Current Immunotherapy Strategies and Emerging Biomarkers for the Treatment of Hepatocellular Carcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Immunotherapy Treatment Pipeline for Unresectable HCC
3.1. First- and Second-Line Systemic Therapy Treatment
3.2. Early Evidence Suggesting Reduced Efficacy of Immunotherapy in MASH-Associated HCC
3.3. Immunotherapy Trials in HCC Highlight Differences in the Efficacy of ICIs Depending on the Underlying Etiology of HCC
4. Biomarkers in HCC
4.1. The Impact of Liver Disease Etiology on the Immune Landscape
4.2. Advancements in Molecular Diagnostics: Liquid Biopsy
4.3. Translating Liquid Biopsies into Clinical Practices
5. Treatment Strategies for HCC
5.1. Neoadjuvant and Adjuvant Immunotherapy: Current Trials and Clinical Challenges
5.2. Efficacy of Combinational Therapies
5.3. Leveraging Molecular Insights for Tailored Treatment Plans
6. Personalized Medicine in HCC
6.1. Integration of Molecular Diagnosis Treatment Approaches in HCC
6.2. Implications of Liver Transplant
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AASLD | American Association for the Study of Liver Diseases |
| AE(s) | Adverse event(s) |
| AFP | Alpha-fetoprotein |
| APASL | Asia-Pacific Association for the Study of the Liver |
| BCLC | Barcelona Clinic Liver Cancer |
| CASL | Canadian Association for the Study of the Liver |
| CD3 | Cluster of Differentiation 3 |
| CD8 | Cluster of Differentiation 8 |
| CI | Confidence interval |
| CNLC | Chinese Liver Cancer |
| CT | Computed tomography |
| CTC(s) | Circulating tumor cell(s) |
| CTLA-4 | Cytotoxic T-lymphocyte–associated protein 4 |
| DFS | Disease-free survival |
| EASL | European Association for the Study of the Liver |
| EFS | Event-free survival |
| EMA | European Medicines Agency |
| EV(s) | Extracellular vesicle(s) |
| FDA | U.S. Food and Drug Administration |
| GPC3 | Glypican-3 |
| HBV | Hepatitis B virus |
| HCC | Hepatocellular carcinoma |
| HCV | Hepatitis C virus |
| HKLC | Hong Kong Liver Cancer |
| HR | Hazard ratio |
| ICI(s) | Immune checkpoint inhibitor(s) |
| ITA.LI.CA | Italian Liver Cancer |
| LAG-3 | Lymphocyte activation gene-3 |
| LT | Liver transplant/transplantation |
| MAFLD | Metabolic dysfunction-associated fatty liver disease |
| MASH | Metabolic dysfunction-associated steatohepatitis |
| MASLD | Metabolic dysfunction-associated steatosis liver disease |
| MPR | Major pathological response |
| MRI | Magnetic resonance imaging |
| MSI | Microsatellite instability |
| MVI | Microvascular invasion |
| NGS | Next-generation sequencing |
| ORR | Objective response rate |
| OS | Overall survival |
| PD-1 | Programmed cell death protein 1 |
| PD-L1 | Programmed death-ligand 1 |
| PFS | Progression-free survival |
| PNPLA3 | Patatin-like phospholipase domain-containing protein 3 |
| QoL | Quality of life |
| R0 | Microscopically margin-negative resection |
| RECIST | Response Evaluation Criteria in Solid Tumors |
| RFA | Radiofrequency ablation |
| RFS | Recurrence-free survival |
| SBRT | Stereotactic body radiotherapy |
| SOP(s) | Standard operating procedure(s) |
| TACE | Transarterial chemoembolization |
| TCR | T-cell receptor |
| TIL(s) | Tumor-infiltrating lymphocyte(s) |
| TKI(s) | Tyrosine kinase inhibitor(s) |
| TME | Tumor microenvironment |
| TTR | Time to recurrence |
| UCSF | University of California, San Francisco |
| VEGF | Vascular endothelial growth factor |
| VEGFR(s) | Vascular endothelial growth factor receptor(s) |
| c-KIT | Tyrosine-protein kinase Kit |
| ctDNA | Circulating tumor DNA |
| irAE(s) | Immune-related adverse event(s) |
| mOS | Median overall survival |
| mRECIST | Modified Response Evaluation Criteria in Solid Tumors |
| miRNA(s) | MicroRNA(s) |
| pCR | Pathological complete response |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- El-Serag, H.B. Epidemiology of Viral Hepatitis and Hepatocellular Carcinoma. Gastroenterology 2012, 142, 1264–1273.e1. [Google Scholar] [CrossRef]
- Koshy, A. Evolving Global Etiology of Hepatocellular Carcinoma (HCC): Insights and Trends for 2024. J. Clin. Exp. Hepatol. 2024, 15, 102406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.S.; Wong, R.J. Geographical disparities in hepatitis b virus related hepatocellular carcinoma mortality rates worldwide from 1990 to 2019. Medicine 2023, 102, e33666. [Google Scholar] [CrossRef] [PubMed]
- Di Bisceglie, A.M. Hepatitis B and hepatocellular carcinoma#. Hepatology 2009, 49, S56–S60. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; E Underwood, F.; A King, J.; Afshar, E.E.; Swain, M.G.; E Congly, S.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184, 2537–2564. [Google Scholar] [CrossRef]
