet count LSM ≥ 27.8 kPa | 1.067 (1.010–1.127) NA for platelet count 1.113 (1.024–1.210) | ||
Ravaioli et al., 2018; [53] | 139 | 62/65% | 100 | 15 months | NA | Child–Pugh B | 4.046 (1.542–10.618) i | Δ LSM < 30% | 5.360 (1.561–18.405) j |
Peleg et al., 2019; [54] | 515 | 54/54% | 77 | 24 months | 2.61% | Liver steatosis Platelet count | 7.51 (3.61–13.36) 0.98 (0.97–0.99) | ||
Shili et al., 2018; [55] | 799 | 61/52% | NA | 5 months | NA | Age Diabetes LSM | 1.05 (1.02–1.09) per year 3.03 (1.46–6.28) 1.05 (1.03–1.06) per kPa | ||
Morisco et al., 2021; [56] | 687 | 64/54% | 100 | 24 months | 1.6% | LSM >20 kPa | 7.2 (1.9–26.7) | ||
Murakawa et al., 2024; [57] | 1001 | 68/45% | NA | 1338 days | NA | Elevated GGT | 2.38 (1.1–5.17) | ||
Tacke et al., 2022; [58] | 6982 | 53/61% | 33 | NA | NA | Elevated GGT | OR 3.12 (1.82–5.33) | ||
Abe et al., 2020; [59] | 880 | 66/48% | 0 | 43 months | 0.7% | Albumin < 3.95 g/dL | 3.57 (1.35–9.95) | FIB4 > 3.25 AFP > 6 ng/mL | 6.01 (1.60–26.94) 5.70 (1.47–19.34) |
Abe et al., 2020; [59] | 188 | 70/48% | 100 | 43 months | 2.6% | Score ALBI > −2.3 Diabetes Platelets < 82 × 109/L | 4.26 (1.70–11.15) 3.80 (1.35–10.65) 4.14 (1.55–11.20) | Score ALBI > −2.3 | 5.42 (1.59–17.06) |
Ogata et al., 2017; [60] | 1065 | 67/42% | 100 | 1.3 years | Albumin < 3.8 g/dL AFP > 5 ng/mL | 3,95 (1.12–13.9) 12.6 (1.66–96.0) | AFP > 5 ng/mL | 12.1 (CI are NA) | |
Zou et al., 2022; [61] | 701 | 57/24% | 14 | 4.84 years | 0.28% | FIB4 > 3.25 | 3.14 (1.40–7.05) | ||
Gardini et al., 2019; [62] | 416 | 63/58% | 100 | 18 months | 5.0% | Score ALBI Platelet count | 2.35 (1.05–5.25) 0.92 (0.85–1.0) | ||
Sanduzzi et al., 2022; [63] | 185 | 66/52% | 66 | 52 months | 1.46% (2.24% in cirrhosis) | NA | NA | ||
Kramer et al., 2022; [64] | 92,567 | 61/96% | 26.5 | 2.51 years | 2.0% k | Male gender Esophageal varices Serum albumin Genotype 3 FIB4 > 3.25 Bilirubin | 1.89 (1.37–2.59) 1.73 (1.57–1.97) 0.48 (0.44–0.52) 1.47 (1.27–1.71) 2.49 (2.11–2.94) 1.24 (1.15–1.34) | ||
Ampuero et al., 2022; [65] | 1054 | NA | cACLD | 49 months | NA | FIB4 > 3.25 LSM Cirrhosis | 2.26 (1.08–4.73) 1.02 (1.0–1.04) 3.15 (1.36–7.27) | ||
Nagata et al., 2017; [66] | 669 | 69/46% | NA | 1.8 years | NA | AFP > 5.4 ng/mL WFA + M2BP > 1.8 C.O.I. l | NA | ||
Tamaki et al., 2022; [67] | 1325 | 72/40% | 100 | 2.96 years | FIB4 > 4.28 AFP > 4.0 ng/mL GGT > 28 UI/L | 2.33 (1.5–3.7) 1.97 (1.2–3.3) 1.88 (1.2–3.0) | |||
Shiha et al., 2020; [68] | 2372 | NA | 73 | 24 months | 2.33% | Age > 54 years Male gender AFP > 20 ng/mL Albumin < 3.8 g/dL Cirrhosis | 1.072 (1.04–1.10) 3.61 (2–6.52) 2.83 (1.55–5.18) 1.86 (1.15–3.0) 3.48 (1.69–7.17) |
1st Author | Ref. | N | Age (Years)/Males | Type of Elastography | Baseline Cut-Off of LSM | Post-SVR Cut-Off of LSM | HR (95% CI) |
---|---|---|---|---|---|---|---|
Degasperi | 42 | 505 | 64/60% | TE | >30 kPa | - | NA |
Alonso | 45 | 993 | 61.7/56% | TE | ≥17.3 kPa | ΔLSM < 25.5% | NA |
Pons | 48 | 572 | 63.7/49% | TE | - | <10 kPa | 0.33 (0.11–0.96) |
Tachi | 50 | 233 | 71.4/46% | ARFI | 1.73 m/s | - | 8.35 (1.6–43.09) |
Tamaki | 51 | 346 | 68.2/36% | MRE | - | 3.75 kPa | 3.51 (1.24–9.99) |
Rinaldi | 52 | 258 | 68/55% | TE | 27.8 kPa | - | NA |
Ravaioli | 53 | 139 | 62/65% | TE | - | Δ LSM < 30% | 5.3 (1.5–18.4) |
Shili | 55 | 799 | 61/52% | TE | >12 kPa | - | 14.0 (1.9–109.9) |
Risk for HCC | Patients | Surveillance Strategy |
---|---|---|
Low |
|
|
Medium |
|
|
High |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fassio, E.; Colombato, L.; Gualano, G.; Perez, S.; Puga-Tejada, M.; Landeira, G. Hepatocellular Carcinoma After HCV Eradication with Direct-Acting Antivirals: A Reappraisal Based on New Parameters to Assess the Persistence of Risk. Cancers 2025, 17, 1018. https://doi.org/10.3390/cancers17061018
Fassio E, Colombato L, Gualano G, Perez S, Puga-Tejada M, Landeira G. Hepatocellular Carcinoma After HCV Eradication with Direct-Acting Antivirals: A Reappraisal Based on New Parameters to Assess the Persistence of Risk. Cancers. 2025; 17(6):1018. https://doi.org/10.3390/cancers17061018
Chicago/Turabian StyleFassio, Eduardo, Luis Colombato, Gisela Gualano, Soledad Perez, Miguel Puga-Tejada, and Graciela Landeira. 2025. "Hepatocellular Carcinoma After HCV Eradication with Direct-Acting Antivirals: A Reappraisal Based on New Parameters to Assess the Persistence of Risk" Cancers 17, no. 6: 1018. https://doi.org/10.3390/cancers17061018
APA StyleFassio, E., Colombato, L., Gualano, G., Perez, S., Puga-Tejada, M., & Landeira, G. (2025). Hepatocellular Carcinoma After HCV Eradication with Direct-Acting Antivirals: A Reappraisal Based on New Parameters to Assess the Persistence of Risk. Cancers, 17(6), 1018. https://doi.org/10.3390/cancers17061018