- Leyh, C.; Coombes, J.D.; Schmidt, H.H.; Canbay, A.; Manka, P.P.; Best, J. MASLD-Related HCC—Update on Pathogenesis and Current Treatment Options. J. Pers. Med. 2024, 14, 370. [Google Scholar] [CrossRef]
- Reig, M.; Sanduzzi-Zamparelli, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Díaz, A.; Llarch, N.; Iserte, G.; et al. BCLC strategy for prognosis prediction and treatment recommendations: The 2025 update. J. Hepatol. 2025, in press. [Google Scholar] [CrossRef]
- Kim, J.; Kang, W.; Sinn, D.H.; Gwak, G.-Y.; Paik, Y.-H.; Choi, M.S.; Lee, J.H.; Koh, K.C.; Paik, S.W. Substantial risk of recurrence even after 5 recurrence-free years in early-stage hepatocellular carcinoma patients. Clin. Mol. Hepatol. 2020, 26, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.-Y.; Lee, K.-T.; Chiu, C.-C.; Wang, J.-J.; Sun, D.-P.; Lee, H.-H. 5-year recurrence prediction after hepatocellular carcinoma resection: Deep learning vs. Cox regression models. Am. J. Cancer Res. 2022, 12, 2876–2890. [Google Scholar] [PubMed]
- Frenette, C.T.; Isaacson, A.J.; Bargellini, I.; Saab, S.; Singal, A.G. A Practical Guideline for Hepatocellular Carcinoma Screening in Patients at Risk. Mayo Clin. Proceedings Innov. Qual. Outcomes 2019, 3, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, G.; Zhang, P.; Zhang, J.; Li, X.; Gan, D.; Cao, X.; Han, M.; Du, H.; Ye, Y. The threshold of alpha-fetoprotein (AFP) for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0228857. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, K.-H. New Blood Biomarkers for the Diagnosis of AFP-Negative Hepatocellular Carcinoma. Front. Oncol. 2020, 10, 1316. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef]
- McMahon, B.; Cohen, C.; Jr, R.S.B.; El-Serag, H.; Ioannou, G.N.; Lok, A.S.; Roberts, L.R.; Singal, A.G.; Block, T. Opportunities to address gaps in early detection and improve outcomes of liver cancer. JNCI Cancer Spectr. 2023, 7, pkad034. [Google Scholar] [CrossRef]
- Parikh, N.D.; Mehta, A.S.; Singal, A.G.; Block, T.; Marrero, J.A.; Lok, A.S. Biomarkers for the Early Detection of Hepatocellular Carcinoma. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2495–2503. [Google Scholar] [CrossRef]
- National Cancer Institute. SEER*Explorer: An Interactive Website for SEER Cancer Statistics. Available online: https://seer.cancer.gov/explorer/ (accessed on 2 March 2022).
- Juratli, M.A.; Pollmann, N.S.; Oppermann, E.; Mohr, A.; Roy, D.; Schnitzbauer, A.; Michalik, S.; Vogl, T.; Stoecklein, N.H.; Houben, P.; et al. Extracellular vesicles as potential biomarkers for diagnosis and recurrence detection of hepatocellular carcinoma. Sci. Rep. 2024, 14, 5322. [Google Scholar] [CrossRef]
- Manea, I.; Iacob, R.; Iacob, S.; Cerban, R.; Dima, S.; Oniscu, G.; Popescu, I.; Gheorghe, L. Liquid biopsy for early detection of hepatocellular carcinoma. Front. Med. 2023, 10, 1218705. [Google Scholar] [CrossRef]
- Ntellas, P.; Chau, I. Updates on Systemic Therapy for Hepatocellular Carcinoma. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e430028. [Google Scholar] [CrossRef] [PubMed]
- Cheu, J.W.-S.; Wong, C.C.-L. The immune microenvironment of steatotic hepatocellular carcinoma: Current findings and future prospects. Hepatol. Commun. 2024, 8, e0516. [Google Scholar] [CrossRef] [PubMed]
- Pipitone, R.M.; Lupo, G.; Zito, R.; Javed, A.; Petta, S.; Pennisi, G.; Grimaudo, S. The PD-1/PD-L1 Axis in the Biology of MASLD. Int. J. Mol. Sci. 2024, 25, 3671. [Google Scholar] [CrossRef]
- Gordan, J.D.; Kennedy, E.B.; Abou-Alfa, G.K.; Beal, E.; Finn, R.S.; Gade, T.P.; Goff, L.; Gupta, S.; Guy, J.; Hoang, H.T.; et al. Systemic Therapy for Advanced Hepatocellular Carcinoma: ASCO Guideline Update. J. Clin. Oncol. 2024, 42, 1830–1850. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Évid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Yamashita, T.; Kudo, M.; Ikeda, K.; Izumi, N.; Tateishi, R.; Ikeda, M.; Aikata, H.; Kawaguchi, Y.; Wada, Y.; Numata, K.; et al. REFLECT—A phase 3 trial comparing efficacy and safety of lenvatinib to sorafenib for the treatment of unresectable hepatocellular carcinoma: An analysis of Japanese subset. J. Gastroenterol. 2019, 55, 113–122. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Costa, V.; Custodio, M.G.; Gefen, E.; Fregni, F. The relevance of the real-world evidence in research, clinical, and regulatory decision making. Front. Public Health 2025, 13, 1512429. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.; Xiao, W.; Fan, X. A review of MASLD-related hepatocellular carcinoma: Progress in pathogenesis, early detection, and therapeutic interventions. Front. Med. 2024, 11, 1410668. [Google Scholar] [CrossRef]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef]
- Mladenić, K.; Lenartić, M.; Marinović, S.; Polić, B.; Wensveen, F.M. The “Domino effect” in MASLD: The inflammatory cascade of steatohepatitis. Eur. J. Immunol. 2024, 54, e2149641. [Google Scholar] [CrossRef] [PubMed]
- Apostolo, D.; Ferreira, L.L.; Vincenzi, F.; Vercellino, N.; Minisini, R.; Latini, F.; Ferrari, B.; Burlone, M.E.; Pirisi, M.; Bellan, M. From MASH to HCC: The role of Gas6/TAM receptors. Front. Immunol. 2024, 15, 1332818. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, G.; Giannousi, E.; Avdi, A.P.; Velliou, R.-I.; Nikolakopoulou, P.; Chatzigeorgiou, A. T cell-mediated adaptive immunity in the transition from metabolic dysfunction-associated steatohepatitis to hepatocellular carcinoma. Front. Cell Dev. Biol. 2024, 12, 1343806. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Cappuyns, S.; Loh, A.; Sun, S.; Lewis, S.; Sung, M.W.; Schwartz, M.; Llovet, J.M.; Cohen, D.J. Impact of underlying liver disease on unresectable hepatocellular carcinoma treated with immune checkpoint inhibitors. BJC Rep. 2024, 2, 8. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Rimini, M.; Rimassa, L.; Ueshima, K.; Burgio, V.; Shigeo, S.; Tada, T.; Suda, G.; Yoo, C.; Cheon, J.; Pinato, D.; et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: An international propensity score matching analysis. ESMO Open 2022, 7, 100591. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; Xu, R.; Edeline, J.; Ryoo, B.-Y.; Ren, Z.; et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1399–1410. [Google Scholar] [CrossRef]
- Yau, T.; Kaseb, A.; Cheng, A.-L.; Qin, S.; Zhu, A.X.; Chan, S.L.; Melkadze, T.; Sukeepaisarnjaroen, W.; Breder, V.; Verset, G.; et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): Final results of a randomised phase 3 study. Lancet Gastroenterol. Hepatol. 2024, 9, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Kudo, M.; Meyer, T.; Bai, Y.; Guo, Y.; Meng, Z.; Satoh, T.; Marino, D.; Assenat, E.; Li, S.; et al. Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma. JAMA Oncol. 2023, 9, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Xu, J.; Bai, Y.; Xu, A.; Cang, S.; Du, C.; Li, Q.; Lu, Y.; Chen, Y.; Guo, Y.; et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): A randomised, open-label, phase 2–3 study. Lancet Oncol. 2021, 22, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate-459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Jeng, L.-B.; Wang, J.; Teng, C.-F. Predictive Biomarkers of Immune Checkpoint Inhibitor-Based Mono- and Combination Therapies for Hepatocellular Carcinoma. J. Cancer 2024, 15, 484–493. [Google Scholar] [CrossRef]
- Schlosser, S.; Tümen, D.; Volz, B.; Neumeyer, K.; Egler, N.; Kunst, C.; Tews, H.C.; Schmid, S.; Kandulski, A.; Müller, M.; et al. HCC biomarkers—State of the old and outlook to future promising biomarkers and their potential in everyday clinical practice. Front. Oncol. 2022, 12, 1016952. [Google Scholar] [CrossRef]
- Tang, T.; Huang, X.; Zhang, G.; Hong, Z.; Bai, X.; Liang, T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct. Target. Ther. 2021, 6, 72. [Google Scholar] [CrossRef]
- Pinto, E.; Meneghel, P.; Farinati, F.; Russo, F.P.; Pelizzaro, F.; Gambato, M. Efficacy of immunotherapy in hepatocellular carcinoma: Does liver disease etiology have a role? Dig. Liver Dis. 2023, 56, 579–588. [Google Scholar] [CrossRef]
- Dudek, M.; Pfister, D.; Donakonda, S.; Filpe, P.; Schneider, A.; Laschinger, M.; Hartmann, D.; Hüser, N.; Meiser, P.; Bayerl, F.; et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 2021, 592, 444–449. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, D.; Zhao, B.; Ren, L.; Huang, R.; Feng, B.; Chen, H. The predictive value of PD-L1 expression in patients with advanced hepatocellular carcinoma treated with PD-1/PD-L1 inhibitors: A systematic review and meta-analysis. Cancer Med. 2023, 12, 9282–9292. [Google Scholar] [CrossRef]
- Burtis, A.E.; DeNicola, D.M.; Ferguson, M.E.; Santos, R.G.; Pinilla, C.; Kriss, M.S.; Orlicky, D.J.; Tamburini, B.A.J.; Gillen, A.E.; Burchill, M.A. Ag-driven CD8+ T cell clonal expansion is a prominent feature of MASH in humans and mice. Hepatology 2024, 81, 591–608. [Google Scholar] [CrossRef]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid biopsy in cancer: Current status, challenges and future prospects. Signal Transduct. Target. Ther. 2024, 9, 336. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Zhang, X.; Shao, T.; Luo, Y.; Wang, W.; Han, Y. Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Front. Oncol. 2022, 12, 884369. [Google Scholar] [CrossRef]
- Liu, Y.-G.; Jiang, S.-T.; Zhang, J.-W.; Zheng, H.; Zhang, L.; Zhao, H.-T.; Sang, X.-T.; Xu, Y.-Y.; Lu, X. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell Biosci. 2024, 14, 113. [Google Scholar] [CrossRef]
- Carpi, S.; Daniele, S.; de Almeida, J.F.M.; Gabbia, D. Recent Advances in miRNA-Based Therapy for MASLD/MASH and MASH-Associated HCC. Int. J. Mol. Sci. 2024, 25, 12229. [Google Scholar] [CrossRef] [PubMed]
- Sorop, A.; Iacob, R.; Iacob, S.; Constantinescu, D.; Chitoiu, L.; Fertig, T.E.; Dinischiotu, A.; Chivu-Economescu, M.; Bacalbasa, N.; Savu, L.; et al. Plasma Small Extracellular Vesicles Derived miR-21-5p and miR-92a-3p as Potential Biomarkers for Hepatocellular Carcinoma Screening. Front. Genet. 2020, 11, 712. [Google Scholar] [CrossRef] [PubMed]
- Uthamalingam, P.; Das, A.; Behra, A.; Kalra, N.; Chawla, Y. Diagnostic Value of Glypican3, Heat Shock Protein 70 and Glutamine Synthetase in Hepatocellular Carcinoma Arising in Cirrhotic and Non-Cirrhotic Livers. J. Clin. Exp. Hepatol. 2018, 8, 173–180. [Google Scholar] [CrossRef]
- Ugonabo, O.; Udoh, U.-A.S.; Rajan, P.K.; Reeves, H.; Arcand, C.; Nakafuku, Y.; Joshi, T.; Finley, R.; Pierre, S.V.; Sanabria, J.R. The Current Status of the Liver Liquid Biopsy in MASH Related HCC: Overview and Future Directions. Biomolecules 2023, 13, 1369. [Google Scholar] [CrossRef]
- Aquino, I.M.C.; Pascut, D. Liquid biopsy: New opportunities for precision medicine in hepatocellular carcinoma care. Ann. Hepatol. 2023, 29, 101176. [Google Scholar] [CrossRef]
- Hanif, H.; Ali, M.J.; Susheela, A.T.; Khan, I.W.; Luna-Cuadros, M.A.; Khan, M.M.; Lau, D.T.-Y. Update on the applications and limitations of alpha-fetoprotein for hepatocellular carcinoma. World J. Gastroenterol. 2022, 28, 216–229. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, W.; Li, X.; Zhao, H.; Wang, S. The Diagnostic Performance of AFP, AFP-L3, DCP, CA199, and Their Combination for Primary Liver Cancer. J. Hepatocell. Carcinoma 2025, 12, 513–526. [Google Scholar] [CrossRef]
- Filmus, J.; Capurro, M. Glypican-3: A marker and a therapeutic target in hepatocellular carcinoma. FEBS J. 2013, 280, 2471–2476. [Google Scholar] [CrossRef]
- Nishida, T.; Kataoka, H. Glypican 3-Targeted Therapy in Hepatocellular Carcinoma. Cancers 2019, 11, 1339. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.; Ugo, P.; Walton, Z.; Ali, S.; Rastellini, C.; Cicalese, L. Glypican-3 (GPC-3) Structural Analysis and Cargo in Serum Small Extracellular Vesicles of Hepatocellular Carcinoma Patients. Int. J. Mol. Sci. 2023, 24, 10922. [Google Scholar] [CrossRef] [PubMed]
- Aydin, Y.; Koksal, A.R.; Thevenot, P.; Chava, S.; Heidari, Z.; Lin, D.; Sandow, T.; Moroz, K.; A Parsi, M.; Scott, J.; et al. Experimental Validation of Novel Glypican 3 Exosomes for the Detection of Hepatocellular Carcinoma in Liver Cirrhosis. J. Hepatocell. Carcinoma 2021, 8, 1579–1596. [Google Scholar] [CrossRef] [PubMed]
- Koksal, A.R.; Thevenot, P.; Aydin, Y.; Nunez, K.; Sandow, T.; Widmer, K.; Nayak, L.; Scott, J.; Delk, M.; Moehlen, M.W.; et al. Impaired Autophagy Response in Hepatocellular Carcinomas Enriches Glypican-3 in Exosomes, Not in the Microvesicles. J. Hepatocell. Carcinoma 2022, 9, 959–972. [Google Scholar] [CrossRef]
- Chen, L.-Z.; Xin, Y.-N.; Geng, N.; Jiang, M.; Zhang, D.-D.; Xuan, S.-Y. PNPLA3 I148M variant in nonalcoholic fatty liver disease: Demographic and ethnic characteristics and the role of the variant in nonalcoholic fatty liver fibrosis. World J. Gastroenterol. 2015, 21, 794–802. [Google Scholar] [CrossRef]
- Kopystecka, A.; Patryn, R.; Leśniewska, M.; Budzyńska, J.; Kozioł, I. The Use of ctDNA in the Diagnosis and Monitoring of Hepatocellular Carcinoma—Literature Review. Int. J. Mol. Sci. 2023, 24, 9342. [Google Scholar] [CrossRef]
- Boonkaew, B.; Satthawiwat, N.; Pinjaroen, N.; Chuaypen, N.; Tangkijvanich, P. Circulating Extracellular Vesicle-Derived microRNAs as Novel Diagnostic and Prognostic Biomarkers for Non-Viral-Related Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 16043. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, Q. Detecting liquid remnants of solid tumors treated with curative intent: Circulating tumor DNA as a biomarker of minimal residual disease (Review). Oncol. Rep. 2023, 49, 106. [Google Scholar] [CrossRef]
- Mills, J.; Capece, M.; Cocucci, E.; Tessari, A.; Palmieri, D. Cancer-Derived Extracellular Vesicle-Associated MicroRNAs in Intercellular Communication: One Cell’s Trash Is Another Cell’s Treasure. Int. J. Mol. Sci. 2019, 20, 6109. [Google Scholar] [CrossRef] [PubMed]
- Capuozzo, M.; Ferrara, F.; Santorsola, M.; Zovi, A.; Ottaiano, A. Circulating Tumor Cells as Predictive and Prognostic Biomarkers in Solid Tumors. Cells 2023, 12, 2590. [Google Scholar] [CrossRef] [PubMed]
- Tukia, S.; Pirnes, J.; Nurmi, J.; Nordquist, H. The creation, implementation, and harmonisation of medical standard operating procedures and checklists of Finnish Helicopter Emergency Medical Service units. Scand. J. Trauma Resusc. Emerg. Med. 2024, 32, 66. [Google Scholar] [CrossRef] [PubMed]
- Trépo, E.; Romeo, S.; Zucman-Rossi, J.; Nahon, P. PNPLA3 gene in liver diseases. J. Hepatol. 2016, 65, 399–412. [Google Scholar] [CrossRef]
- Llovet, J.M.; Brú, C.; Bruix, J. Prognosis of hepatocellular carcinoma: The BCLC staging classification. In Seminars in Liver Disease; Thieme Medical Publishers, Inc.: New York, NY, USA, 1999; Volume 19, pp. 329–338. [Google Scholar]
- Parikh, N.D.; Singal, A.G. The ITA.LI.CA Staging System: A Novel Staging System for Hepatocellular Carcinoma. PLOS Med. 2016, 13, e1002005. [Google Scholar] [CrossRef]
- Cheung, T.T.-T.; Kwok, P.C.-H.; Chan, S.; Cheung, C.-C.; Lee, A.-S.; Lee, V.; Cheng, H.-C.; Chia, N.-H.; Chong, C.C.; Lai, T.-W.; et al. Hong Kong Consensus Statements for the Management of Unresectable Hepatocellular Carcinoma. Liver Cancer 2018, 7, 40–54. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, H.; Wang, Z.; Cong, W.; Zeng, M.; Zhou, W.; Bie, P.; Liu, L.; Wen, T.; Kuang, M.; et al. Guidelines for the Diagnosis and Treatment of Primary Liver Cancer (2022 Edition). Liver Cancer 2023, 12, 405–444. [Google Scholar] [CrossRef]
- Vitale, A.; Trevisani, F.; Farinati, F.; Cillo, U. Treatment of Hepatocellular Carcinoma in the Precision Medicine Era: From Treatment Stage Migration to Therapeutic Hierarchy. Hepatology 2020, 72, 2206–2218. [Google Scholar] [CrossRef]
- Liu, J.K.H.; Irvine, A.F.; Jones, R.L.; Samson, A. Immunotherapies for hepatocellular carcinoma. Cancer Med. 2022, 11, 571–591. [Google Scholar] [CrossRef]
- Singal, A.G.; Yarchoan, M.; Yopp, A.; Sapisochin, G.; Pinato, D.J.; Pillai, A. Neoadjuvant and adjuvant systemic therapy in HCC: Current status and the future. Hepatol. Commun. 2024, 8, e0430. [Google Scholar] [CrossRef]
- Chamseddine, S.; LaPelusa, M.; Kaseb, A.O. Systemic Neoadjuvant and Adjuvant Therapies in the Management of Hepatocellular Carcinoma—A Narrative Review. Cancers 2023, 15, 3508. [Google Scholar] [CrossRef] [PubMed]
- Ghaziani, T.T.; Dhanasekaran, R. Recent Progress in Systemic Therapy for Hepatocellular Cancer (HCC). Curr. Treat. Options Gastroenterol. 2021, 19, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Yu, Y.; Wang, Y.; Yang, L.; Tang, Y.; Yu, C.; Feng, G.; Zheng, D.; Wang, X. Neoadjuvant Immune Checkpoint Inhibitors in hepatocellular carcinoma: A meta-analysis and systematic review. Front. Immunol. 2024, 15, 1352873. [Google Scholar] [CrossRef] [PubMed]
- Goodsell, K.E.; Tao, A.J.; Park, J.O. Neoadjuvant therapy for hepatocellular carcinoma—Priming precision innovations to transform HCC treatment. Front. Surg. 2025, 12, 1531852. [Google Scholar] [CrossRef]
- Du, J.-S.; Hsu, S.-H.; Wang, S.-N. The Current and Prospective Adjuvant Therapies for Hepatocellular Carcinoma. Cancers 2024, 16, 1422. [Google Scholar] [CrossRef]
- Nishio, T.; Yoh, T.; Nishino, H.; Ogiso, S.; Uchida, Y.; Ishii, T.; Hatano, E. Current perspectives on perioperative combination therapy for hepatocellular carcinoma. Liver Cancer 2025, 1–21. [Google Scholar] [CrossRef]
- Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular Carcinoma (HCC): Epidemiology, Etiology and Molecular Classification. Adv. Cancer Res. 2021, 149, 1–61. [Google Scholar]
- Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018, 15, 599–616. [Google Scholar] [CrossRef]
- Ahn, J.C.; Qureshi, T.A.; Singal, A.G.; Li, D.; Yang, J.-D. Deep learning in hepatocellular carcinoma: Current status and future perspectives. World J. Hepatol. 2021, 13, 2039–2051. [Google Scholar] [CrossRef]
- Culy, C. Bevacizumab: Antiangiogenic cancer therapy. Drugs Today 2005, 41, 23–36. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H., 3rd; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Zhao, Z.; Cui, T.; Wei, F.; Zhou, Z.; Sun, Y.; Gao, C.; Xu, X.; Zhang, H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: Pathogenic role and therapeutic target. Front. Oncol. 2024, 14, 1367364. [Google Scholar] [CrossRef]
- de Galarreta, M.R.; Bresnahan, E.; Molina-Sánchez, P.; Lindblad, K.E.; Maier, B.; Sia, D.; Puigvehi, M.; Miguela, V.; Casanova-Acebes, M.; Dhainaut, M.; et al. β-Catenin Activation Promotes Immune Escape and Resistance to Anti–PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov. 2019, 9, 1124–1141. [Google Scholar] [CrossRef]
- Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I.; et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2018, 25, 2116–2126. [Google Scholar] [CrossRef]
- Mazzaferro, V.M.; Regalia, E.; Doci, R.; Andreola, S.; Pulvirenti, A.; Bozzetti, F.; Montalto, F.; Ammatuna, M.; Morabito, A.; Gennari, L. Liver Transplantation for the Treatment of Small Hepatocellular Carcinomas in Patients with Cirrhosis. N. Engl. J. Med. 1996, 334, 693–700. [Google Scholar] [CrossRef]
- Clavien, P.-A.; Lesurtel, M.; Bossuyt, P.M.; Gores, G.J.; Langer, B.; Perrier, A.; OLT for HCC Consensus Group. Recommendations for liver transplantation for hepatocellular carcinoma: An international consensus conference report. Lancet Oncol. 2012, 13, e11–e22. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef]
- Yao, F.Y.; Ferrell, L.; Bass, N.M.; Watson, J.J.; Bacchetti, P.; Venook, A.; Ascher, N.L.; Roberts, J.P. Liver Transplantation for Hepatocellular Carcinoma: Expansion of the Tumor Size Limits Does Not Adversely Impact Survival. Hepatology 2001, 33, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Peng, J.; Lei, L.; Chen, Y.; Zhu, Z.; Cai, Q.; Deng, Y.; Chen, J. Time of Liver Function Abnormal Identification on Prediction of the Risk of Anti-tuberculosis-induced Liver Injury. J. Clin. Transl. Hepatol. 2022, 11, 425–432. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Aby, E.S.; Lake, J.R. Immune Checkpoint Inhibitor Therapy Before Liver Transplantation—Case and Literature Review. Transplant. Direct 2022, 8, e1304. [Google Scholar] [CrossRef]
- Wassmer, C.-H.; El Hajji, S.; Papazarkadas, X.; Compagnon, P.; Tabrizian, P.; Lacotte, S.; Toso, C. Immunotherapy and Liver Transplantation: A Narrative Review of Basic and Clinical Data. Cancers 2023, 15, 4574. [Google Scholar] [CrossRef]
| First Line | Second Line |
|---|---|
| Atezolizumab + Bevacizumab | Regorafenib |
| Tremelimumab + Durvalumab (STRIDE regimen) | Carbozantinib |
| Nivolumab + Ipilimumab | Ramucirumab (for AFP ≥ 400 ng/mL) |
| Lenvatinib | |
| Sorafenib |
| NCT Number | Phases | Interventions | Primary Outcome | Secondary Outcome * | Start Date |
|---|---|---|---|---|---|
| NCT06327269 | EARLY_PHASE1 | Lenvatinib | RFS | None | 1 April 2021 |
| NCT06337162 | PHASE1 | INCB099280 | Acute Cellular Rejection of Liver Transplant Attributed to Study Therapy | Acute Cellular Rejection of Liver Transplant Within 3 months | 1 May 2024 |
| NCT05355155 | PHASE2 | Bevacizumab Biosimilar IBI305 + FOLFOX4 | ORR based on RECIST 1.1 | PFS | 1 May 2022 |
| NCT05027425 | PHASE2 | Durvalumab + Tremelimumab + Liver Transplant | Cellular rejection rates | Adverse events during treatment, and graft loss and mortality rates | 7 December 2021 |
| NCT05475613 | PHASE2 | Neoadjuvant/downstaging treatment containing Anti-PD-1 inhibitor (Tislelizumab, Pembrolizumab, Nivolumab et al.) followed by liver transplant if downstaging was successful | For patients with liver transplantation: The 2-year event-free survival rate | For patients with liver transplantation: The 2-year overall survival. For all patients with HCC downstaging: 1, 2 year overall survival rate | 1 August 2023 |
| NCT05576909 | PHASE2 | Neoadjuvant/downstaging treatment containing TACE and adjuvant Donafenib | Downstaging success rate | ORR before transplantation | 30 March 2023 |
| NCT05475613 | PHASE2 | Neoadjuvant/downstaging procedures containing Anti-PD-1 inhibitor (Tislelizumab, Pembrolizumab, Nivolumab et al.) followed by liver transplant if downstaging was successful | For patients with liver transplantation: The 2-year event-free survival rate | For patients with liver transplantation: The 2-year OS. For all patients with HCC downstaging: 1, 2 year OS | 1 August 2023 |
| NCT06041490 | PHASE2 | Multi-kinase inhibitors (Sorafenib or Lenvatinib or Donafenib) + Bevacizumab vs. No Intervention: Without adjuvant therapy | RFS (1-year) | RFS | 1 September 2023 |
| NCT05185505 | PHASE4 | Neoadjuvant/downstaging Atezolizumab + Bevacizumab + TACE | Proportion of Patients Receiving Liver Transplant Experiencing Acute Rejection | Proportion of participants who experience treatment-emergent adverse events | 30 January 2023 |
| NCT Number | Phases | Interventions | Primary Outcome | Secondary Outcome * | Start Date | Completion Date |
|---|---|---|---|---|---|---|
| NCT04857684 | EARLY PHASE1 | SBRT + Atezolizumab + Bevacizumab | TRAE assessed by CTCAE | ORR assessed by RECIST 1.1 | 18 June 2021 | 31 December 2025 |
| NCT04224480 | PHASE1 | Pembrolizumab | RR | None | 10 December 2019 | 31 December 2025 |
| NCT05225116 | PHASE1 | Sintilimab + Lenvatinib + Radiotherapy | AEs assessed by CTCAE | MPR | 8 January 2023 | 5 December 2025 |
| NCT05185531 | PHASE1 | Tislelizumab + SBRT | Delay to surgery, ORR | DFS | 1 March 2022 | 1 December 2024 |
| NCT05908786 | PHASE1|PHASE2 | Atezolizumab + Bevacizumab vs. Atezolizumab + Bevacizumab + Tiragolumab vs. Bevacizumab + Tobemstomig | MPR | PCR | 5 December 2023 | 30 September 2028 |
| NCT06492408 | PHASE2 | Double ICIs combination: Ipilimumab +Pembrolizumab or Ipilimumab + Durvalumab, Ipilimumab + Pembrolizumab or Ipilimumab + Durvalumab combined with Idarubicin, Ipilimumab + Pembrolizumab or Ipilimumab + Durvalumab combined with Idarubicin plus Bevacizumab vs. double ICIs + Idarubicin vs. Double ICIs + Idarubicin + Bevacizumab | pCR | Toxicity assessed by CTCAE | 1 July 2024 | 30 December 2033 |
| NCT04721132 | PHASE2 | Atezolizumab + Bevacizumab | pCR | ORR | 10 February 2021 | 31 December 2027 |
| NCT06420440 | PHASE2 | HAIC + Lenvatinib + Tislelizumab followed with liver resection with adjuvant Tislelizumab vs. Liver resection with adjuvant Tislelizumab | EFS | Safety assessed by CTCAE | 1 June 2024 | 31 May 2027 |
| NCT06512467 | PHASE2 | Donafenib combined with Sintilimab + HAIC | MPR | ORR | 30 July 2024 | 31 December 2026 |
| NCT06467799 | PHASE2 | FOLFOX-HAIC combined with tislelizumab, followed by surgical resection + tislelizumab | RFS | ORR | 1 July 2024 | 1 July 2026 |
| NCT06405061 | PHASE2 | Adebrelimab | ORR | MPR | 1 May 2024 | 1 August 2027 |
| NCT06349317 | PHASE2 | IMRT combined with Camrelizumab + Apatinib | EFS (1 year) | EFS | 22 April 2024 | 1 June 2026 |
| NCT05920863 | PHASE2 | Lenvatinib Combined with Tislelizumab + TACE | MPR | pCR | 1 July 2023 | 1 March 2026 |
| NCT05807776 | PHASE2 | Tislelizumab vs. Tislelizumab + Lenvatinib | MPR | DFS (1-year and 2-years) | 1 April 2023 | 31 December 2025 |
| NCT05389527 | PHASE2 | Pembrolizumab + Lenvatinib | MPR | pCR | 30 September 2022 | 31 July 2025 |
| NCT05578430 | PHASE2 | Cadonilimab + TACE followed by surgery | MPR | 1-year recurrence rate | 1 January 2023 | 1 January 2025 |
| NCT04850040 | PHASE2 | Camrelizumab in Combination with Apatinib and Oxaliplatin | MPR | ORR | 6 May 2021 | 31 December 2024 |
| NCT05194293 | PHASE2 | Durvalumab + Regorafenib | ORR | Rate of surgery | 1 July 2023 | 5 December 2028 |
| NCT06311916 | PHASE4 | HAIC + Tirelizumab + lenvatinib followed by liver resection | DFS | Safety | 1 May 2024 | 31 December 2028 |
| NCT05660213 | PHASE4 | Targeted therapies: Atezolizumab + Bevacizumab or Camrelizumab + Apatinib or Sintilimab + Bevacizumab vs. TACE combined with targeted therapies vs. Lenvatinib vs. Huaier granule combined with any of the above regimens | ORR | PFS | 30 January 2024 | 1 January 2027 |
| NCT Number | Phases | Interventions | Primary Outcome | Secondary Outcome * | Start Date | Completion Date |
|---|---|---|---|---|---|---|
| NCT05701488 | PHASE1 | Durvalumab + Tremelimumab vs. Durvalumab + Tremelimumab + SIRT | AE by CTCAEv5 | Best Radiologic Response | 21 April 2023 | 1 October 2025 |
| NCT06454578 | PHASE2 | Adebrelimab + Apatinib | RFS | OS | 24 July 2024 | 1 June 2027 |
| NCT06498622 | PHASE2 | Donafenib + Envafolimab | RFS | OS | 20 July 2024 | 20 May 2027 |
| NCT05516628 | PHASE2 | Atezolizumab-Bevacizumab | RFS | TTR | 28 February 2023 | 1 March 2027 |
| NCT06143579 | PHASE2 | FOLFOX-HAIC+Lenvatinib+Envolizumab | AEs | pCR | 15 December 2023 | 31 December 2026 |
| NCT06546280 | PHASE2 | Camrelizumab + Apatinib | RFS (1-year) | RFS | 26 August 2024 | 1 September 2026 |
| NCT05407519 | PHASE2 | Tislelizumab + Sitravatinib | RFS (2-years) | TTR | 25 July 2022 | 30 June 2026 |
| NCT05367687 | PHASE2 | Camrelizumab + Rivoceranib vs. Camrelizumab | RFS determined by the investigator | RFS (24, 36 months) assessed by the investigator | 1 September 2022 | 30 April 2026 |
| NCT05389527 | PHASE2 | Pembrolizumab + Lenvatinib | MPR | pCR | 30 September 2022 | 31 July 2025 |
| NCT04981665 | PHASE2 | TACE followed by Tislelizumab | RFS (2-years) | RFS | 8 November 2021 | 1 December 2024 |
| NCT03867084 | PHASE3 | Pembrolizumab vs. Placebo | RFS assessed by BICR, overall survival | AE | 28 May 2019 | 31 August 2029 |
| NCT04102098 | PHASE3 | Atezolizumab + Bevacizumab | RFS | OS | 31 December 2019 | 16 July 2027 |
| NCT03847428 | PHASE3 | Durvalumab ± Bevacizumab vs. Placebo | RFS per RECIST 1.1 criteria as assessed by BICR | RFS | 29 April 2019 | 31 May 2027 |
| NCT03383458 | PHASE3 | Nivolumab vs. Placebo | RFS | OS | 18 April 2018 | 16 December 2025 |
| NCT04682210 | PHASE3 | Sintilimab + Bevacizumab vs. Active Surveillance | RFS | OS | 1 December 2020 | 1 December 2024 |
| NCT06311929 | PHASE4 | PD-1 monoclonal antibody and Lenvatinib vs. PD-1 monoclonal antibody | DFS | OS | 1 April 2024 | 31 December 2028 |
| NCT06496815 | PHASE4 | Donafenib vs. Donafenib + TACE or HAIC + PD-1, PD-L1 | ORR according to mRECIST, PFS | DCR | 1 August 2024 | 30 July 2027 |
| NCT Number | Phases | Interventions | Primary Outcome | Secondary Outcome * | Start Date | Completion Date |
|---|---|---|---|---|---|---|
| NCT04658147 | PHASE1 | Nivolumab vs. Nivolumab + Relatlimab | Number of patients who complete pre-op treatment and proceed to surgery, 4 years | Toxicity as defined by CTCAE | 28 May 2021 | 1 June 2026 |
| NCT04727307 | PHASE2 | Neoadjuvant Atezolizumab + RFA and adjuvant Atezolizumab + Bevacizumab vs. Neoadjuvant Atezolizumab and adjuvant Atezolizumab + Bevacizumab + RFA | RFS | None | 26 January 2021 | 1 February 2031 |
| NCT05440864 | PHASE2 | Durvalumab + Tremelimumab, followed by surgery and adjuvant Durvalumab | Number of greater than grade 3 AEs | Number of patients who experience a surgical delay due to TRAEs | 26 October 2023 | 1 November 2026 |
| NCT06031285 | PHASE2 | Sintilimab + Bevacizumab Biosimilar + TACE-HAIC | RFS | 1 September 2023 | 30 December 2025 | |
| NCT05519410 | PHASE2 | Sintilimab + Lenvatinib vs. HAIC-FOLFOX | DFS (1-year) | ORR | 23 August 2022 | 1 September 2025 |
| NCT04954339 | PHASE2 | Aatezolizumab + Bevacizumab | pCR, rate of dynamic changes using single nucelar RNA-sequencing, single cell RNA sequencing, spatial transcriptomics, multiplexed immunohistochemistry (mIHC), flow cytometry (and/or CyTOF) | The rate of completion of treatment and resection | 29 October 2021 | 31 December 2026 |
| NCT05613478 | PHASE3 | TACE + Camrelizumab + Apatinib mesylate followed by resection and adjuvant Camrelizumab and Apatinib mesylate vs. adjuvant TACE, and adjuvant Camrelizumab + Rivoceranib | RFS | MPR | 1 November 2022 | 1 November 2027 |
| NCT03916627 | PHASE2 | Cemiplimab followed by surgery and adjuvant Cemiplimab and Platinum doublet vs. Cemiplimab and Platinum doublet followed by surgery and adjuvant Cemiplimab and Platinum doublet vs. Platinum doublet followed by surgery Cemiplimab and Platinum doublet | MPR, STN, MTE | Delay to surgery, defined as surgery >28 days following the end of the second cycle of cohort-specific neoadjuvant therapy | 23 July 2019 | 26 February 2031 |
| NCT05185739 | PHASE2 | Pembrolizumab + Lenvatinib vs. Pembrolizumab vs. Lenvatinib | MPR | Percentage of viable tumor cells at resection | 25 August 2022 | 1 July 2026 |
| NCT04615143 | PHASE2 | Tislelizumab vs. Tislelizumab + Lenvatinib | DFS | ORR | 1 December 2020 | 1 December 2025 |
| NCT04912765 | PHASE2 | Neoantigen Dendritic Cell Vaccine + Nivolumab | RFS (24-month) | AEs | 15 April 2021 | 1 May 2025 |
| NCT Number | Phases | Interventions | Treatment | Primary Outcome | Secondary Outcome * | Start Date | Completion Date |
|---|---|---|---|---|---|---|---|
| NCT03794440 (ORIENT-32) | PHASE2|PHASE3 | Systemic | Sintilimab + IBI305 vs. Sorafenib | OS, PFS | PFS | 11 February 2019 | 1 December 2022 |
| NCT03434379 (IMBRAVE150) | PHASE3 | Systemic | Atezolizumab + Bevacizumab vs. Sorafenib | OS, by PFS-IRF per RECIST v1.1 | ORR | 15 March 2018 | 17 November 2022 |
| NCT03755791 (COSMIC-312) | PHASE3 | Systemic | Cabozantinib + Atezolizumab vs. Cabozantinib vs. Sorafenib | PFS, OS | PFS per RECIST 1.1 by BIRC | 10 June 2018 | 1 December 2024 |
| NCT03764293 (CARES-310) | PHASE3 | Systemic | SHR-1210 + Apatinib vs. Sorafenib | OS, PFS per BIRC based on RECIST v1.1 | ORR | 10 June 2019 | 14 June 2023 |
| NCT03713593 (LEAP-002) | PHASE3 | Systemic | Lenvatinib + Pembrolizumab vs. Lenvatinib + Saline placebo | PFS as determined by BICR per RECIST 1.1 or death due to any cause | ORR | 31 December 2018 | 24 September 2024 |
| NCT03298451 (HIMALAYA) | PHASE3 | Systemic | Durvalumab or Durvalumab + Tremelimumab vs. Sorafenib | OS | OS | 11 October 2017 | 27 August 2026 |
| NCT02576509 (CHECKMATE459) | PHASE3 | Systemic | Nivolumab vs. Sorafenib | OS | ORR | 7 December 2015 | 7 February 2024 |
| NCT03412773 (RATIONALE-301) | PHASE3 | Systemic | Tislelizumab vs. Sorafenib | OS | ORR | 28 December 2017 | 14 December 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapelanski-Lamoureux, A.; Lazaris, A.; Meti, N.; Metrakos, P. Current Immunotherapy Strategies and Emerging Biomarkers for the Treatment of Hepatocellular Carcinoma. Cancers 2025, 17, 3870. https://doi.org/10.3390/cancers17233870
Kapelanski-Lamoureux A, Lazaris A, Meti N, Metrakos P. Current Immunotherapy Strategies and Emerging Biomarkers for the Treatment of Hepatocellular Carcinoma. Cancers. 2025; 17(23):3870. https://doi.org/10.3390/cancers17233870
Chicago/Turabian StyleKapelanski-Lamoureux, Audrey, Anthoula Lazaris, Nicholas Meti, and Peter Metrakos. 2025. "Current Immunotherapy Strategies and Emerging Biomarkers for the Treatment of Hepatocellular Carcinoma" Cancers 17, no. 23: 3870. https://doi.org/10.3390/cancers17233870
APA StyleKapelanski-Lamoureux, A., Lazaris, A., Meti, N., & Metrakos, P. (2025). Current Immunotherapy Strategies and Emerging Biomarkers for the Treatment of Hepatocellular Carcinoma. Cancers, 17(23), 3870. https://doi.org/10.3390/cancers17233870

